You are here

Submicron CAD design and analysis of MOS Current Mirrors

Download pdf | Full Screen View

Date Issued:
2004
Summary:
Current Mirrors are widely used circuits in IC designs. They are used as current sources and loads. The proper selection of a Current Mirror configuration is therefore important. This thesis reviews critical parameters for Current Minors characterization. Six MOS Current Mirror configurations are studied, and their performance characteristics are compared. The proper selection and use of MOSFET models are presented. It is shown that CAD-based design and analysis is indispensable if realistic MOS models such as BSIM3 are used. The CAD based analysis and design employs simulation parameter tuning, optimization and swept parameters. The presented CAD techniques allow a designer to make important tradeoffs for different configurations. One of the main thesis observations is that it is not always necessary to use more involved Current Mirror configurations; a Simple Current Mirror Configuration is often sufficient. The thesis also studies the adverse effects on the design caused by process variations.
Title: Submicron CAD design and analysis of MOS Current Mirrors.
854 views
799 downloads
Name(s): Rivas-Torres, Wilfredo
Florida Atlantic University, Degree grantor
Roth, Zvi S., Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2004
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 203 p.
Language(s): English
Summary: Current Mirrors are widely used circuits in IC designs. They are used as current sources and loads. The proper selection of a Current Mirror configuration is therefore important. This thesis reviews critical parameters for Current Minors characterization. Six MOS Current Mirror configurations are studied, and their performance characteristics are compared. The proper selection and use of MOSFET models are presented. It is shown that CAD-based design and analysis is indispensable if realistic MOS models such as BSIM3 are used. The CAD based analysis and design employs simulation parameter tuning, optimization and swept parameters. The presented CAD techniques allow a designer to make important tradeoffs for different configurations. One of the main thesis observations is that it is not always necessary to use more involved Current Mirror configurations; a Simple Current Mirror Configuration is often sufficient. The thesis also studies the adverse effects on the design caused by process variations.
Identifier: 9780496233687 (isbn), 13119 (digitool), FADT13119 (IID), fau:9982 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2004.
Subject(s): Metal oxide semiconductors--Computer-aided design
Integrated circuits
Metal oxide semiconductor field-effect transistors
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/13119
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.