Current Search: Darryl Dieujuste (x)
View All Items
- Title
- MICROFLUIDIC ELECTRICAL IMPEDANCE TECHNOLOGY FOR POINT-OFCARE ASSESSMENT OF SICKLE CELL DISEASE.
- Creator
- Dieujuste, Darryl, Du, Sarah, Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
Sickle Cell Disease (SCD) is a genetic disease that affects approximately 100,000 people in the USA and millions worldwide. The disease is defined by a mutation in hemoglobin, the red blood cell’s oxygen carrying component. Under hypoxic (low oxygen) conditions, the mutated hemoglobin (known as HbS) polymerizes into rigid fibers that stretch the cell into a sickle shape. These rigid cells can occlude blood vessels and cause an individual immense pain. Currently, no point-of-care devices exist...
Show moreSickle Cell Disease (SCD) is a genetic disease that affects approximately 100,000 people in the USA and millions worldwide. The disease is defined by a mutation in hemoglobin, the red blood cell’s oxygen carrying component. Under hypoxic (low oxygen) conditions, the mutated hemoglobin (known as HbS) polymerizes into rigid fibers that stretch the cell into a sickle shape. These rigid cells can occlude blood vessels and cause an individual immense pain. Currently, no point-of-care devices exist in the market for assisting those with SCD. Using microfluidics with custom designed portable impedance measuring hardware we can achieve label-free in vitro analyses of SCD rheology. This dissertation presents two impedance-based devices for finger-prick volume blood testing, including a microflow cytometer for SCD diagnostics and a vaso-occlusion tester for monitoring blood flow activities. First, the microflow cytometer is validated by measuring the electrical impedance of individual cells flowing through a narrow microfluidic channel. Cellular impedance is interpreted by changes in subcellular components due to oxygen association-dissociation of hemoglobin, using an equivalent circuit model and Multiphysics simulation. Impedance values of sickle cells exhibit remarkable deviations from normal blood cells. Such deviation is quantified by a conformity score, which allows for measurement of SCD heterogeneity, and potentially disease severity. Findings from this study demonstrate the potential for SCD screening via electrical impedance. Second, a vaso-occlusion tester is validated by measuring the impedance response of blood flow within a microfluidic mimic of capillary bed.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014243
- Subject Headings
- Sickle cell anemia, Microfluidics, Point-of-care testing, Electric Impedance
- Format
- Document (PDF)
- Title
- Feeling the beat: a smart hand exoskeleton for learning to play musical instruments.
- Creator
- Maohua Lin, Rudy Paul, Moaed Abd, James Jones, Darryl Dieujuste, Harvey Chim, Erik D. Engeberg
- Abstract/Description
-
Individuals who have suffered neurotrauma like a stroke or brachial plexus injury often experience reduced limb functionality. Soft robotic exoskeletons have been successful in assisting rehabilitative treatment and improving activities of daily life but restoring dexterity for tasks such as playing musical instruments has proven challenging. This research presents a soft robotic hand exoskeleton coupled with machine learning algorithms to aid in relearning how to play the piano by ‘feeling’...
Show moreIndividuals who have suffered neurotrauma like a stroke or brachial plexus injury often experience reduced limb functionality. Soft robotic exoskeletons have been successful in assisting rehabilitative treatment and improving activities of daily life but restoring dexterity for tasks such as playing musical instruments has proven challenging. This research presents a soft robotic hand exoskeleton coupled with machine learning algorithms to aid in relearning how to play the piano by ‘feeling’ the difference between correct and incorrect versions of the same song. The exoskeleton features piezoresistive sensor arrays with 16 taxels integrated into each fingertip. The hand exoskeleton was created as a single unit, with polyvinyl acid (PVA) used as a stent and later dissolved to construct the internal pressure chambers for the five individually actuated digits. Ten variations of a song were produced, one that was correct and nine containing rhythmic errors. To classify these song variations, Random Forest (RF), K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN) algorithms were trained with data from the 80 taxels combined from the tactile sensors in the fingertips. Feeling the differences between correct and incorrect versions of the song was done with the exoskeleton independently and while the exoskeleton was worn by a person. Results demonstrated that the ANN algorithm had the highest classification accuracy of 97.13% ± 2.00% with the human subject and 94.60% ± 1.26% without. These findings highlight the potential of the smart exoskeleton to aid disabled individuals in relearning dexterous tasks like playing musical instruments.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FAUIR000534
- Format
- Document (PDF)
- Title
- Development of A Portable Impedance Based Flow Cytometer for Diagnosis of Sickle Cell Disease.
- Creator
- Dieujuste, Darryl, Zhuang, Hanqi, Du, Sarah, Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Sickle cell disease is an inherited blood cell disorder that affects about 100,000 people in the US and results in high cost of medical care exceeding $1.1 billion annually. Sickle cell patients suffer from unpredictable, painful vaso-occlusive crises. Portable, costeffective approaches for diagnosis and monitoring sickle blood activities are important for a better management of the disease and reducing the medical cost. In this research, a mobile application controlled, impedance-based flow...
Show moreSickle cell disease is an inherited blood cell disorder that affects about 100,000 people in the US and results in high cost of medical care exceeding $1.1 billion annually. Sickle cell patients suffer from unpredictable, painful vaso-occlusive crises. Portable, costeffective approaches for diagnosis and monitoring sickle blood activities are important for a better management of the disease and reducing the medical cost. In this research, a mobile application controlled, impedance-based flow cytometer is developed for the diagnosis of sickle cell disease. Calibration of the portable device is performed using a component of known impedance value. The preliminary test results are then compared to those obtained by a commercial benchtop impedance analyzer for further validation. With the developed portable flow cytometer, experiments are performed on two sickle cell samples and a healthy cell sample. The acquired results are subsequently analyzed with MATLAB scripts to extract single-cell level impedance information as well as statistics of different cell conditions. Significant differences in cell impedance signals are observed between sickle cells and normal cells, as well as between sickle cells under hypoxia and normoxia conditions.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013145
- Subject Headings
- Sickle cell disease, Sickle cell anemia--Diagnosis, Flow cytometry--Diagnostic use, Mobile Applications
- Format
- Document (PDF)