Current Search: Chernys, Michael. (x)
-
-
Title
-
Subsurface structure of an atmospherically forced water column in littoral waters.
-
Creator
-
Chernys, Michael., Florida Atlantic University, Dhanak, Manhar R., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
-
Abstract/Description
-
The developing subsurface structure of a shallow sub-tropical water column during the passage of cold low-pressure atmospheric front is characterized through synoptic and in-situ observations during the passage of three separate fronts over South Florida. Subsurface distribution of current, salinity, temperature, density and dissipation rates were examined using an autonomous underwater vehicle (AUV), ship-based instruments, moored instruments and an Ocean Surface Current Radar (OSCR) as the...
Show moreThe developing subsurface structure of a shallow sub-tropical water column during the passage of cold low-pressure atmospheric front is characterized through synoptic and in-situ observations during the passage of three separate fronts over South Florida. Subsurface distribution of current, salinity, temperature, density and dissipation rates were examined using an autonomous underwater vehicle (AUV), ship-based instruments, moored instruments and an Ocean Surface Current Radar (OSCR) as the fronts passed through the region. Airfoil shear probes mounted in a package on the nose of the AUV were used to measure the level and distribution of small-scale turbulence in the water column and to estimate the in-situ dissipation rate of turbulent kinetic energy. Prevailing meteorological conditions were determined from two NOAA C-MAN stations and, for two of the experiments, from a local Air Sea Interaction Spar buoy (ASIS). The first atmospheric front examined was in December 1998. A significant 10°C drop in air temperature was recorded. The AUV carried out several pre-programmed surveys over a 6-day period. A turbulent kinetic energy dissipation rates of O(10-6W/kg) were observed in the water column during the passage of the front. Fetch-limited, offshore, wind-induced surface and subsurface currents were identified during the passage of the front on April 9, 2000. As the winds increased in magnitude and shifted direction, a change in surface current was apparent in the OSCR observations. A bottom-mounted ADCP and an AUV-mounted ADCP both recorded distinct corresponding contributions to the subsurface current due to the winds. Clockwise rotation of the current profile in the water column, consistent with wind-generated currents, was observed. A third low-pressure cold front passed through the region on April 18 an 19, 2000. AUV surveys were carried out as the front passed over the region for 19 hours within a 24-hour period. Dissipation rates reached O(10 -6W/kg) during the period of the survey and decreased to O(10 -8W/kg) subsequently. The distribution of dissipation rate appeared to agree with the characteristic log law for wind-induced turbulence at the start of the passage of the front, but was significantly higher subsequently and more dependent on the combination of convective fluxes and wind stress.
Show less
-
Date Issued
-
2002
-
PURL
-
http://purl.flvc.org/fau/fd/FADT12001
-
Subject Headings
-
Turbulence--Measurement, Oceanographic submersibles
-
Format
-
Document (PDF)