You are here

STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS

Download pdf | Full Screen View

Date Issued:
2024
Abstract/Description:
The rise of Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles (AVs) emphasizes the urgent need to combat distracted driving. This study introduces a fresh approach for improved detection of distracted drivers, combining a pre-trained Convolutional Neural Network (CNN) with a Bidirectional Long Short- Term Memory (BiLSTM) network. Our analysis utilizes both spatial and temporal features to examine a broad array of driver distractions. We demonstrate the advantage of this CNN-BiLSTM framework over conventional methods, achieving significant precision (up to 98.97%) on the combined ’Union Dataset,’ merging the Kaggle State Farm Dataset and AUC Distracted Driver Dataset (AUC-DDD). This research enhances safety in autonomous vehicles by providing a solid and flexible solution for everyday use. Our results mark considerable progress in accurately identifying driver distractions, pushing the boundaries of safety technology in AVs.
Title: STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS.
15 views
9 downloads
Name(s): Qu, Fangming , author
Nojoumian, Mehrdad , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2024
Date Issued: 2024
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 89 p.
Language(s): English
Abstract/Description: The rise of Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles (AVs) emphasizes the urgent need to combat distracted driving. This study introduces a fresh approach for improved detection of distracted drivers, combining a pre-trained Convolutional Neural Network (CNN) with a Bidirectional Long Short- Term Memory (BiLSTM) network. Our analysis utilizes both spatial and temporal features to examine a broad array of driver distractions. We demonstrate the advantage of this CNN-BiLSTM framework over conventional methods, achieving significant precision (up to 98.97%) on the combined ’Union Dataset,’ merging the Kaggle State Farm Dataset and AUC Distracted Driver Dataset (AUC-DDD). This research enhances safety in autonomous vehicles by providing a solid and flexible solution for everyday use. Our results mark considerable progress in accurately identifying driver distractions, pushing the boundaries of safety technology in AVs.
Identifier: FA00014418 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2024.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Deep learning (Machine learning)
Distracted driving
Transportation--Safety measures
Automated vehicles--Safety measures
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014418
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU