Current Search: Ay, Basak. (x)
-
-
Title
-
Unique decomposition of direct sums of ideals.
-
Creator
-
Ay, Basak., Charles E. Schmidt College of Science, Department of Mathematical Sciences
-
Abstract/Description
-
We say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a finite direct sum of indecomposable ideals, this decomposition is unique up to the order and isomorphism class of the ideals. In a 2001 paper, Goeters and Olberding characterize the UDI property for Noetherian integral domains. In Chapters 1-3 the UDI property for reduced Noetherian rings is characterized. In Chapter 4 it is shown that overrings of one...
Show moreWe say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a finite direct sum of indecomposable ideals, this decomposition is unique up to the order and isomorphism class of the ideals. In a 2001 paper, Goeters and Olberding characterize the UDI property for Noetherian integral domains. In Chapters 1-3 the UDI property for reduced Noetherian rings is characterized. In Chapter 4 it is shown that overrings of one-dimensional reduced commutative Noetherian rings with the UDI property have the UDI property, also. In Chapter 5 we show that the UDI property implies the Krull-Schmidt property for direct sums of torsion-free rank one modules for a reduced local commutative Noetherian one-dimensional ring R.
Show less
-
Date Issued
-
2010
-
PURL
-
http://purl.flvc.org/FAU/2683133
-
Subject Headings
-
Algebraic number theory, Modules (Algebra), Noetherian rings, Commutative rings, Algebra, Abstract
-
Format
-
Document (PDF)