You are here
Evaluating indirect and direct classification techniques for network intrusion detection
- Date Issued:
- 2004
- Summary:
- Increasing aggressions through cyber terrorism pose a constant threat to information security in our day to day life. Implementing effective intrusion detection systems (IDSs) is an essential task due to the great dependence on networked computers for the operational control of various infrastructures. Building effective IDSs, unfortunately, has remained an elusive goal owing to the great technical challenges involved, and applied data mining techniques are increasingly being utilized in attempts to overcome the difficulties. This thesis presents a comparative study of the traditional "direct" approaches with the recently explored "indirect" approaches of classification which use class binarization and combiner techniques for intrusion detection. We evaluate and compare the performance of IDSs based on various data mining algorithms, in the context of a well known network intrusion evaluation data set. It is empirically shown that data mining algorithms when applied using the indirect classification approach yield better intrusion detection models.
Title: | Evaluating indirect and direct classification techniques for network intrusion detection. |
![]() ![]() |
---|---|---|
Name(s): |
Ibrahim, Nawal H. Florida Atlantic University, Degree grantor Khoshgoftaar, Taghi M., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2004 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 203 p. | |
Language(s): | English | |
Summary: | Increasing aggressions through cyber terrorism pose a constant threat to information security in our day to day life. Implementing effective intrusion detection systems (IDSs) is an essential task due to the great dependence on networked computers for the operational control of various infrastructures. Building effective IDSs, unfortunately, has remained an elusive goal owing to the great technical challenges involved, and applied data mining techniques are increasingly being utilized in attempts to overcome the difficulties. This thesis presents a comparative study of the traditional "direct" approaches with the recently explored "indirect" approaches of classification which use class binarization and combiner techniques for intrusion detection. We evaluate and compare the performance of IDSs based on various data mining algorithms, in the context of a well known network intrusion evaluation data set. It is empirically shown that data mining algorithms when applied using the indirect classification approach yield better intrusion detection models. | |
Identifier: | 9780496239368 (isbn), 13128 (digitool), FADT13128 (IID), fau:9991 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2004. |
|
Subject(s): |
Computer networks--Security measures Computer security Software measurement Data mining |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/13128 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |