Current Search: Asaduzzaman, Abu Sadath Mohammad (x)
View All Items
- Title
- Memory latency evaluation in cluster-based cache-coherent multiprocessor systems with different interconnection topologies.
- Creator
- Asaduzzaman, Abu Sadath Mohammad, Florida Atlantic University, Mahgoub, Imad
- Abstract/Description
-
This research investigates memory latency of cluster-based cache-coherent multiprocessor systems with different interconnection topologies. We focus on a cluster-based architecture which is a variation of Stanford DASH architecture. The architecture, also, has some similarities with the STiNG architecture from Sequent Computer System Inc. In this architecture, a small number of processors and a portion of shared-memory are connected through a bus inside each cluster. As the number of...
Show moreThis research investigates memory latency of cluster-based cache-coherent multiprocessor systems with different interconnection topologies. We focus on a cluster-based architecture which is a variation of Stanford DASH architecture. The architecture, also, has some similarities with the STiNG architecture from Sequent Computer System Inc. In this architecture, a small number of processors and a portion of shared-memory are connected through a bus inside each cluster. As the number of processors per cluster is small, snoopy protocol is used inside each cluster. Each processor has two levels of caches and for each cluster a separate directory is maintained. Clusters are connected using directory-based scheme through an interconnection network to make the system scaleable. Trace-driven simulation has been developed to evaluate the overall memory latency of this architecture using three different network topologies, namely ring, mesh, and hypercube. For each network topology, the overall memory latency has been evaluated running a representative set of SPLASH-2 applications. Simulation results show that, the cluster-based multiprocessor system with hypercube topology outperforms those with mesh and ring topologies.
Show less - Date Issued
- 1997
- PURL
- http://purl.flvc.org/fcla/dt/15447
- Subject Headings
- Computer network architectures, Multiprocessors
- Format
- Document (PDF)
- Title
- Cache optimization for real-time embedded systems.
- Creator
- Asaduzzaman, Abu Sadath Mohammad, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Cache memory is used, in most single-core and multi-core processors, to improve performance by bridging the speed gap between the main memory and CPU. Even though cache increases performance, it poses some serious challenges for embedded systems running real-time applications. Cache introduces execution time unpredictability due to its adaptive and dynamic nature and cache consumes vast amount of power to be operated. Energy requirement and execution time predictability are crucial for the...
Show moreCache memory is used, in most single-core and multi-core processors, to improve performance by bridging the speed gap between the main memory and CPU. Even though cache increases performance, it poses some serious challenges for embedded systems running real-time applications. Cache introduces execution time unpredictability due to its adaptive and dynamic nature and cache consumes vast amount of power to be operated. Energy requirement and execution time predictability are crucial for the success of real-time embedded systems. Various cache optimization schemes have been proposed to address the performance, power consumption, and predictability issues. However, currently available solutions are not adequate for real-time embedded systems as they do not address the performance, power consumption, and execution time predictability issues at the same time. Moreover, existing solutions are not suitable for dealing with multi-core architecture issues. In this dissertation, we develop a methodology through cache optimization for real-time embedded systems that can be used to analyze and improve execution time predictability and performance/power ratio at the same time. This methodology is effective for both single-core and multi-core systems. First, we develop a cache modeling and optimization technique for single-core systems to improve performance. Then, we develop a cache modeling and optimization technique for multi-core systems to improve performance/power ratio. We develop a cache locking scheme to improve execution time predictability for real-time systems. We introduce Miss Table (MT) based cache locking scheme with victim cache (VC) to improve predictability and performance/power ratio. MT holds information about memory blocks, which may cause more misses if not locked, to improve cache locking performance., VC temporarily stores the victim blocks from level-1 cache to improve cache hits. In addition, MT is used to improve cache replacement performance and VC is used to improve cache hits by supporting stream buffering. We also develop strategies to generate realistic workload by characterizing applications to simulate cache optimization and cache locking schemes. Popular MPEG4, H.264/AVC, FFT, MI, and DFT applications are used to run the simulation programs. Simulation results show that newly introduced Miss Table based cache locking scheme with victim cache significantly improves the predictability and performance/power ratio. In this work, a reduction of 33% in mean delay per task and a reduction of 41% in total power consumption are achieved by using MT and VCs while locking 25% of level-2 cache size in an 4-core system. It is also observed that execution time predictability can be improved by avoiding more than 50% cache misses while locking one-fourth of the cache size.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/359919
- Subject Headings
- Real-time embedded systems and components, Embedded computer systems, Programming, Computer architecture, Integrated circuits, Design and construction, Signal processing, Digital techniques, Object-oriented methods (Computer science)
- Format
- Document (PDF)