You are here
STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS
- Date Issued:
- 2024
- Abstract/Description:
- The rise of Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles (AVs) emphasizes the urgent need to combat distracted driving. This study introduces a fresh approach for improved detection of distracted drivers, combining a pre-trained Convolutional Neural Network (CNN) with a Bidirectional Long Short- Term Memory (BiLSTM) network. Our analysis utilizes both spatial and temporal features to examine a broad array of driver distractions. We demonstrate the advantage of this CNN-BiLSTM framework over conventional methods, achieving significant precision (up to 98.97%) on the combined ’Union Dataset,’ merging the Kaggle State Farm Dataset and AUC Distracted Driver Dataset (AUC-DDD). This research enhances safety in autonomous vehicles by providing a solid and flexible solution for everyday use. Our results mark considerable progress in accurately identifying driver distractions, pushing the boundaries of safety technology in AVs.
Title: | STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS. |
15 views
9 downloads |
---|---|---|
Name(s): |
Qu, Fangming , author Nojoumian, Mehrdad , Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2024 | |
Date Issued: | 2024 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 89 p. | |
Language(s): | English | |
Abstract/Description: | The rise of Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles (AVs) emphasizes the urgent need to combat distracted driving. This study introduces a fresh approach for improved detection of distracted drivers, combining a pre-trained Convolutional Neural Network (CNN) with a Bidirectional Long Short- Term Memory (BiLSTM) network. Our analysis utilizes both spatial and temporal features to examine a broad array of driver distractions. We demonstrate the advantage of this CNN-BiLSTM framework over conventional methods, achieving significant precision (up to 98.97%) on the combined ’Union Dataset,’ merging the Kaggle State Farm Dataset and AUC Distracted Driver Dataset (AUC-DDD). This research enhances safety in autonomous vehicles by providing a solid and flexible solution for everyday use. Our results mark considerable progress in accurately identifying driver distractions, pushing the boundaries of safety technology in AVs. | |
Identifier: | FA00014418 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2024. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Deep learning (Machine learning) Distracted driving Transportation--Safety measures Automated vehicles--Safety measures |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014418 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |