You are here
PRION FRAGMENT 106-128: AN INVESTIGATION OF AMYLOID FORMATION AND INHIBITION
- Date Issued:
- 2023
- Abstract/Description:
- Misfolding and aggregation of Cellular Prion Protein (PrPc) is a major molecular process involved in the pathogenesis of Prion diseases. An N-terminal portion of the Prion protein, PrP106-128, is a 23-residue peptide fragment characterized by an amphipathic structure with two domains: a hydrophilic N-terminal domain and a hydrophobic C-terminal domain. Here, we studied the aggregation properties of the prion fragment peptide PrP106-128. The results show that the peptide aggregates in a concentration-dependent manner in an aqueous solution and that the aggregation is sensitive to pH and the preformed amyloid seeds.Furthermore, we show that the zwitterionic POPC liposomes moderately inhibit the aggregation of PrP(106–128), whereas POPC/cholesterol (8:2) vesicles facilitate peptide aggregation likely due to the increase of the lipid packing order and membrane rigidity in the presence of cholesterol. In addition, anionic lipid vesicles of POPG and POPG/cholesterol above a certain concentration accelerate the aggregation of the peptide remarkably. The strong electrostatic interactions between the N-terminal region of the peptide and POPG may constrain the conformational plasticity of the peptide, preventing insertion of the peptide into the inner side of the membrane and thus promoting fibrillation on the membrane surface. The results suggest that the charge properties of the membrane, the composition of the liposomes, and the rigidity of lipid packing are critical in determining peptide adsorption on the membrane surface and the efficiency of the membrane in catalyzing peptide oligomeric nucleation and amyloid formation.
Title: | PRION FRAGMENT 106-128: AN INVESTIGATION OF AMYLOID FORMATION AND INHIBITION. |
39 views
19 downloads |
---|---|---|
Name(s): |
Regmi, Deepika , author Du, Deguo, Thesis advisor Florida Atlantic University, Degree grantor Department of Chemistry and Biochemistry Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2023 | |
Date Issued: | 2023 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 205 p. | |
Language(s): | English | |
Abstract/Description: | Misfolding and aggregation of Cellular Prion Protein (PrPc) is a major molecular process involved in the pathogenesis of Prion diseases. An N-terminal portion of the Prion protein, PrP106-128, is a 23-residue peptide fragment characterized by an amphipathic structure with two domains: a hydrophilic N-terminal domain and a hydrophobic C-terminal domain. Here, we studied the aggregation properties of the prion fragment peptide PrP106-128. The results show that the peptide aggregates in a concentration-dependent manner in an aqueous solution and that the aggregation is sensitive to pH and the preformed amyloid seeds.Furthermore, we show that the zwitterionic POPC liposomes moderately inhibit the aggregation of PrP(106–128), whereas POPC/cholesterol (8:2) vesicles facilitate peptide aggregation likely due to the increase of the lipid packing order and membrane rigidity in the presence of cholesterol. In addition, anionic lipid vesicles of POPG and POPG/cholesterol above a certain concentration accelerate the aggregation of the peptide remarkably. The strong electrostatic interactions between the N-terminal region of the peptide and POPG may constrain the conformational plasticity of the peptide, preventing insertion of the peptide into the inner side of the membrane and thus promoting fibrillation on the membrane surface. The results suggest that the charge properties of the membrane, the composition of the liposomes, and the rigidity of lipid packing are critical in determining peptide adsorption on the membrane surface and the efficiency of the membrane in catalyzing peptide oligomeric nucleation and amyloid formation. | |
Identifier: | FA00014356 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2023. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Prion Proteins Prion diseases Epigallocatechin gallate Amyloid |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014356 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU |