Current Search: Camara dos Santos Porto, Sabrina (x)
-
-
Title
-
Use of Ground Penetrating Radar (GPR) in a Study on Beach Morphodynamics at Red Reef Beach, Boca Raton, Florida.
-
Creator
-
Camara dos Santos Porto, Sabrina, Briggs, Tiffany Roberts, Comas, Xavier, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Geosciences
-
Abstract/Description
-
The internal architecture of a beach system can provide clues into the processes involved in its formation, including depositional processes, and/or driving mechanisms (Billy et al., 2014). Several unique events such as cold fronts or Hurricane Irma caused conditions that resulted in erosion and accretion changes in Red Reef Beach - Boca Raton, throughout the year of 2017. Since the lateral extent of these changes is difficult to evaluate using traditional methods such as coring, a Ground...
Show moreThe internal architecture of a beach system can provide clues into the processes involved in its formation, including depositional processes, and/or driving mechanisms (Billy et al., 2014). Several unique events such as cold fronts or Hurricane Irma caused conditions that resulted in erosion and accretion changes in Red Reef Beach - Boca Raton, throughout the year of 2017. Since the lateral extent of these changes is difficult to evaluate using traditional methods such as coring, a Ground Penetrating Radar (GPR) was tested, which allows for a good lateral resolution (cm scale), to image the distribution and evolution of these sediments. The objectives of this study were to 1) explore the lateral variability in the internal architecture of sediments in Red Reef beach in Boca Raton (FL) using an array of ground penetrating radar (GPR) measurements constrained with coring and sediment analysis; 2) explore how dynamics of erosion and accretion induced by changes in wave activity and related to tide variation and storm events, may affect surface topography and the sedimentary internal architecture of beach deposits, using RTK GPS and GPR time-lapse measurements; 3) to explore changes in the lateral extent of the freshsaltwater interface along the beach profile in relation to tide variation and storm events. Reflectors identified in the GPR images showed some evidence of erosional and accretionary surfaces preserved in Red Reef beach. These measurements were repeated over time coinciding with certain events (such as Hurricane Irma) to explore their effects in terms of sediment erosion and accretion as reflected in changes in topography (using time-lapse GPS-RTK measurements), and changes in the internal sedimentary architecture (using time-lapse GPR measurements). The datasets collected also revealed the temporal evolution of the salt-freshwater interface, showing how the lateral extent of saltwater saturated sediment (inferred from areas of GPR signal attenuation along the profiles) evolved over time. This study shows the potential of GPR to provide information about beach sediment processes and dynamics at resolutions beyond traditional measurements (such as coring). It also shows the importance of combining methods that are complementary, such as the use of RTK GPS to explore changes in topography, and GPR that provides information on subsurface sedimentary architecture and the mechanism of change such as post-storm recovery. This study has implications for better understanding changes in coastal sedimentary deposits and processes, both at the subsurface, particularly after high-energy events, such as hurricanes, that result in rapid changes in erosion and/or accretion of sediments.
Show less
-
Date Issued
-
2017
-
PURL
-
http://purl.flvc.org/fau/fd/FA00005947
-
Subject Headings
-
Dissertations, Academic -- Florida Atlantic University, Beaches--Florida, Ground penetrating radar., Sediments (Geology)--Analysis.
-
Format
-
Document (PDF)