You are here

The Dynamic pH Landscape At The Drosophila NMJ Synaptic Cleft And Its Implication In Neurotransmission

Download pdf | Full Screen View

Date Issued:
2023
Abstract/Description:
The intricate processes governing cellular pH and its impact on protein and cellular function have been extensively explored. However, our understanding of the pH fluctuations that occur during routine cellular activities and their potential to modulate cell function remains, particularly within the highly dynamic pH landscape of a synapse. Investigating the scale, directionality, and temporal characteristics of these activity-dependent pH fluctuations at synapses is of paramount interest, as it carries profound implications for neurotransmitter release and signal transduction. Employing both empirical and computational modeling methods, our research explores the dynamic pH environment within the synaptic cleft of Drosophila glutamatergic motor neuron Ib terminals during synaptic activity and reveals its significance in modulating neurotransmission. Contrary to popular belief, we discovered that these terminals undergo activity-dependent extracellular alkalinization in response to both single action potentials and burst stimulation. This surprising phenomenon was also observed at the mouse calyx of Held. We found activity-dependent alkalinization to be predominantly driven by Ca2+ movement across the postsynaptic membrane, and by targeting pH indicators to subcellular domains, we identified alkalinization to primarily occur within the cleft.
Title: The Dynamic pH Landscape At The Drosophila NMJ Synaptic Cleft And Its Implication In Neurotransmission.
30 views
13 downloads
Name(s): Hernandez, Roberto X. , author
Macleod, Gregory T., Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biological Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2023
Date Issued: 2023
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 280 p.
Language(s): English
Abstract/Description: The intricate processes governing cellular pH and its impact on protein and cellular function have been extensively explored. However, our understanding of the pH fluctuations that occur during routine cellular activities and their potential to modulate cell function remains, particularly within the highly dynamic pH landscape of a synapse. Investigating the scale, directionality, and temporal characteristics of these activity-dependent pH fluctuations at synapses is of paramount interest, as it carries profound implications for neurotransmitter release and signal transduction. Employing both empirical and computational modeling methods, our research explores the dynamic pH environment within the synaptic cleft of Drosophila glutamatergic motor neuron Ib terminals during synaptic activity and reveals its significance in modulating neurotransmission. Contrary to popular belief, we discovered that these terminals undergo activity-dependent extracellular alkalinization in response to both single action potentials and burst stimulation. This surprising phenomenon was also observed at the mouse calyx of Held. We found activity-dependent alkalinization to be predominantly driven by Ca2+ movement across the postsynaptic membrane, and by targeting pH indicators to subcellular domains, we identified alkalinization to primarily occur within the cleft.
Identifier: FA00014346 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2023.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Neurotransmission
Drosophila
Hydrogen-Ion Concentration
Motor Neurons
Optogenetics
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014346
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Host Institution: FAU