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4.3.3 The module M :

An element 0 # ¢ € rad B gives rise to an embedding of My, in (A, B) as follows:

0 - Z/p

¥ 9l
A C B

Define g : Z/p* — B for [.1.']7,_, € Z/p*by [x] 2 == bx for 0 # b such that ¢ = pb # 0.
When restricted to the soc (Z/p?) ¢ is clearly monic: thus g is monic when unrestricted and the

commutativity of this diagram means that 0 — Z/p” is an embedding.

4.3.4 The module )M, :

An element 0 # a € soc A gives rise to an embedding M,y — (A, B) in the following way:

Z/p 2 Z/p
Il 9l
A C B

Define f: Z/p — A for [z], € Z/p by [z], — az.
Similarly. define g : Z/p — B for [x], € Z/p by [z}, — ax.
This diagram commutes.

cor | /4 53 e []
For [z], € Z/p cither [2]

p IS @ unit or [,1.'}‘, = [()]p: since ar = a when r is a unit and a # 0 we have

ar = () only when x = 0. Thus f and ¢ are monomorphisms.

4.3.5 The module 1/ :

Finally. for our last indecomposable, My, we have the following diagram and morphisms given by

an clement 0 # b € soc B

0 — Z/p
Tl gl
A C B



Define g : Z/p — B for lt.r]p € Z/p by [.r}ﬁ — br.
This diagram commutes.
For o € Z/p either [x] is a unit or [J‘TP = [()}P: since br = b when 2 is a unit and b # 0 we have

br = 0 only when & = (. Thus ¢ is a monomorphismn,

4.4 The Result for n =2

By Lemma 41 a monomorphism f maps the socle of the source miodule into the socle of the target
module. Therefore. if the socle of the source module has dimension one then the socle of the image
of f has dimension one. Thus. as an embedding, if dim (soc (Im f)) = 1 then the multiplicity of f
must be the dimension of the socle of the target module.

The soc B = S)2345 as shown above, so dim (soc B) = dim (S ) + dim (S2) +dim (S3) +dim (S,) +
dim (S5). Since the socle of cach target module in each indecomposable has dimension equal to one,
we claim that the multiplicity of each embedding of an indecomposable is equal to the dimension of

a specific subspace.

Theorem 42 For (A C B) an object. not necessarily indccomposable, in 8 (2) consider the follow-

ing dimensions:

Subspace  Dimension of the Subspace  Corresponding Indecomposable

S V22 Mo
S V12 M
S Vo2 Myo
Sy ) Vi My,
S5 Vo1 My,

then

(A C B) = voaMa & viadMya & vga Moz & vy My < ovg Mo
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Proof. Let T = {kl: 0 < k <1< 2. l #0}. Let Ay be the source module and let By be the target
module in an indecomposable object in 8 (2).We want to show that (A — B) = ( vrAr — g B']').
Vi P

In other words, we want to show that in the following diagram f and ¢ are isomorphisms:

rurAr  —  GvrBr
L %

Ly lg
A C B

Claim 1: ¢ is an monomorphism. We construct a basis of soc B by taking a basis of each S,
and then taking the union of these five bases. Let {b}.....b} ...b7. b} be a basis for soc B
where {b'x....b;,, } is a basis for S,. For each b, we defined a monomorphism from By to B. We
have an epimorphism from soc <";.lz»,-B-,-> to soc B because by the definition of the maps from By

to B we will have a mapping onto each basis element of soc B. thus a mapping onto every element
of soc¢ B. Therefore. ¢ from soc ( l/']'B'[‘> to soc¢ B will be an epimorphism. We have that g from
&
S0C -5-1/7-[31) to soc B3 is also a monomorphism by counting the dimensions of soc ( 1/~1~B-,~) and
T iy
soc B, The dimension of soc (‘ 1/7-B,-> is equal to Xy = dim (soc B) by the way we defined the
1 Y '
maps. Thus. g is an isomorphism when restricted to the socle. By Lemma 41 we have that g is a
monomorphism from ( u-rB-,‘) to B.
¥

Claim 2: g is an isomorphism. We will show this isomorphism by showing that the length of

B, ((B) is equal to the length of ( //'I-BT). ( < I/'I’B7*>. Let us look at an example of an arbi-
T 3

trary object, (A C B) of 8§ (2). Let each a; represent how a generator of A sits in the target module 3.
3 1 g 2

ay @y as

-

The length of B will be equal to the number of boxes in this diagram. The socle of B corresponds
to the boxes in the bottom row, and the radical of B corresponds to the boxes in the bottom row
that have a box on top of them in the top row. Therefore, { (B) = dimn (soc B) + dim (rad B). We
have these dimensions already calculated. dim (soc B) = EIZI/';- and dim (rad B) = vog + v12 + voo.

because rad B = Sy33. Therefore,

((B) = 2w09 + 2019 + 2192 + V11 + Vor.



Each indecomposable in §(2) is of the form My, and the length of each By is equal to the second

index. {. Therefore,
( ( 1/-,-11-,-) =Yl vp = 2099 + 2019 + 20 + 1 + v = (D).
T ki

Since g is monic and the length of the target module is equal to the length of the source module we
have that ¢ is an isomorphlism.

Claim 3: f is an isomorphism.

o l/.l.l;‘,l. —p V'IVBT
T 7

Lf lg
B

B
N

Recall that we are working from the above commutative diagram. We have that ¢ is an isomorphism
and the map from ] vrAgy to _IE_V'I-BT is a monomorphism: thus, the composition of these two maps
is a monomorphisni. Since this diagram commutes. f must be a monomorphism also. Therefore. if
{ ("}.u-,-A»,-) = {{A) we will have an isomorphism. Again let us refer to our example of an arbitrary

object of §(2).

as ag

ay ay as

The length of A is equal to the number of boxes in the diagram containiug an a;: these boxes
correspond to the subspaces soc A and rad A. The socle of A is represented by all the boxes in the
bottom row with an a; and the radical of A is represented by all the boxes in the bottom row with

an a, in the box above. We have already defined the dimensions of each of these spaces:

dim (soc A) = dim (Sy24) = va2 + 12 + vy

and

dim (rad A) = dim (S;) = va3.

Therefore.

((A) = 2up + 112 + 1.



Since cach Ay is the source module in a system of the form Ay, the length of each Ay is equal to

the first index. k. Therefore.

¢ ('.;,”'IAI‘) = g""l’kl =2y + vy + vy = ((A).

This equality gives us that f must be an isomorphism. In conclusion we have that

(A C B) = vapMyy & vipMya &

oMoz S vy My 5 g Mo

and this finishes the proof of our main theorem for the case n = 2. m

Let us now recall the examples given in §2.3.

Example 12: Let A = Z/p and B = Z/p* = Z/p then the inclusion map takes Z/p 3 2]

p

(EIM‘L..’ ; [l“) let @ be a generator of A. Using the above mentioned methods we get the following

picture:

Using our theorem, we can adapt our diagram from §4 to the following:

0
L0
rad A =10
lo
socANrad B =10
Zipipd) NE o)
socA=Z/p(p.1) rad B =Z/p(p.0)
hY rd

socA+rad B = pZ/p? ¢ Z/p
loez/p

soc B = pZ/p* < Z/p.
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Since Sy and Sy are our non-zero subspaces, cach of dimension one. we can decompose as follows:
2 = 2y 7 / 7/
(Z/p—Z/p* < Z/p) = (0—=Z/p°) 2 (Z/p— Z/p).

Example 13: Let A = Z/p? and B = Z/p* & Z/p aud let a be a generator of A. Our map will

take an element [x] . € Z/p* to ([.r]p: " [.r]p). The picture generated for this example is:

a

For this example the diagram becomes:

0

pi/p?a0 l S

rad A = pZ/p® =0

o
soc ANrad B = pZ/p? = 0
0/ g
soc A = pZ/p* 50 fad B = ])Z/1)2 &0
N e

socA+rad B =pZ/p* 0

logz/p

socB =pZ/p? = Z/p

Therefore. since the two non-zero subspaces are Sy and Ss. cach having dimension equal to 1. we
have that

(Z/p"’ —~ZpP e Z/p) = (Z/pz — Z/’pg) S (0—Z/p).

33



5 Casen=3

5.1 The Indecomposables

We consider the following indecomposable objects in 8 (3): where a denotes a generator of the source

module. This list has been given in [HRW].

Object of §(3) Define the Map by:  Pictorial Representation
a
Mz : Z/p® — Z/p? [2] s — (2]
Mg ZJp? —Zfp* (2] — [pale 2

L]

M3 :Z/p — Z/p* 7], — [llz‘l'l,m

a

_—
.\1()3 0 — Z/[):‘ 0 — :():}p‘

]
-

e 4 £ D [ [ 4] h
.‘['_Jg H Z/ p- Z/ P i p? ===t .‘TJ;)" .

|
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Object of §(3) Define the Map by: Pictorial Representation

Mya:Z[p— Z/l’2 {‘r]p T {[JJ‘L]_. |

a
.\1(]2 10— Z/])2 0 I(]j},.' 1
g

M : Zlp — Bfp ], — [2], :

_\[()1 10— Z/}) () — LU]“

]

Myig : Z/p* - Z/p* & Z)p [.I']p,» — (;,‘l.l'}p« | [.F]p) a | a

The first nine out of ten systems in the above list are indecomposable in S (3): the proofs
follow from Corollary 33 in £(3.2). For the remaining system in the list, My,,. we have to show

indecomposabilty.
Proposition 43 (Z/p® — Z/p* = Z/p) is an indecomposable object in S(3).

There will be several steps to the proving this claim. First we describe the endomorphism ring
End (Z/p? — Z/p* = Z/p). then we prove that this ring is local. In order to prove locality we must
show that there exists a unique maximal ideal. so we define a subgroup I and then prove that it is
an ideal. and that it is maximal and unique. Once we have this we can conclude, using Theorem 31,
that our proposition is true.

First recall that each endomorphism of (A C B) is given by an endomorphism f of B such that

f(A) C A:

End (Z/p* = Z/p* = Z/p) = {f € End (Z/p*=Z/p): f (Z/p?) Z/;;Q}



Next, we describe the ring structure of End (B2). Here ¢ and # denote the inclusion map

t:Z/p — Z/p*defined by [.r‘,ﬂ o [])2.7']

ipt

and the projective map

7 L/p* — Z/p defined by [r]  —> E

Then.
End (Z/p* ¢ Z/p) = Hom (Z/p*c Z/p.Z/p* < Z/p)
a 3 ; :
e € Hom (Z/p3. Z/p?) .

3 € Hom (Z/p.Z/p*) .4 € Hom (Z/p*.Z/p) .6 € Hom (Z/p.Z/p)

Il

ca€Z/p® and b.e.d € Zfp

This last isomorphism holds because we have the following:
1. Hom (Z/p*.Z/p*) = Z/p*
2. Hom (Z/p.Z/p?) = {1 b:beZ/pandc:Z/p — Z/pdefined by [x], [/)z.r}p,(}
Where p? € Z/p* and this is necessary because in a homomorphism 0 —— 0.
3. Hom (Z/p*.Z/p) = {Tr cc:c€Z/pand 7 : Z/p® — Z/p by 2] ¥— [.1"],)} 3
4. Hom(Z/p.Z/p) = Z]p.

tom e Zfp® — Z/I;" maps [.r]p‘ — [p:.z'}p‘ .

moc:Z[p— Z[p maps [x], — [0],,..

Then we can define multiplication of two maps in the End (Z/p® = Z/p) by the following, where
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a.a' € Z/p* and b.e.d b .. d' € Z/p:

a b a' b aa’ + iow (be') ab’ + ibd’

nc d wc d mea’ + wdd! moe(ch) +dd

aa’ + p*be’ (al £ bd)

7 (ea’ +de') dd’'

Note that there are p® possible endomorphismis in this ring, p® possible choices for a. and p

P I 2.1
possible choices for b.e. and d. Now we determine those endomorphisms of Bz which preserve
the subgroup A. Recall. Z/p? — Z/p* = Z/p is defined by taking [.r},‘: € Z/p* and sending

it to ([p.r},,‘.{.r‘ ) where multiplication by p in the first coordinate takes place in Z/p®. Let

p
a b . . . & B
f= € End (Z/p* = Z/p): since we need f(Z/p?) C Z/p*. let us look at how f
7mc d
acts on an element from Z/p?. Let [2],: € Z/p*: then since Z/p* — Z/p* < Z/p. we have that
. o]
P . | s .
(2], — P71 and let us see what f i is:
[ ]
:n']]p I'”p
) -
238 B a b | e
[ e 5
z], e d [.l}p

alpx] . + b [:r]p

melpal,. +da],

-

. : ‘ 27/ > G e o .

We need this last matrix to be of the form | =7 for some y] . € Z/p?. Since it is sufficient to
Ylp /1

, W],

describe a map by where it sends a generator. let x = 1. Then

s [pr] s [p] 1 [ [pl,s + tb
[x],, 1], melpl, +d
ap + p*b pla+ pb)
d d
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Thus for the subgroup to be preserved we must make the only condition be on the choice of d and
that condition is d = a+pbmodp = d = amod p. Therefore there are p° possible endomorphisms
that preserve this subgroup.

The submodule soc? B is the set of elements, b of B, such that p?b = 0: let B* = soc? B. Define

~
Il

{f €End (Z/p* = Z/p* = ZJp) : F(BT) C B—}

{f € End (Z,/pz —Z/pt= Zfp) :d =0},

I

in other words a is a multiple of p. There are p? possible choices for a. and p choices for b and ¢

thus the order of I is p'.
Lemma 44 [ is the marimal ideal of End (Z/p* — Z/p* = L/p).

Proof. Claim 1: [ is a two-sided ideal. The submodule B* is an invariant subspace. because
Bt = {x € B:p’r =0} and p?- f(x) = f(p°x) = f(0) = 0 thus f(xr) C B*. Similarly, since
B~ = (soc ANrad B) and soc A is an invariant subspuace, by a similar argument to that used for
B™*: thus B~ is also an invariant subspace. Let i.i’ € I; then (i + ') (BY) =i (B*)+ i (B™): since
i(BY)C B~ and i/ (BY) C B~. and B~ is closed under addition since it is a vector space. we have
that i (B*) +4'(B*) C B~ : therefore, i +i' € I. Let i € I and f € End (Z/p* — Z/p* = Z/p).
Then, io f(B*) C B~ because f(BY)C BT and i (B*Y) C B~ sincei € I. Now. foi(BT)C B~
because i (BY) € B~ and f(B~) C B~. thus foi € I. Clearly, the zero function is contained in /.

Claim 2: [ is maximal. Looking at |End (Z/p? C Z/p* = Z/p) /1| = p°/p' = p we sece that
Eud (Z/p* € Z/p3 = Z/p) /1 is a field because it must contains the identity map, and thus because
it has order p we can construct an isomorphism between it and Z/p. This also means that [ is a
proper ideal. thus we have that I is maximal[JR. Prop 6.7].

Claim 3: I® = 0: thus [ is nilpotent, Let

(@ 5 F
T = : 1],, EZIP = Zlp
[.1‘2],’
Let
ap th
3= el
e 0



Then

ap b (.l‘[]p‘ ap ‘.J'l}p‘ =4 ([-";‘]p ’ b)

2} .»T([‘xﬂpv) b+ 0

. S 8
lapxy + p .1-_»()"',

T 1
0
L1 bl

Case i: o ¢ B* it is clear that p* - ¢ (x) = 0. thus ¢ (x) € soc? B.
Case ii: x € B*. Then ["'I]pv € pZ/p® so ¢ (x) is certainly a p-multiple and anuihilated by p thus

t(x) e B~

Case iii: 2 € B™. Then ] 4 € p°Z/p* and [2], = 0s0 ¢ (x) = 0.
Thercfore, it is clear that for any element in Z/p® = Z/p and any three morphisms. a. Jand 5, in I
we have that the element will be mapped to zero by a o 3o+, Thus I? = 0.

Claim 4: [ is the unique maximal idcal. The Jacobson radical. J (R). is defined to be the
intersection of all the maximal left ideals in a ring R.JJR. p. 5441 thus /. being a maximal ideal.
contains the Jacobson radical: i.e.. .J(R) € I. Tt also holds that every nilpotent ideal is contained
in the Jacobson radical. [JR. Cor 8.33]. and since [ is nilpotent that means it is contained in the
Jacobson radical: that is. I C J (R), giving us that [ is the Jacobson radical. Since [ is the Jacobson

radical, it is contained in every maximal ideal. Since I is maximal itself it must be that I is the

unique maximal ideal in R. m
Lemma 45 End (Z/p* — Z/p* = Z/p) is a local ring.

Proof. We have that if the Jacobson radical is a maximal left ideal then our ring is local, [AF. Prop

15.15). this gives us the desired conclusion that End (Z/p* — Z/p* ¢ Z/p) is a local ring. =

Now by Theorem 31 we have that (Z/p? — Z/p* = Z/p) is an indecomposable in S (3).

5.2 The Subspaces

Recall that we may write any Z/p*-module as the direct sum of eyelic groups of prime power order.

7 1 3 E P 2
Thus, for a Z/p*-module, B. we may write B= @ Z/p* = @ Z/p* = @ Z/p and for A C B as
=1

=1 J=

t u 1
a submodule, A = @Z/p* = @Z/p* ¢ @ Z/p such that 0 < t < q. 0 < t+u < g+ r. and
i=1 j=t 3=1
0<t+u+v<qg+r+s Inthe case n = 2. we decomposed the soc B, however in this case it is
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necessary to work in a different space. We begin by recalling the submodules of B, BT and B~
where

BT = {be B:pbe socA}

and

B~ = (soc ANrad B).

Then we define three submodules of B*: these will be:

Y| = soe B
Yo =rad BN BT
AQ BT,

Il

We define the map i, : B — B to be multiplication by p. Thus, these three submodules correspond
to the image of p,,. the kernel of y,, and the embedding of A, a submodule of B. inito B. respectively.
Next we need to define a map we call v. This map is the canonical map modulo B~ from BT to
B*/B~. In the next lemma we show that B~ = rad B*: thus it follows that B* /B~ is a vector

space.
Lemma 46 B~ =rad B

Proof. B* = {bec B:pbesocA} = /1;' (soc A): that is. the inverse image of soc A under the map
i, : B — A. Then rad B* = p,,- B = Hy (;.1;1 soc¢ A). For a homomorphism, f, and modules M. N
and a submodule X C N. we know that f (f~' (X)) = Xlm f: thus Hy, (,u;, 'soc A) = soc Anhn o
The image, Imp, = {/11, (b):be B} = {pb:b€ B} = rad B. Thus rad Bt = Hy (;1;1 soc A) =
socANradB=B". m

This will be the vector space we use in our decomposition of an arbitrary object of S(3). Using
the map v and our three submodules of BT, Y,. we define the three subspaces of BY/B~.

We may define our subspaces as follows:
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Y] = soc B S Uy = (socB) /B~

Yo=radBNB* 5 Uy=rad(B/B)Nsoc(B/B)
={b=b+B" :3c:b=pc&k pbe B~}
Y5=ANB* 5 Us=soc(A/B™)

={ae A/B" : pa=0}
These three subspaces will enable us to pick complenients corresponding to the decomposition of the
arbitrary vector space, V', that was decomposed in §3. However. those complementary subspaces
only account for the embedding of 8 out of the 10 indecomposables of S (3). It is therefore necessary
to define two additional submodules of B*. Yj» and Yb3: these submodules sit in Y7 NY5 and YoN Y,

respectively. Again using v we can define subspaces of B* /B~ as the following:

Yio=rad’B 5 Up=rad®*(B/B~) ={beB/B :3b, € B/B~:b=pb}
Yog=radA 5 Uy =rad(A/B~) ={ac A/B™ :3ar€ A/B™ :a = pay}

Lemma 47 Y1 NY,NY; = B~.

Proof. V1 NYoNYy=soceBNradBNBTNA=socBNANrad BN BT =socANrad BN B* =
N s’ Rt Eolailolions
soc A B
B-NB*=B ,sinceB*CB . m

Therefore we may conclude that

UbnUp,nUs=v(Y1NYonYs)= L‘(B_) == e
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With these 5 subspaces and Lemma 47 we may modify diagram (2) in §3.1.2 which decomposed an

arbritarty vector space. to show the decomposition of our vector space V= B /B~
0
& i
Uy 1 Uy
! l l
Uynts; Uy nls UsnNlUsg
WOl £
V-
| (3)
VT
VAR I
U, + U, Uy +Us Us +Us

‘\\ L /

['1 + (i_) G o L';g

|

v

v r v - 1 v - ~12 N2
The subspaces U; N Uy and Uy N Uy can be decomposed further. Namely, Uy N Uy = CJ?% - C]'._f‘:
that is, U; N Uy is the direct sum of a complement of 0 in Uy and a complement of o in U; N Us.
Similarly. Us NUs = C3*< €353, This gives us the following decomposition of our vector space: V

Ci2 5 02 2, 028 o 02 :
2

t P "
203 1N3 4 14243 ~ 14243 14243 ~ vV
12 @Gy @ Cag” @ Gy : s O | 0T 0T ey >C
~ ’ N— —— m=1
Uinty U Nty

14243
« Uiy v

~~

v

'

7
By U U

<3

5.3 The Embeddings

In order to more clearly define the morphisms it is advantageous to use the submodules Y; defined
in §5.2. Using these, we can define the morphisms that will be used to decompose an arbritarty



element of §(3). Remember, we want an embedding of cach of the indecomposable elements, thus
we need an isomorphism between the direct sum of copies of subquotients of the indecomposables
and the BT /B~. Therefore, before we get to the morphisms, we would like to talk about some

conditions needed for this final isomorphisin.

5.3.1 The Layering Functors

Given two objects M = (AC B) and M' = (A’ C B') of §S(n) we define o to be the pair of

morphisms (f.¢) where f: A" - Aand ¢g: B' — B.

M= 4 - B
p= if lr]
M= A — B

Then we can define functors L; from S (n) to modZ/p™. An object of S(n). M. is sent to a
module over Z/p™, L; (M) = B, C B, in other words these functors are restrictions of g to these
submodules B;: that is. L; (¢) = g|p,. The functor L, sends the map ¢ to a map L, (0) that will

map L; (M') to L; (M).

L;(A'cB)=B;cB

Li(0): Li (M') — L; (M) that is, B! — B,

We call these the Layering Functors. because these functors break the pictures of our modules into
lavers. For example, take the following picture of a module over Z/p®: call it B. Let a; € A be a

generator of A, a submodule of B.

ay

ay an as as

First define Ly (M) to be the intersection rad B M soc A. Then we define L; (M) = p~ (Ly (M));

that is L, (M) is the set of elements that when multiplied by p* get sent to Ly (M), where p* is the
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smallest power of p needed to send L, (M) into Ly (M).

In the case n = 3 we can use the above picture to visualize our defined vector space and its
subspaces and which layers they correspond to. For example. Ly (M) = Bt = {b€ B : pb € soc A}
and Ly (M) = B~ = soc ANrad B. Recall that we defined our vector space. V', to be BT /B~ this
would be Ly (M) /Ly (M). The subspace Uj is the (soc B) /B~ = (soc B) /Ly (M): in our diagram
the socle consists of cach bottom box of a column: thus. U7y is represented by those boxes in Ly (M)
that do not have a box below them. We defined Uy, = rad (B/B7) N soc (B/B7), this corresponds
to Ly (M) /Ly (M): in the diagram above, this space is indicated by the boxes in the third row from
the bottom. This description of the picture can be repeated for each subspace: in the next section
we will not need all of the subspaces defined in such a way; thus we will conclude by looking at one
last subspace. U;2. We defined Uys to be the rad? (B/B7); in our picture this would be the boxes in
the very top row, the space corresponding to Lg (M) /Lo (M). In addition to knowing how various
subspaces sit in our pictures. we also want to know how these layers are affected by the morphisms
we will define for embedding each indecomposable.

We may define a functor L: L (M) = L, (M) /Lo (M) and
L(e): Ly (M') /Lo(M'Y — Li (M) /Ly(M):

that is, the map from B'"/B’~ to BY/B~. We will use that if M' € { M : bk <1 <3:0# 0} and
L (o) is not the zero map then L (¢) is a monomorphism. Remember that My, is an indecomposable of
S (n) of the form Z/pk — Z/p'. so for S (3) we are talking about all the indecomposables except My, ,.
We have this monomorphism because My, is one-dimensional, and the kernel of L (0), being a sub-
module. has to be of dimension 1 or 0; iff(o) is not the zero map. then kt‘rf(ﬂ) C Ly (M) /Ly (M");
thus ker L (¢) = 0. This gives us that for each morphism o : My, — M we only need to check that
ImLy () € Lo (M) tgo know that we have a monomorphism from Ly (M') /Ly (M) to
L, (M) /Ly (M). In the final section we will use this fact to define an overall isomorphism from M
to the direct sum of copies of the indecomposables. For My;,. we will see that the way f and g are
defined we always have a monomorphism, thus always an embedding.

We now fix a system M = (A C B) which is not necessarilv indecomposable and show that

various elements of A or B give rise to maps ¢ : M’ — M where M’ is one of our indeconmposables.
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5.3.2 The module N3 :

For the indecompaosable Myg. we have that Ly (Myg) = ;)271/1)3 and Lo (Myz) = 0. An element

b € Yo gives rise to a mapping Mys — M as follows:

L,

Ly

Define g : Z/p® — B by Z/p* > [.r;p, —— by where b = p?b;. The homomorphism g is defined
because x aud by are both anniliilated by p? and the diagram commutes.
If b# 0. that is b € Ly (Myz) \Lo (Mpz). then for [1)3.1'}]’, € Ly (Mys), g ([1}2.1,'}1”) = p’hx = br ¢

Ly (M): therefore, the induced map Ly (Mys) /Ly (Mog) — Ly (M) /Lo (M) is a monomorphism.

5.3.3 The module /), :

For the next indecomposable. Mgo. Ly (Mgy) = Z/p? and Lo (Myy) = 0. For any elenient b € YN Y.
/1

since b € rad B, there is a ¢ € B for which pc = b. and we may define a morphism from My, to M.

— 0 — Z/p
| ,
& i gl
A C B
]4!)

Define g : Z/p®> — B by Z/p? 3 [2] » — cx. This diagram is commutative.
i [ 0 I Ip 8

For b # 0 we have that ¢ # 0. and so for & € Ly (M) \Lo (My2) we have that r does not map to

Lo (M).

5.3.4 The module 33 :

Mgy is the next indecomposable that we look at; we have that Ly (M) = pZ/p® and Ly (Msyz) =

p°Z/p*. Here maps from Mgz to M are given by elements a € Yoy, as follows:



— Z/p A Z/p?
a
-~ Il 9l
. A C B

Define f: Z/p® — A by Z/p® 3 [2] 4 — a;x where a = pa; Then define ¢ = f and the diagram
I y Z/p° 3 [a], ; 9= g

comimutes,

If a ¢ soc (Z/p:‘). then a ¢ Lg(Mjs3) and thus ¢ ([pﬂp‘) = payx = ar ¢ Ly (M). Therefore, if

a € Yoy, but @ ¢ Y7 we have a monomorphism from Ly (Msg) /Lo (Mss) to Ly (M) /Ly (M).

5.3.5 The module Moy :

Next we look at the indecomposable Mog. Ly (May) = ])Z/,/p3 and Lo (Maz) = p*Z/p*. Each element

a € Yy N Yy gives rise to a morphism from Msg to M.

- Z/ %z
ne rl gl
" A & B

Define f : Z/p®> — A by Z/p* 2 [.1']’)._. —— ax. Since a € Y5 M Y3 we have that a € A such that
pa € soc A. Then define g : Z/p* — B by Z/p® > [.‘I'JP. —— bx where 0 # b € B such that a = pb
and p?b € soc A, so p*b = 0. Since a = bp we can see that this diagram commutes.

If a # 0 then bp # 0: thus g ( [pa] . ) = pba ¢ soc ANrad B = B~ for [px] . € Ly (Mas).
L p L P

5.3.6 The modul_e My

For the indecomposable My, Ly (M) = Z/p and Lo (M) = 0. Any given element a € Y7 N Y3

gives rise to a map from My, to M.

Zfp = Z/p

a




Define f : Z/p — A by Z/p 3 [.1']1, +—— ax. Then define ¢ = f: this diagram commutes and g takes
an element of Z/p to B~ only when that element is zero: since a # 0, Ly (M;;) will not map into

B,

5.3.7 The module 1/, :

T Z/p* S L/ Lfp
" fl gl
a | a e
A e D
Ligy
-

Define h : Z/p? — Z/p® & Z/p by Z/p* > [#]pe +— ([1):1:}}}‘, ; [.r}p).
Define f: Z/p* — A by Z/p* 3 [.‘1,']1,-_. —axand g: Z/pP = Z/p — Bby Z/p3 2 Z/p > (x.y) —
cr + by. where a € Yy, b € Y7 and ¢ € B such that pe € Y,. Furthermore. a = pe + b. Thus,
pa = pc € soc A and so p?a = p*c = 0. Then f is defined because ap? = 0. and ¢ is defined because
p3c =0 and pb = 0. and since a = pe + b we know this diagram commutes,

We have that f is a monomorphism since socZ/p? = pZ/p*and so an element of the socle of A.
[p.r]p_.. is sent to pax # 0 unless r = 0. by definition of a. That is. when restricted to the socle, f is
a monomorphism: therefore, by Lemma 41 we have that f is a monomorphism.

Similarly. we may look at the socle of Z/p3c Z/p, that is p*Z/p*= Z/p. and an clement ([pz.r] i [y}p)
of it. Under g this element goes to p?ca + by: since by definition p°c # 0 and b # 0. p?er + by = 0
only if ¥ = 0 = y. Thus. again by Lemma 41 we have that ¢g is a monomorphismi.

Since f and g are monomorphisms we have defined an embedding of My, into M.

More specifically. for each Cy,. take a basis {u},. w3, . u3, }: then via o lift each of these elements to
an element of 7.5 and Yj respectively. Take y). € o' ({u), }) and and 42, € ¢! ({u3, }) and let
ys, =y + y&. where y3 € o7 ({ud }) € Y5 C A. Since y2, € rad B = Y; there is a ¢ € B such

that y%, = pe. Then take yl = band ¥} = a, from the previous definitions of f and g. Then. we

have defined an embedding of M, for each C), in the decomposition of our vector space V.

5.3.8 The module M, :

For the indecomposable Moy, Ly (May) = Z/p* and Ly (May) = pZ/pz.E\‘(‘ry element a € Yy defines

a map from Ao to M.
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Zfy* = Z/

. 4 gl
a =l
1 C B
L
Define f : Z/p*> — A by Z/p? > {.r]p_, —— axr. Define ¢ = f: then this diagram commutes.

If @ € Y3\B~ then the induced map Ly (Maz) /Lo (Mao) — Ly (M) /Ly (M) is a monomorphism

because g (r) = ax ¢ Ly (M).
5.3.9 The module \/; :

For Ms. Ly (M3) = pZ/p? and Lo (My3) = p°Z/p*. For each b € Y5 we may define a morphism

from M3 to M.

] Zip 5z
. fl gl
A C B
a Ly

Define f : Z/p — A by Z/p > [J']p —— ax where a = pb € soc A. Since b € Y, we also have
a ¢ € B such that b = pe € rad B, then p?b = pc = 0. So we then define ¢ : Z/p® — B by
Z/p* > {.z']p‘ ~ cx. Since a = pb = p?c this diagram commutes.

For any a # 0 and element [pz] . € Ly (M) we see that g ([1).1'_:])4> = per = br ¢ soc A since

pb = a # 0: therefore g (Ip.r}p(> ¢ Ly (M),

5.3.10 The module 1/, :

Ly (My)=2Z/pand Lj (My,) = 0. Each element b € Y} defines a morphism from My to M.

0 — Z/p
N fl gl
; A C B
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Define g: Z/p — B by Z/p 3 [.’r]}, —— bx; since b € Y7, we have pb = 0. This diagram commutes.

Taking a b # 0 we see that b = 0 only if = 0, thus for & € Ly (My) \Lo (M), g(x) & Lo (M).

5.3.11 The module ), :

Ly (M) =Z/p* and Lo (M2) = pZ/p*. Any element a € BT gives rise to a mapping from Ms to

M.

- My, 5
Zlp = Zlp

ik gi
B

8
N

a

—J

Define f : Z/p — A by Z/p 3 [z], — ax and define g : Z/p* — B by Z/p® 3 -:.r]p_. — br forbe B
such that pb = a. Then by the very definitions of f and g this diagram conmimutes.

If a # 0 then for an clement of [.r}p_. € Ly (Mi2)\Log (M2), g (H}) = br ¢ soc A since pb = a # 0.
thus ¢ ([.r]p,) ¢ Lo (Mya).

5.4 The Result for n =3
We now want to tie together the decomposition of V' given in §5.2 and the morphisms from §5.3.
Let M = (A C B) be an arbitrary object of S (3): recall that we defined our vector space to be

V = B*/B~. Recall that we decomposed V' in £3 in the following way: V =

t "
12 1N2 V23 o 203 Y113 * ~ 14243 o 14243 4 14248 o A
Cr, : C]'.Z . (0 = C;’:s E C(l ( ; C,,,) B CH'.’ ‘1‘C1+:i 243 = CHL’T‘;
4 N~

m=1

U,NU. UanUx UynUsy

Uy +Us+Us

v

We claim that from this decomposition of V. we can construct a system of modules over Z/p? from

copies of the indecomposables that is isomorphic to M : we denote this new system by < v My, where
e

vy is a cardinal number and My € {Myy : k <1< n} U {My,}. For an arbitrary M we do this by

taking V = B* /B~ for the given M and then decomposing it as shown in§5.2. Next we take a basis
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from each of the subspaces in the direct sum and then take the union of all these bases: this union
gives us a basis for V. Next, we take cach basis element of V = B /B~ and lift it to an element of
BT, That is, for b; an element of a basis for one of the subspaces of V' in the decomposition: Let
e €Y ({b;}): then we have the set {cj.co.....c } where 1 < i < dim V. For the ¢;’s which are in
the pre-image of a basis element of a C',. it will take two ¢;'s to define a morphism from My,, to M.
Every other ¢; defines a morphism from an indecomposable M, to M. We claim that we will have a
copy of a particular My, embedded into M, the dimension of a certain subspace times. For example
if dim (C(],Q) = 4 in the decomposition of V', then we will have 4 copies of Mgy that embed into M
and for each €, we will have M;, embedded into M once. Now, we give the formal statement of

our final result.

Theorem 48 For (A C B) an object in 8 (3) consider the following table:

Subspace  Dimension of the Subspace  Corresponding Indecomposable
cge V1
0 2 My:
03 03
N9
e V2 Moy
23
C() V3s My
Cv‘i’z;:‘ LOX] 4\[4_);;
1N3
Cy V11 My,
¢ 5 + ,
& Cm (-”/blg) “[bu)
m=1
#4:8
gt Vs My:
142 22 22
14243
Ciis 13 Mg
14243
C".’-f—.'i Vo .\[()1
Vo e
Ciiays Vi2 Mo
T’/h'zg:t

then (A C B) =

o3 Moz & voa Moz & v33Mzz T oz Moz S v My & VeigMpig < V2o Mos & v13My3 & vy Moy = vip M.

This isomorphism shows that the list in §3.1 is complete: there are exactly ten indecomposable
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objects in S (3). The numbers in the set {vy} where T € {kl: 0 < k<1 <3:1 # 0} U {big} forms a
full set of relative invariants from an embedding (A C B). This answers Birkhoff’s question in the
case of finite p3-bounded abelian groups. In the proof of this theorem we will explicitly construct this
isomorphism. Before proceeding with the proof of Theorem 48, let us state and prove the following

lemima: which will be used in the proof.

Lemma 49 Let f: M — N be a module homomorphism between modules over a semi-local ring R.
Define f: M/vad M — N/rad N by f(m+rad M) = f(m)+ rad N. If T is an ¢pimorphism then

sois f.

Proof. By the way that f is defined the following diagram commutes:

A 4, Ay

Al l A L

M/radM L N/radN

Since f is onto, Im f = N/rad N.

Claim: The map f is onto. Let n € N, then T = 7y (n) € Im f. Since f is an epimorphism.
there is an m € M/rad M such that f(m) = m. Let m € M such that 7y (m) = m. Since the
diagram commutes, myof () = fomy (n) = f (M) =7 = 7x (n). Therefore, ayof (m) = nn (n)
which means that 7y o f (m)—my (n) = 0: thatis, wx (f (m) —n) = 0; thus f (m)—n € kermy. The
kernel ker 7n = rad N, thus f (m)—n € rad N C Im f+rad N.therefore n € Imm f+rad N. Therefore.
N C Im f+rad N. but equality holds since Im f € N andrad N € N. Thus, N = Im f+rad N. Since
rad N is small in N it follows that Im f = N. That is. for any subspace L C N with L4rad N = N
we have that L = N. Therefore, we have that f is onto. m
Proof of Theorem 48. We showed that each of the vy basis elements in the corresponding
subspace of V' gives rise to a monomorphism from L, (M) /Lo (My) to Ly (M) /Ly (M). Now, we
must show that for the sum of several copies of various My's the monomorphism still holds: in fact.
we want to show that we have an isomorphism. We begin by defining maps h. h’. and ', For each
type T # big we pick a basis of the corresponding vector space, given in Theoren: 48. Such a basis

has vy elements, say cry.....cpy,, . For each Cyy. pick some by, € ! ({eri}). This by defines a



map My — M as in §3.3. Let L be the direct sum of these maps.
h: ";Al/'l‘_\]‘/‘ — M
Then define h" as the following:
B s Ly < ,'}‘1/,,-‘1[/,'> — Ly (M)
Lastly. 7" is the map

W : L] (" l/']'.‘]'[ > /L() (]E'I/'l‘;\[’/ ) =3 L] (;\[) /L() (:\1) %
T 2

Claitm 1: k" 1 Ej <€-1/7-AIT> /Lo ( 1/',-3\[1-> — Ly (M) /Ly (M) is an isomorphism. Since L,
.[. z

and Lg are additive functors. we have that
"
Ly _l:‘l/'ju\[']‘ = & (L) (M7))
and
vy
Lo <j;_l/'1:\1'1‘) =& & (Lo(Mp)).

and so

L, <{Ii.l"l>”‘1‘> /Lo (‘;}‘U'I‘AUT) = ll’l (L1 (M7) /Lo (M7)).

We can see that A’ is onto, since we hit each basis element ¢z by construction of h.

The dimension. dim (L; (M) /Lo (My)) = 1; if we are dealing with M,;,. it corresponds to two
basis elements of Ly (M) /Ly (M) and the dimension of this quotient is two. As stated bhefore, each
My, corresponds to a basis element of L (M) /Ly (M). Since each v is the dimension of a subspace
in the decomposition of B* /B~ = L, (M) /Ly (M) and each vy determines the multiplicity of each

(Ly (My) /Ly (My)) in the the source of h’. we have that

dim (Ll (;‘1/7-]\[7) /Lo ((;-1/rp\[7~>) =dim (L, (M) /Lo (M)).
L 2

Since I’ is onto and the dimensions of the source and target are equal, we have that I/ is an
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isomorphisni.

Claim 2: The source module and the target module of A" have the same length. Since Lg (M) and
Ly (M) /Ly (M) are both vector spaces, we may calculate dimensions: however. we do not know that
Ly (My) is a vector space: thus we must now speak of the length of L instead of the dimension. The
length of Ly (M) will equal the length of (L (M) /Ly (M)) plus the length of Ly (M ). We already

have seen that

dim (Ll ( Sy .\11) /Lo ( l/,~.\1-,->> =dim (L (M) /Lo(M)).
2 =

S0 now we must show that

dim (Lo (M)) = dim <Lg (»";.1/71\[7)) i

Once we have this. then we will have an isomorphism from L, < 1/7~.\[,-> to Ly (M).
%

Define fp ¢ Ly (M) — Lo (M) by taking a € Ly (M) and sending it to pr. Since
Ly (M) ={be B:pbesocA}.

where M = (A C B) and Ly (M) = soc ANrad B. pr € Ly (M) and this map g, is defined. Next,
define 2, : Ly (M) /Lo (M) — Lo (M) by @ + Lo (M) = p,, (x) = px. Then. we can find the kernel

of o that is
kerfiy = {r+ Lo (x):ax € Ly (M) & pr= 0} =soc(Ly (M)) /Lo (M)«

Claim 2a: soc (L, (M)) /Lo (M) = (soc B) /B~ = U,. Since L) (M) C B. by definition, we have
that soc Ly (M) C soc B. We also have that soc B C L) (M). because L (M) is the set of elements
of B that map to the socle of A under multiplication by p. that is p~! (B). and by definition
the socle of B contains only elements that do just that. The socle is a semi-simple submodule:
in fact it is the largest semi-simple submodule. So. we have that soc B C Ly (M). as well as
soc (Ly (M)) € Ly (M). both of which are the largest semi-simple submodules of Ly (M). Recall that
we also know soc Ly (M) € soc B; thus it must be the case that soc B = soc Ly (M ). By definition,

Lo (M) = B~ : therefore we have the desired equality. soc (L (M)) /Ly (M) = (soc B) /B~ = U].
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