Current Search: Galpayage, Dona Kalpani Nisansala Udeni (x)
View All Items
- Title
- Dosimetry comparison between treatment plans computed with Finite size pencil beam algorithm and Monte Carlo algorithm using InCise™ Multileaf collimator equipped CyberKnife® System.
- Creator
- Galpayage Dona, Kalpani Nisansala Udeni, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Since the release of the Cyberknife Multileaf Collimator (CK-MLC), it has been a constant concern on the realistic dose differences computed with its early-available Finite Size Pencil Beam algorithm (FSPB) from those computed by using industry well-accepted algorithms such as the Monte Carlo (MC) dose algorithm. In this study dose disparities between FSPB and MC dose calculation algorithms for selected CK-MLC treatment plans were quantified. The dosimetry for planning target volume (PTV) and...
Show moreSince the release of the Cyberknife Multileaf Collimator (CK-MLC), it has been a constant concern on the realistic dose differences computed with its early-available Finite Size Pencil Beam algorithm (FSPB) from those computed by using industry well-accepted algorithms such as the Monte Carlo (MC) dose algorithm. In this study dose disparities between FSPB and MC dose calculation algorithms for selected CK-MLC treatment plans were quantified. The dosimetry for planning target volume (PTV) and major organs at risks (OAR) was compared by calculating normalized percentage deviations (Ndev) between the two algorithms. It is found that the FSPB algorithm overestimates D95 of PTV when compared with the MC algorithm by averaging 24.0% in detached lung cases, and 15.0% in non-detached lung cases which is attributed to the absence of heterogeneity correction in the FSPB algorithm. Average dose differences are 0.3% in intracranial and 0.9% in pancreas cases. Ndev for the D95 of PTV range from 8.8% to 14.1% for the CK-MLC lung treatment plans with small field (SF ≤ 2x2cm2). Ndev is ranged from 0.5-7.0% for OARs.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013123
- Subject Headings
- Radiosurgery, Radiation dosimetry, Monte Carlo method, Algorithms, Lung Neoplasms--radiotherapy
- Format
- Document (PDF)
- Title
- CHARACTERIZING THE PHYSICAL PROPERTIES OF LIVING CELLS THROUGH MICROFLUIDIC IMPEDANCE SENSING.
- Creator
- Galpayage, Dona Kalpani Nisansala Udeni, Lau, Andy W.C., Du, Sarah E., Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
The purpose of this research is to explore and investigate the biophysical properties of living cells using microfluidics based electrical impedance sensing (EIS) technique. It provides a non-invasive approach to detect label-free biological markers in the regulation of cellular activities even at a molecular level. We specifically focus on the development, testing, and theoretical modeling of electrical impedance spectroscopy for neuroblastoma cells and endothelial cells. First, we...
Show moreThe purpose of this research is to explore and investigate the biophysical properties of living cells using microfluidics based electrical impedance sensing (EIS) technique. It provides a non-invasive approach to detect label-free biological markers in the regulation of cellular activities even at a molecular level. We specifically focus on the development, testing, and theoretical modeling of electrical impedance spectroscopy for neuroblastoma cells and endothelial cells. First, we demonstrate that the EIS technique can be used to monitor the progressive mitochondrial fission/fusion modification in genetically modified human neuroblastoma cell lines. Our results characterize quantitatively the abnormal mitochondrial dynamics through the variations in cytoplasm conductivity. Secondly, we employ a real time EIS method to determine the biophysical properties of the junctions which join one endothelial cell with one another in a monolayer of endothelial cells. In particular, we examine the role of the protein, c-MYC oncogene, in the barrier function. Our results show that the downregulation of c-MYC oncogene enhances the endothelial barrier dysfunction associated with inflammation. Finally, we measure and find that the electrical admittance (the reciprocal of the impedance) of the monolayer of endothelial cellular networks exhibits an anomalous power law of the form, Y ∝ ωα, over a wide range of frequency, with the value of the exponent, α, depending on the severity of the inflammation. We attribute the power law to the changes of the intercellular electric permeability between neighboring endothelial cells. Thus, the inflammation gives rise to relatively smaller values of α compared to that of the no-inflammation group. Furthermore, we propose a simple percolation model of a large R-C network to confirm the emergent of power law scaling behavior of the complex admittance, suggesting that the endothelial network behaves as a complex microstructural network and its electrical properties may be simulated by a large R-C network.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013595
- Subject Headings
- Microfluidics, Impedance spectroscopy, Cells
- Format
- Document (PDF)