


























































































































































smce the pitting potentials approach the oxygen evolution potential. Some of the 

specimens at this range did not pit, and the characteristic potential at 10-5mNcm2 

corresponds to oxygen evolution. Consequently, when the distribution is nearly vertical, 

specimens might have actually pitted at or near the oxygen evolution potential. 

Furthermore, Figure 50 shows the pitting potential distribution for different 

surface conditions for MMFX-11. With regard to the present study, the pitting potential 

distribution tended to be narrow for the cleaned and polished circumferential surface 

MMFX-II specimens and broader for the as received specimens. Figure 51 shows the 

distribution for the sandblasted and pickled 2201 stainless steel specimens, which is 

contracted. On the contrary, the distribution for 2201 as received specimen tends to be 

more dispersed. Figure 52 presents the probabilistic distribution at different scan rates. 

This confirmed that the slower the polarization, the smaller the pitting potentials the 

wider the distribution. 

Furthermore, the size of the specimen affects the probabilistic results. Burstein 

and Ilevbare 43 showed that the measured pitting potential increases with a decrease in 

specimen size, and additionally, that the scatter in its value also increases as the 

specimen size decreases. As surface area is made smaller, it becomes less probable that a 

site suitable for stable pitting exists. Meanwhile, the authors mentioned that an attempt 

to make a specimen larger would increase the applicability of the measured pitting 

potentials to actual structures, but the passive current would be proportionally larger and 

small pitting currents more difficult to detect. Consequently, the potentials evaluated in 

laboratories could be different from those found in large systems. 
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Figure 45: Distribution of the probabilistic pitting values for MMFX-11. 
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Figure 46: Distribution of the probabilistic pitting values for 304. 
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Figure 47: Distribution of the probabilistic pitting values for 3Cr12. 
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Figure 48: Distribution of the probabilistic pitting values for 2201 as received. 
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Figure 49: Distribution of the probabilistic pitting values for 220 l pickled. 
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Figure 50: Distribution of the probabilistic pitting values for four MMFX-11 surface 
conditions. 
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8.2 Pitting behavior and chloride influence 

Generally, agreement among authors concerning the relationship between pitting 

and chloride concentration is poor. Several parameters are responsible for this difference, 

such as surface condition and the interaction of the oxygen evolution with anodic 

polarization. However, the pitting potential obtained in this study for the 304 material in 

simulated pore solution with 1% chlorides is in good agreement with the value obtained 

by Bertolini et al 14
. The latter authors found a pitting potential at around 580mV SCE. In 

the present study, the average value was 574mV. 

As a whole, localized corrosion initiation is characterized by the concentration 

ratio between cr and OR. This describes the competitive process between the inhibiting 

properties of OR and the breakdown effect of cr. The ratio is hence expressed as 

follows: 

Eq. 13 

where y is the activity of the OR. In saturated Ca(OH)2 solution, the value of the activity 

coefficient is estimated at 0.7 at 25°C 44
• Figure 53 presents the pitting potential 

distribution versus the concentration ratio. As the CR increases, the pitting potential 

decrease. This result is in agreement with Hausmann's research 28
• 

Furthermore, considering an upper limit for the free corrosion potential in concrete 

structures of+ O.IOOV vs. SCE, the CR ratio was respectively 0.49, 0.8, 0.95 , 1.75 and 

up to 18 for 3Cr12, 2201 as received, MMFX-II, 2201 pickled and 304 stainless steel, 

respectively. This result for 304 confirms those of Bertolini et al. for which the critical 
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chloride concentration exceeded 10% at pH= l2.6. Consequently, with regard to the 

present study, the Type 304 stainless steel is highly resistant to localized corrosion and 

MMFX-11 showed behavior between that of as-received and pickled 2201 stainless steel. 
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Figure 53 : Distribution of the pitting potentials versus the CR ratio. 

8.3 Pitting tendency and surface condition influence 

The degree of pitting tendency is closely related to the surface condition of the 

steel. Mammoliti et a!. 45 revealed that initiation of pitting is easier on coarse than on 

smooth surfaces. Cyclic potentiodynamic tests have revealed that polished specimens are 

completely passivated 43
. Moreover, despite the good corrosion resistance of highly 

polished reinforcement, the authors rejected using highly polished surfaces to facilitate 

reproducibility of test data reinforcing steel investigations, since this surface condition 

can not be realized on jobsites. 
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In saturated Ca(OH)2 + 0.5% NaCl solution, the difference between the average pitting 

potential of the polished cross section and as received circumferential surface MMFX-II 

was 232 mV and between polished circumferential surface MMFX-II and an as received 

circumferential surface 337mV. Similarly, for the 2201 in this same solution, the 

difference between the average pitting potential of the pickled and as received specimens 

was 89mV and for sandblasted reinforcement compared to as received 326mV. 

Therefore, removing the mill scale and smoothing of the surfaces appear to have 

improved pitting resistance. Li and Sagties 31 explained that since their sandblasted steel 

had no thick preexisting oxides, a dense passive film can grow as long as the 

environment is favorable and enough time is allotted. Nonetheless, Tuutti 46 showed that 

for sandblasted reinforcement, corrosion initiation time was increased but the 

propagation period reduced. 

8.4 Appropriateness of MMFX-11 

In the present study, corrosion response of the MMFX-II microcomposite was 

close to that of the as received and pickled 2201 material. Nonetheless, considering the 

simulated pore solution results of this study, the critical chloride to hydroxide ratio of 

MMFX-II was 0.95 at +100mV SCE. Compared to the critical chloride to hydroxide 

ratio of 304, MMFX-11 has lower pitting resistance. Moreover, for solutions with NaCl 

content higher than 2%wt, the pitting potential values show only modest variability. 

Finally, polishing the rebar resulted in an improvement in the pitting resistance, and 

consequently a higher chloride threshold. Nonetheless, use of polishing rebar is 

unrealistic on jobsites. 
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9 CONCLUSIONS 

Experiments and analyses performed to study the influence of chlorides and 

surfaces finish on pitting potential of MMFX-II reinforcing steel and other high 

performance alloys led to the following conclusions: 

1. Pitting potential decreased as the chloride addition and roughness of the 

steel surface increased. Also, pitting potential increased with increasing 

polarization scan rate. 

2. The critical chloride to hydroxide ratio (CR) was found to be 0.49, 0.8, 

0.95, 1.75 and greater than 18 for 3Crl2, 2201 as received, MMFX-II, 

2201 pickled and 304 reinforcements, respectively. 

3. MMFX-11 steel has a pitting resistance close to that of as-received and 

pickled 2201 reinforcements. Furthermore, polishing to remove mill 

scale and other rust on the rebar surface was beneficial in increasing the 

pitting resistance of the MMFX-11 and enhancing the repeatability of the 

pitting potential data. 
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