You are here

LATTICE SIGNATURES BASED ON MODULE-NTRU

Download pdf | Full Screen View

Date Issued:
2024
Abstract/Description:
Euclidean lattices have attracted considerable research interest as they can be used to construct efficient cryptographic schemes that are believed to be quantum-resistant. The NTRU problem, introduced by J. Hoffstein, J. Pipher, and J. H. Silverman in 1996 [16], serves as an important average-case computational problem in lattice-based cryptography. Following their pioneer work, the NTRU assumption and its variants have been used widely in modern cryptographic constructions such as encryption, signature, etc. Let Rq = Zq[x]/ (xn + 1) be a quotient polynomial ring. The standard NTRU problem asks to recover short polynomials f, g E Rq such that h - g/ f (mod q), given a public key h and the promise that such elements exist. In practice, the degree n is often a power of two. As a generalization of NTRU, the Module-NTRU problems were introduced by Cheon, Kim, Kim, and Son (IACR ePrint 2019/1468), and Chuengsatiansup, Prest, Stehle, Wallet, and Xagawa (ASIACCS '20). In this thesis, we presented two post-quantum Digital Signature Schemes based on the Module-NTRU problem and its variants.
Title: LATTICE SIGNATURES BASED ON MODULE-NTRU.
51 views
14 downloads
Name(s): Kottal, Sulani Thakshila Baddhe Vidhanalage, author
Bai, Shi , Thesis advisor
Karabina, Koray , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Mathematical Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2024
Date Issued: 2024
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 87 P.
Language(s): English
Abstract/Description: Euclidean lattices have attracted considerable research interest as they can be used to construct efficient cryptographic schemes that are believed to be quantum-resistant. The NTRU problem, introduced by J. Hoffstein, J. Pipher, and J. H. Silverman in 1996 [16], serves as an important average-case computational problem in lattice-based cryptography. Following their pioneer work, the NTRU assumption and its variants have been used widely in modern cryptographic constructions such as encryption, signature, etc. Let Rq = Zq[x]/ (xn + 1) be a quotient polynomial ring. The standard NTRU problem asks to recover short polynomials f, g E Rq such that h - g/ f (mod q), given a public key h and the promise that such elements exist. In practice, the degree n is often a power of two. As a generalization of NTRU, the Module-NTRU problems were introduced by Cheon, Kim, Kim, and Son (IACR ePrint 2019/1468), and Chuengsatiansup, Prest, Stehle, Wallet, and Xagawa (ASIACCS '20). In this thesis, we presented two post-quantum Digital Signature Schemes based on the Module-NTRU problem and its variants.
Identifier: FA00014407 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2024.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Lattice theory
Cryptography
Public key cryptography
Applied mathematics
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014407
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU