You are here
FACILITATING PEER-TO-PEER ENERGY TRADING THROUGH COOPERATIVE GAMES AND FUZZY INFERENCE SYSTEMS
- Date Issued:
- 2024
- Abstract/Description:
- This dissertation proposes a utility-centric peer-to-peer (P2P) energy trading framework as an alternative to traditional net metering, aiming to resolve conflicts between distributed energy resource owners and utilities. It advocates for practical software services and dynamic payment mechanisms tailored to prosumer needs, offering an alternative to reducing net metering incentives. Additionally, it explores game theory principles to ensure equitable compensation for prosumer cooperation, driving the adoption of P2P energy markets. It also builds on demand-side payment mechanisms like NRG-X-Change by adapting it to provide fair payment distribution to prosumer coalitions. The interoperable energy storage systems with P2P trading also presented battery chemistry detection using neural network models. A fuzzy inference system is also designed to facilitate prosumers' choice in participating in P2P markets, providing flexibility for energy trading preferences. The simulation results demonstrated the effectiveness of the proposed design schemes.
Title: | FACILITATING PEER-TO-PEER ENERGY TRADING THROUGH COOPERATIVE GAMES AND FUZZY INFERENCE SYSTEMS. |
14 views
7 downloads |
---|---|---|
Name(s): |
Lopez, Hector , author Zilouchian, Ali , Thesis advisor Abtahi, Amir , Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2024 | |
Date Issued: | 2024 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 214 p. | |
Language(s): | English | |
Abstract/Description: | This dissertation proposes a utility-centric peer-to-peer (P2P) energy trading framework as an alternative to traditional net metering, aiming to resolve conflicts between distributed energy resource owners and utilities. It advocates for practical software services and dynamic payment mechanisms tailored to prosumer needs, offering an alternative to reducing net metering incentives. Additionally, it explores game theory principles to ensure equitable compensation for prosumer cooperation, driving the adoption of P2P energy markets. It also builds on demand-side payment mechanisms like NRG-X-Change by adapting it to provide fair payment distribution to prosumer coalitions. The interoperable energy storage systems with P2P trading also presented battery chemistry detection using neural network models. A fuzzy inference system is also designed to facilitate prosumers' choice in participating in P2P markets, providing flexibility for energy trading preferences. The simulation results demonstrated the effectiveness of the proposed design schemes. | |
Identifier: | FA00014425 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2024. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Energy Fuzzy systems Cooperative game theory Electrical engineering |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014425 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |