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At the site of neuronal communication, multiple interacting components drive

synapse structure and function. Synaptic vesicle pools, membrane proteins, mito-

chondria, and perisynaptic astrocyte processes (PAPs) are all structures that can be

altered through naturally occurring plasticity mechanisms to modulate neurotrans-

mission, and disruption of these structures can result in synapse dysfunction and

disease. Due to the minute size of the synapse, electron microscopy (EM) remains

the gold standard for ultrastructural characterization; however, due to the complex-

ity of EM datasets, extraction of information has become a bottleneck which places

limits on the amount of data that can be collected and analyzed. A need exists for

easy-to-use workflows that automate and enhance analysis throughput, to keep up

with the streams of image data that are able to be produced. Here, I develop the

use of AI algorithms, correlative microscopy techniques, and novel structural analysis

methods to characterize postsynaptic mitochondria, PAPs, synaptic vesicles, and in-

tegral membrane proteins and their impact on synapse structure and function. I show
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that both postsynaptic mitochondria and PAPs in the visual cortex are positioned

to support synapse structure and function; cleavage of a synaptic adhesion molecule

affects synaptic vesicle accumulation in the amygdala; and presynaptic voltage gated

calcium channels aggregate near active zone machinery in the brainstem. In addition,

I highlight the use of virtual reality as a fast and intuitive tool for the identification

and isolation of individual neurites in 3D EM. Thus, my work establishes novel tech-

nical approaches for EM and advances our understanding of neuronal communication

through original research of several synaptic components.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 STRUCTURAL COMPONENTS OF THE SYNAPSE DRIVE

SYNAPTIC FUNCTION

The synapse is the fundamental component of neuronal signal transduction and forms

a functional site of contact between two or more cells. Synapses are not static—they

change their structure and function in an activity-dependent fashion, a process termed

synaptic plasticity. Plasticity is critical for proper brain development, and disruptions

to normal plasticity pathways can cause learning and memory deficits (Silva et al.,

1992; Elgersma and Silva, 1999) and are linked to a number of neurological disorders,

such as autism spectrum disorder (Betancur et al., 2009), Alzheimer’s disease (Ma

and Klann, 2012; Jang and Chung, 2016), and many others (Quartarone and Pisani,

2011; Voineskos et al., 2013; Wondolowski and Dickman, 2013).

Following typical plasticity events, a variety of morphological modifications take

place, such as addition or removal of ion channels, growth or shrinkage of the presy-

naptic bouton and/or postsynaptic spine, and recruitment of key signaling molecules.

Each of these modifications require energy; several studies have shown that axonal

mitochondria are mobilized to support synaptic activity, providing necessary calcium

stores and ATP for biological reactions (Ly and Verstreken, 2006; Thomas et al.,

2019; Datta and Jaiswal, 2021)—though much less is known about the dynamics of

postsynaptic mitochondria.

Additionally, increases in neurotransmitter release at the cleft can lead to neuro-

toxicity (Torres-Ceja and Olsen, 2022). At many synapses (between roughly 45 and
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70% depending on brain region; Ostroff et al., 2014; Genoud et al., 2006), astrocytic

processes surround all or a portion of the cleft, acting as a sink for neurotransmit-

ter, and are believed to have a role in modulation of synaptic activity (Jourdain et

al., 2007; Lawal et al., 2022). In rat hippocampal slice cultures there is some evi-

dence that synaptic potentiation results in increased astroglial coverage, though it is

still unclear how functional and structural diversity relates to astrocyte coverage in

different brain areas or in native brain tissues.

At a smaller scale, modification to the abundance and organization of molecular

machinery at the synapse can affect synaptic vesicle pool size, release probability,

and synapse maturation (Peixoto et al., 2012; Dong et al., 2018; Ackermann et al.,

2019; Lubbert et al., 2019; Phan et al., 2019; Zarebidaki et al., 2020). In some cases,

disruption of single molecular components of this machinery can have a cascading

effect that decreases activity of other molecules (Butola et al., 2021). Today, many

of the complex interactions between synaptic proteins remain uncharacterized, as do

their effects on synapse structure and function.

1.2 ADVANCED EMTECHNIQUES PRODUCE RICH STRUCTURAL

DATA

To investigate the ultrastructural properties of the synaptic environment, EM remains

the gold-standard. The first EM images of synapses were made as recently as 1955,

showing an axonal terminal onto another motor neuron (Palay and Palade, 1955).

Subsequent work by George Gray showed synapses could be separated into two main

categories: Gray’s type I and II (Gray, 1959). Today, these are commonly known as

asymmetric and symmetric synapses, which correspond to excitatory and inhibitory

synapses, respectively. Since these first descriptions were made, a vast body of litera-

ture has been produced that investigates synapses within the context of other cellular

and molecular processes, in a variety of tissues. Still, many questions remain on how
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the pieces of the synaptic-complex puzzle fit together. In the last few decades, a

variety EM techniques have been developed to answer questions of membrane protein

dynamics at the synapse, synaptic connectivity in 3D, and correlation between direct

measurements of function and structure of individual neurons and synapses.

1.2.1 Freeze-Fracture Replica Immunogold Labeling

Cell membranes contain integral membrane proteins including receptors, ion chan-

nels, and transporters which allow cells to communicate with one another. Using a

technique called freeze-fracture replica immunogold labeling (SDS-FRL), cell mem-

branes can be visualized en face and individual proteins at the membrane can be

examined in two dimensions (Fujimoto, 1995). With this method, tissues are frozen

vitreously, cracked open, and replicated by a thin coating of platinum and carbon.

The tissue is then thawed and almost entirely dissolved using SDS detergent, ex-

cept for a small amount of biological material that is adsorbed to the replica. An

immuno-reaction is then performed against a certain protein of interest using a pri-

mary antibody and gold-conjugated secondary antibody. The replica can then be

imaged using a transmission EM (TEM) and the location of proteins can be deter-

mined precisely (within several nanometers) and quantitatively analyzed. With this

technique, clustering properties and spatial density of a variety of synaptic molecules

have been investigated, including CaV2.1 (Indriati et al, 2013; Nakamura et al., 2015;

Dong et al., 2018; Lubbert et al., 2019; Rebola et al., 2019), presynaptic active zone

(AZ) molecules (Holderith et al., 2012; Althof et al., 2015), postsynaptic glutamate

receptors (Tanaka et al., 2005; Masugi-Tokita et al., 2007; Antal et al., 2008; Indriati

et al., 2013; Rubio et al., 2014; Lujan et al., 2018a; Kleindienst et al., 2020; Seewald

et al., 2021), and GABA receptors (Kasugai et al., 2010; Lujan et al., 2018b).
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1.2.2 Volumetric Imaging

Structures in the brain exist in three dimensions, therefore volumetric imaging pro-

vides insights into the complex spatial relationships between cellular and synaptic

components. Prior to the 1980s, most EM analysis in neuroscience was performed

on single section TEM images, and synaptic analyses were done primarily using sin-

gle cross sections of synaptic profiles, from which 3D morphological characteristics

were determined mathematically (e.g., Cragg, 1967). In 1986, White and colleagues

published the first complete volume of an entire invertebrate animal using serial sec-

tion TEM (ssTEM), resulting in a stack of about 8000 thin sections comprising the

entire body of a roundworm and setting the stage for large 3-dimensional EM (3D

EM) analysis. Around this time, ssTEM was also being performed on the mam-

malian brain; analysis of dendritic segments of hippocampal pyramidal neurons was

pioneered by Kristen Harris and colleagues in the 1980s and 90s, providing insight

into the formation and structural plasticity of dendritic spines (reviewed in Harris,

1999). Using a process called image segmentation, images are annotated by ‘coloring

in’ features of interest in as they appear in serial sections. From these segmentations,

3D reconstructions can be made which reveal the complex and often diverse geometry

of ultrastructural features. Using reconstructions, Harris and colleagues character-

ized the common shapes of dendritic spines in rat CA1, including thin, mushroom,

stubby, and branched spines (Harris et al., 1992). Though technically challenging, to

this day ssTEM provides higher lateral resolution than any other available imaging

technique; however, because collection of ultrathin sections onto TEM grids is done

by hand, the technique is rarely used when targeting large volumes.

Before the 21st century, SEM technology was not used to image brain tissue as

there was no technique available to image beyond the surface of the brain slice. In the

mid 2000’s, the automated tape-collecting ultramicrotome (ATUM) was developed

as a technique to pick up sections on a strip of tape as they are being sectioned
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(Hayworth, 2006). Sections could then be aligned onto a silicon wafer and imaged

serially within the SEM (Kasthuri et al., 2007). Modifications of this system have

allowed for magnetic collection and automated ordering and registration of sections

(Templier, 2019).

In-situ methods for sectioning within the microscope provide another avenue for

vEM imaging. In 2004, Denk and Horstmann published a landmark technique termed

Serial Block Face SEM (SBF-SEM) which involved application of a diamond-knife

sectioning tool to the inside of the microscope, allowing for serial sectioning and

raster imaging of brain tissue (Denk & Horstmann, 2004). Focused ion beam SEM

(FIB-SEM) was developed, where a gallium ion beam could be used to mill away thin

layers of brain tissue, the surface of which could then be imaged using SEM. Together,

ATUM-based serial section SEM (ssSEM), SBF-SEM, and FIB-SEM have produced

a revolution in 3D EM of brain tissues by drastically accelerating the collection of

large volume datasets and have changed the landscape of modern EM image analysis.

1.2.3 Correlative Light and Electron Microscopy

EM remains the “gold-standard” for capturing fine synaptic ultrastructure, but ulti-

mately it cannot be used to probe the living brain. Instead, EM can be applied to

provide ground truth structural information about connectivity and morphology of

neurons, which then can be combined with functional light microscopy data (LM).

This mode of imaging tells us about activity and function of said neurons and can be

used to observe living specimens. The combination of light and electron microscopy,

termed correlative light and electron microscopy (CLEM), is performed to produce

a richer dataset, and enables researchers to answer questions which have previously

been unanswerable (Collinson et al., 2017).
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1.2.4 Establishment of a Synaptic CLEM workflow

In my recent work, not part of this dissertation, I combined in vivo 2-photon light

microscopy and SBF-SEM to answer questions about how the structure of pyramidal

neuron synapses within L2/3 of the visual cortex relates to their functional properties

when driven by visual stimuli (Scholl and Thomas et al., 2021). To achieve this, I

created a workflow that utilizes inherent fiducial landmarks in the tissue, such as blood

vessels and nuclei, to identify the location of a target neuron across imaging modalities

(Thomas et al., 2021, Figure 1.1). Once I identified a target neuron within EM data,

I proceeded to segment proximal basal dendrites and their spines, radiating outwards

from the cell body. By matching a snapshot of an EM dendrite reconstruction to its

corresponding LM z-projection, I was able to identify individual spines from which

we obtained visually-evoked calcium activity recordings. We were successfully able to

create a rich dataset containing over two hundred function-structure pairs of synapses,

segmented and analyzed manually. Our analysis revealed that a neuron’s selectivity

to an oriented visual stimulus is determined by the number of synapses, not the

size of synapses, challenging the role of the Hebbian model of circuit development

in determining response selectivity in the cortex. In answering this question, we

produced several terabytes of EM image data of five neurons which has the potential

to be mined further to investigate other structure-function relationships. For example,

energetic support at the synapse and neurotransmitter homeostasis may also relate

to synaptic strength and functional properties. At the time, however, we were unable

to include these analyses due to time constraints and lack of methods necessary to

do so.
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Figure 1.1: Workflow and correlative design for re-identification of cells from 2-
photon live imaging to SBF-SEM. Blue arrows indicate the main workflow, while
orange arrows indicate the direction of correlation. Red circles mark the target cell
body and its position in the tissue, light blue rectangles demarcate a field of view
containing the cell and landmark blood vessels throughout the workflow, and yellow
rectangles demarcate the location of a dendrite of interest. A. Dendritic spines of
pyramidal neurons expressing GCaMP6s within the ferret visual cortex were func-
tionally characterized in vivo using 2-photon LM. B. Low-magnification CLSM im-
age taken to locate the target cell in the slice relative to large blood vessels. C. A
higher-magnification CLSM z-stack image of the boxed area in B, where the cell, its
dendrites, nuclei of nearby cells, and capillaries are visible. D. The slice was trimmed
to a smaller size (¡2 mm in width) for SEM sample preparation. E. Following sample
preparation, the stained tissue became opaque. F. A block-face SEM image of the
sample on a pin was correlated back to the 2-photon and CLSM image stacks and
the desired imaging location was determined. G. Serial SEM images were used for
segmentation of the cell and its dendrites. H. Target dendrites were reconstructed,
morphologically characterized, and paired back to the initial functional data in A.
Originally published by Thomas et al., 2021, reproduced under Creative Commons
CC BY license.
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1.3 IMAGE ANALYSIS BOTTLENECKS PLACE CONSTRAINTS ON

RESEARCH

There are currently very few methods for handling terabytes of data for feature ex-

traction and analysis. Once acquired, data are stored in a central location such as

a server and are then accessed either directly from the server, or locally when data

are downloaded to a workstation. Fiji is one of the few image software packages that

can handle large quantities of data, and the plugin TrakEM2 in particular is useful

for smoothing, adjusting contrast, stitching, and aligning images in depth (Cardona

et al, 2012). TrakEM2 can handle terabytes of data for this purpose, but its segmen-

tation tools are as of now entirely manual. Other software packages such as Vast,

webKnossos, and CATMAID provide similar platforms for working on large datasets,

but also rely solely on human annotations (Berger et al., 2018). As datasets grow

in size alongside technical advancements, it becomes more and more clear that us-

ing human labor for feature segmentation is impractical—not only due to the time

required, but also the expense that comes with labor. For some questions, such as

how the disruption of a synaptic protein causes global structural changes, it may be

desirable to reconstruct features like synapses and vesicle pools in bulk from an entire

3D image volume, requiring the segmentation of hundreds to thousands of each. In

the case of SDS-FRL, analysis can involve the segmentation of several thousands of

immunogold particles that mark the location of target proteins, making manual anal-

ysis impossible. Even semi-automated segmentation of a single dataset can require

hundreds if hours, costing the equivalent of thousands of dollars of labor. If features

within the brain could be automatically extracted and quantified from a volume of

neural tissue with minimal human labor, the analysis bottleneck would widen and

permit higher throughput of data, thereby increasing the amount of data that could

be analyzed to answer scientific questions.
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1.4 NOVELWORKFLOWS UTILIZINGMODERNHIGH- THROUGH-

PUT METHODOLOGIES ARE A SOLUTION

In light of these challenges, new methods are evolving to deal with large image data

and keep up with the constant streams of data produced by the electron microscope.

1.4.1 Deep Learning

In the last decade, artificial intelligence (AI) models have come to the forefront of

data analysis as one solution to the analysis bottleneck. A form of AI called deep

learning has taken the EM field by storm in just half a decade, and a number of

custom networks have been published for image segmentation of different structures

such as mitochondria, myelinated axons, nuclei, endoplasmic reticulum (ER), and

more (Xing et al., 2017; Kornfeld and Denk, 2018; Motta et al., 2019; Scheffer et al.,

2020; Liu et al., 2021; Aswath et al., 2023).

Deep learning networks are algorithms inspired by the brain–they consist of mul-

tiple layers of interconnected “neurons” that take in information and transform it

before making a prediction. In the case of image segmentation, this comes in the

form of a prediction of whether a pixel belongs to a certain class of object, like a mi-

tochondrion. Networks require some form of “training” to be able to extract certain

features. Typically, this comes in the form of a human annotator manually marking

features of interest in a 2D image or 3D volume. Using mitochondria as an example,

the user manually segments a set of images containing mitochondria to produce train-

ing data, which is then fed into an algorithm. The algorithm, by adjusting values

called weights, learns to identify characteristic structural features of the mitochon-

drion such as cristae or its bean-like shape. Then, when provided novel images, the

network can identify mitochondria without the use of additional supervision by the

user. Until just recently, deep learning was technique that many microscopists had

heard of, but very few used for image analysis, due to the obscurity of the technique
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and the fact that it required knowledge of machine learning and coding to apply. Now,

different deep learning algorithms (termed architectures) such as U-net and Sensor3D

can be trained to extract ultrastructural features from 3D EM image stacks faster

than a human, and are now being included in free-to-use software packages such as

Microscopy Image Browser and Dragonfly. An additional benefit gained by faster fea-

ture extraction is that significantly larger sample sizes can be obtained in the same

amount of time. This can, for example, provide much greater statistical power to

detect any structural differences between wild type and knock-out animals. Due to

its novelty among the wider EM community, the next step is determining how to

properly use it and what questions this powerful technique can be used to answer.

1.4.2 Virtual Reality

While deep learning lends well to segmentation of specific cellular features, it is more

challenging to apply for segmentation of individual neurites. This is due in part

to the complexity and diversity of axons and dendrites, but also that nearly the

entire neuropil consists of dendrites and axons. When targeting a single neuron

with correlative microscopy as I previously did, manual segmentation was faster and

more efficient to perform; however, the recent development of VR as a scientific tool

has provided new opportunities for targeted cell segmentation. VR is not a new

technology—its origins can be traced back all the way to the 1970s and 80s—but

computer and headset hardware technology has finally reached a point where data

can be opened using an affordable workstation. VR is commonly thought to be only

applicable as a tool for visualization, but it is becoming more and more prevalent as a

method for quantifying biological processes (El Beheiry et al., 2019). Within VR, 3D

and 4D biological image data can be viewed, manipulated, and analyzed, and it has

been used with light microscopy data to count objects (Brandebura et al., 2018), track

cellular features through time (Xu et al., 2021), and trace neurons (Wang et al., 2019).
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One software called syGlass, developed by IstoVisio, has specifically been designed

for scientific use and is still under heavy development, with new features being added

regularly to make 3D data analysis easier (Pidhorskyi et al., 2018). Despite the

possibilities for EM data analysis, there are no applications in the literature outside

of one example of CLEM dataset correlation, which I recently published (Thomas et

al., 2021).

1.4.3 Summary

In summary, EM creates huge, rich datasets that hold a great deal of information re-

lating to topics of energetics, homeostasis, cell signaling, and molecular interactions at

the synapse; but, extraction of this information is a major challenge. Image segmen-

tation and analysis take time to perform manually, creating a bottleneck in the EM

analysis pipeline that impedes our investigation of important biological questions.

Novel methods must therefore be developed to widen this bottleneck and extract

information from EM data in new ways that are intuitive, highly automated, and

capture biologically relevant structural relationships.

In this dissertation, I integrate several novel analysis techniques to answer a va-

riety of important biological questions, each relating to synapse structure and func-

tion. This includes the development of deep learning segmentation approaches for

mitochondria, astrocyte processes, synapses, presynaptic vesicles, and membrane pro-

teins; new measurement methods for quantifying spatial relationships in 2D and 3D

images; and also the development of a correlative workflow for VR. Upon applying

these methods, I found the following: in the visual cortex, mitochondria are present

near functionally diverse synapses and that astrocyte coverage scales with synaptic

strength and function; mutation of the cell adhesion molecule Neuroligin-1 causes

a change in vesicle accumulation and increased frequency of incomplete synapses in

the lateral amygdala; and finally, presynaptic voltage gated calcium channels form
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clusters near the active zone machinery protein Munc13-1 at the calyx of Held mem-

brane. My work contributes to both the technical development of electron microscopy

techniques and makes several novel biological findings that relate synapse structure

and function.
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CHAPTER 2

EXTRACTION AND ANALYSIS OF SYNAPTIC MITOCHONDRIA

2.1 OVERVIEW

Mitochondria are ubiquitous organelles in the brain, and changes to their morphology,

abundance, and positioning underlie processes involving development, disease, and

neuronal function (Li et al., 2004; Lin and Beal, 2006; Cheng et al., 2010; Devine and

Kittler, 2018; Grunewald et al., 2019; Thomas et al., 2019; Wang et al., 2020; Pekkur-

naz and Wang, 2022). While much is known about mitochondria in the presynaptic

terminal where synaptic vesicle release occurs, less is known about mitochondria in

the postsynaptic terminal. Research has shown dendritic mitochondria are abundant

and provide ATP and calcium buffering to support spine plasticity (Li et al., 2004;

Chang et al., 2006; Harris et al., 2012; Rangaraju et al., 2014; Rangaraju et al, 2019),

but information is lacking on how they support synaptic strength. CLEM is one

technique that is well suited for investigating this relationship. However, while they

are easy to recognize in EM images, manual segmentation of individual mitochondria

is a time consuming process. They can be present in the cytoplasm in great numbers,

ranging from the dozens to the thousands depending on cell type. Furthermore, a

method of relating mitochondrial abundance to synaptic strength at the postsynapse

has yet to be established or explored.

In this chapter, I will briefly describe the use of deep learning algorithms for rapid

segmentation of mitochondria. I will then present an application of deep learning

and a novel analysis method for investigating dendritic mitochondria. This work re-

examines a previously published correlative dataset (Scholl and Thomas et al., 2021)
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to elucidate how mitochondrial volume and proximity relate to synapse function and

structure in the visual cortex of ferrets.
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2.2 DEEP LEARNING EXTRACTION OF MITOCHONDRIA IN THE

CALYX OF HELD AXON TERMINAL

My previous work, not part of this dissertation, focused on characterizing develop-

mental changes to mitochondria in the calyx of Held, a giant high-fidelity excitatory

synapse in the auditory pathway of the brain stem (Thomas et al., 2019). Several

features make it one of the most unique structures in the brain; it is the largest axon

terminal in the central nervous system, it changes its morphology drastically across

development, and each terminal contains hundreds of synapses and thousands of mi-

tochondria to support them. Using SBF-SEM, I showed presynaptic mitochondria

abundance increases drastically at the calyx of Held synapse throughout develop-

ment, reflecting a spike in energy usage following the onset of hearing (Thomas et al.,

2019). This involved the painstaking 3D reconstruction of thousands of mitochondria,

segmented using histogram thresholding and size filtering followed by extensive man-

ual proofreading. While not entirely manual, the process still required 49 hours labor

to segment mitochondria within just seven calyx terminals. Using deep learning, this

process can be substantially expedited.

Their compact shape shape and electron density relative to the cytoplasm under

EM make them ideal targets for deep learning as they can be extracted with only

moderate amounts of training data. Mitochondria segmentation was one of the first

applications of deep learning for EM image segmentation (Perez et al., 2014), and in

only the last few years, new methods and architectures for mitochondria segmentation

have exploded (Wei et al., 2020; Luo et al., 2021; Li et al., 2022; Mekuč et al., 2022;

Franco-Barranco et al., 2022; Conrad and Narayan, 2023). While some are easier to

use than others, a limitation of many of these networks is that they require coding

knowledge to implement and are not convenient to use by the average microscopist.

To allow for easy and rapid segmentation of mitochondria, I utilized the free Dragonfly

ORS software, which provides a number of untrained network architectures that can
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be trained and applied for segmentation with no coding knowledge.

Using a SBF-SEM image dataset of P21 calyx of Held terminals measuring ∼ 78

× 78 × 79 µm (4.81 × 105 µm3) from Thomas et al. 2019 (Figure 1A), I trained

a 2.5D U-Net++ network architecture to identify mitochondria. Creation of training

data—i.e. manual brush-segmentation of several dozen mitochondria profiles in serial

images to generate ground truth data, creation of image masks, and “background”

selection of non-mitochondrial cytoplasm—required 52 minutes of labor. This was

followed by 23 minutes used to create a fresh network using the built-in Dragon-

fly interface, set up the training parameters, and train the network. Once trained,

the network was run on each of 11 calyx terminals using pre-segmented cytoplasmic

segmentations as a mask for the network, effectively restricting the network to only

segment mitochondria of interest (Figure 1B). The time required for segmentation

varied based on the size of the terminal, but ranged from 2 to 11 minutes. In total,

application of the network on all terminals within the volume required 1 hour and

14 minutes, and resulted in a completed segmentation of mitochondria and back-

ground (Figure 2.1C; blue and pink, respectively). The next step involved manual

proofreading of all terminals, including automated size exclusion to remove small

false positive segmentations. Proofreading required 3 hours and 12 minutes for all

11 terminals, resulting in a total start-to-finish time to 5 hours and 41 minutes to

acquire a complete segmentation of all mitochondria (Figure 2.1D,E). Compared to

the method I used for the original publication which required 49 hours, utilization of

deep learning results in a 8.6-fold reduction in segmentation time.

This result clearly demonstrates the power of deep learning, particularly when

used to extract large quantities of mitochondria. Still, besides reporting a simple

metric such as the volume or density of mitochondria in the neuron as reported in

Thomas et al. 2019, little has been done in the literature to relate mitochondria to

synapse structure and function, particularly in the postsynaptic compartment. In the
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next part of this chapter, I apply mitochondrial segmentation along with correlative

microscopy to show that mitochondria are spatially positioned to support functionally

diverse synapses in the visual cortex.
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Figure 2.1: Deep learning-based segmentation of mitochondria in the P21 calyx of
Held axon terminal. A. An SEM image of the stalk portion of a terminal which
contains dozens of mitochondrial cross-sections. B. A binary mask of the same region
in A, showing the output of the trained U-Net++ neural network before proofreading.
Mitochondria are labeled in white. C. A color overlay of the network output on the
original SEM image (mitochondria in blue, calyx terminal in pink). D. Deep learning-
based segmentation results in an 8.6-fold decrease in start-to-finish segmentation time.
49 hours were required for segmentation of 11 terminals presented in Thomas et al.,
2019 using histogram thresholding methods, reduced to less than 6 hours using deep
learning. E. 3D rendering of all calyx mitochondria contained within a ∼ 78 × 78 ×
79 µm tissue volume. Mitochondria are colored by terminal.
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