

THERMOCLINE TRACKING

USING AN UPGRADED OCEAN EXPLORER

AUTONOMOUS UNDERWATER VEHICLE

by

Mathieu Clabon

A Thesis Submitted to the Faculty of

The College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Florida Atlantic University

Boca Raton, Florida

August 2003

THERMOCLINE TRACKING

USING AN UPGRADED OCEAN EXPLORER

AUTONOMOUS UNDERWATER VEHICLE

by

Mathieu Clabon

This thesis was prepared under the direction of the candidate's thesis advisor, Dr. Manhar
R. Dhanak, Department of Ocean Engineering, and has been approved by the members of
his supervisory committee. It was submitted to the faculty of the College of Engineering
and was accepted in partial fulfillment of the requirements for the degree of Master of
Science.

ent of Ocean Engineering

-

11

SUPERVISORY COMMITTEE

-$.-sFolleco

Dr. Edgar An

ACKNOWLEDGMENTS

I would like to take this opportunity to express my profound acknowledgments to my

thesis committee, Dr. Manhar Dhanak, Dr. Edgar An and Dr. Andres Folleco.

I also would like to extend my most sincere gratitude to all the people who helped me

conduct the research that led to this thesis. Among all these people, I would like to

particularly thank Abby Chronister, Gabriel Grenon and Joe Lambiotte, from the Advance

Marine System Laboratory, as well as John Kielbasa, from the Electronics Laboratory, to

name a few. It has always been a pleasure to work with them, and without their valuable

assistance and advices, I wouldn't have been able to achieve such goals.

The work was supported by the Office of Naval Research under grant number

N000149615023 [program managers Drs Thomas Curtin and Thomas Swean].

iii

Author:

Title:

Institution:

ABSTRACT
Mathieu Clabon

Thermocline Tracking using an Upgraded Ocean Explorer Autonomous

Underwater Vehicle

Florida Atlantic University

Thesis Advisor: Dr. Manhar R. Dhanak

Degree: Master of Science

Year: 2003

This thesis addresses the problem of tracking a thermocline - a layer of water showing an

intense vertical temperature gradient- with an Autonomous Underwater Vehicle (AUV).

One of Florida Atlantic University's Ocean Explorer (OEX) AUV has been upgraded, as

part of the work described here, by integration of a standard and convenient software

interface, and used in several thermocline survey experiments aimed at gathering

oceanographic data relevant to thermoclines. A tool that simulates the longitudinal

motion of the OEX through a water slice, whose temperature map is read using a

simulated temperature and depth sensor, has been developed. Using this tool and

information from at-sea experiments, several control methods for the OEX to track a

thermocline were analyzed. In particular, two different algorithms were implemented and

tested by simulation. Overall, two control algorithms have been validated, and it will soon

be possible to provide the AUV with a thermocline tracking capability.

iv

Table of Contents

LIST OF ILLUSTRA TIONS ••• XII

LIST OF T ABLES ••• XVI

I. INTRODUCTION ••• l

1.1. Motivation for the Thesis Work ... l

1.2. Statement of the Problem and Summary of the Thesis Work 4

1.3. Structure of the Document ... 5

II. BACKGROUND •• 6

11.1. Thermocline Mapping .. 6

11.1.1. Thermocline Definition••.....•..•.•••.•.•••.•••••••••..••••••••••••••••••••• 6

II.l.l.l. Permanent Thermocline ... 8

II.l.l.2. Seasonal Thermocline ... 8

II.l.1.3. Diurnal Thermocline ... : 9

II.1.1.4. Realistic Temperature Profile .. 1 0

11.1.2. Thermocline Characterization•..•. 11

11.1.3. Temperature Profiles and Thermocline Mapping .•.............•••••••••.•••.•.• 13

11.1.4. Thermocline Tracking •.••••••••••.•••.••.•..•...•...•..............................•....•......... lS

11.2. Feature-Based Navigation and Feature Tracking 18

11.2.1. The Concept of Feature-Relative Navigation•......... IS

11.2.2. Advantages ...••••••••.•.•....................•......... 19

11.2.3. Difficulties ...•..•••••..............................•........•....... 20

v

11.2.4. Techniques lnvolved .. 21

II.2.4.1. Feature Identification ... 22

II.2.4.2. Feature Finding .. 23

II.2.4.3. Intelligent Control for Feature Tracking .. 24

11.3. The Ocean Explorer ... 27

11.3.1. Existing Advanced Marine Systems Laboratory Vehicles 27

II.3.1.1. The OEX-B .. 27
11.3.1.1.1. Features ... 28
11.3.1.1.2. Hardware ... 30
11.3.1.1.3. Software ...]]

II.3.1.2. The OEX-C ... 31
11.3.1.2.1. 1mprovements ... 31
11.3.1.2.2. Hardware ... 33
11.3.1.2.3. Software ... 33

II.3.1.3. The Morpheus .. 36

11.3.2. The New OEX-D Project ... 37

II.3.2.1. The Common Intelligent Distributed Control System 37
11.3.2.1.1. General 1dea .. 37
11.3.2.1.2. Components ... 39
l/.3.2.1.3. Lon Works Application .. .40
l/.3.2.1.4. Application to the OEX. .. .41
11.3.2.1.5. Parts .. 43

II.3.2.2. The OEX-B Sensors and Actuators .. .45
11.3.2.2.1. Main Health System .. .45
l/.3.2.2.2. Global Positioning System (GPS) and Differential GPS45
l/.3.2.2.3. GPS/DGPS Antenna45
l/.3.2.2.4. Conductivity Temperature Depth (CTD) Sensor46
l/.3.2.2.5. Doppler Velocity Log (DVL) .. .46
l/.3.2.2.6. Attitude and Heading Reference Sensor (AHRS)47
11.3.2.2.7. TopSide Acoustic Modem (TSAM) .. .47
11.3.2.2.8. Thruster ... 47
11.3.2.2.9. Fins .. 48
11.3.2.2.10. Dropweight .. 48
11.3.2.2.11. Batteries ... 48
11.3.2.2.12. Control Box ... 49
11.3.2.2.13. Compass .. 49

II.3.2.3. The Morpheus/OEX-C Host Software .. 50
11.3.2.3.1. System Overview .. 50
11.3.2.3.2. Shared Memory .. 52
11.3.2.3.3. LonDaemon Module .. 53
l/.3.2.3.4. ProcessData Module ... 54

Vl

11.3.2.3.5. Logger .. 55
II.3.2.4. Tools ... 55

11.3.2.4.1. Development Tools .. 56
11.3.2.4.2. Monitoring Tools ... 58
11.3.2.4.3. Processing Tools ... 60

III. UPGRADING THE OcEAN ExPLORER ••• 61

111.1. Implementation of a New Computer ... 61

111.2. Operating System and Software Modifications 64

111.2.1. Operating System and High-Level Software Installation•.... 64

111.2.2. Software Integration .. 65
III.2.2.1. General Method .. 66
III.2.2.2. An Example of Software Integration Tasks: Integration of the GPS. 67
III.2.2.3. A More Thorough Example ... 76
III.2.2.4. Other Software Modifications .. 81

111.3. Tests, .. 83

111.3.1. Pool Test .. 83
III.3.1.1. Mission Planning .. 83
III.3.1.2. Mission Execution .. 84
III.3.1.3. Mission Analysis .. 84

111.3.1.3.1. Mission 1 .. 84
111.3.1.3.2. Mission 2 .. 86
111.3.1.3.3. Mission 3 .. 87

III.3 .1.4. Conclusion .. 88

111.3.2. At-Sea Test .. 89
III.3.2.1. Mission Planning .. 89
III.3.2.2. Mission Execution .. 91
III.3.2.3. Mission Analysis .. 91

111.3.2.3.1. Mission 1 .. 92
111.3.2.3.2. Mission 2 92
111.3.2.3.3. Mission 3 .. 95
111.3.2.3.4. Mission 4 .. 96
111.3.2.3.5. Mission 5 .. 97

III.3.2.4. Conclusions .. 99

111.4. Various Fixes and Conclusion .. I 00

vii

IV. MAPPING THE THERMAL STRUCTURE oF A WATER CoLUMN •••••••••••••• lOl

IV.l. Requirements and Assumptions .. 102

IV.2. Method of Survey ~ ... 103

IV .3. December 2002 Missions ... l 05

IV.3.1. Preparing the Missions .. 106
IV.3.1.1. Payload Integration .. 106

IV.3.1.1.1. Turbulence Package Integration .. 106
IV.3.1.1.2. Enabling the ADCP Mode of the DV£ 107

IV.3.1.2. Sensor Calibration .. 107

IV.3.1.3. Pool Test and Vehicle Trimming ... lOS

IV.3.1.4. Writing the Mission ... 110

IV.3.2. Mission Execution .. 112

IV .3.3. Data Analysis and Results ... 117
IV.3.3.1. December 16th Data .. 117

IV.3.3.1.1. Shipboard CTD Data .. 117
IV.3.3.1.2. AUV Mission Data .. 120
IV.3.3.1.3. AUV CTD Data .. l21
IV.3.3.1.4. AUV DVUADCP Data ... l24

IV.3.3.2. December 18th Data .. 125
IV.3.3.2.1. Shipboard CTD Data .. l25
IV.3.3.2.2. AUV Mission Data .. l27
IV.3.3.2.3. AUV CTD and DVUADCP Data l28

IV .3.4. Conclusions ... 128

IV .4. March 2003 Missions .. 129

IV.4.1. Preparing the Missions .. 130

IV.4.1.1. Fixing the Problems Revealed by the Previous Missions 130

IV .4.1.2. Sensor Payload Integration .. 131
IV.4.1.2.1. Physical Connection ofthe Sensors to the Payload Bus l31
IV4.1.2.2. Logical Integration of the Sensor Nodes in the Software ... 133

IV.4.1.3. Sensor Calibration .. 136
IV.4.1.4. Pool Test and Vehicle Trimming ... 136

IV.4.1.5. Writing the Mission ... 137

IV .4.2. Mission Execution .. l38

viii

IV .4.3. Data Analysis and Results ••••••••.••••.•.•..••••.•••..•••..•••.••••..•••..•••.•.••...••..••• 139

IV.4.3.1. Shipboard CTD Data ... 139

IV.4.3.2. AUV Mission Data .. 142

IV.4.3.3. AUV CTD Data ... 145

IV.4.3.4. AUV DVUADCP Data ... 148

IV .4.4. Multiple Datasets Comparison ... 1St

IV .4.5. Conclusions .•••..•••....•...•....•....•....•.............•.........•..•.......•..•.............•...... 154

IV .5. Conclusions •.•..•.••.•..•......•....•.••.•..•.••.•..•.•....•.•...•.•.•...•••.•.•..••..•••.••.....•..•.. 155

~- 'llll~ll~()~l.l~~ 'llllAl~}(l~(; ~l~lJI.Jl1ri()~ ••• JL:;Jr

V .1. Description of the Problem•........•.......................•..... 157

V .1.1. Motivations ..•...••..•.••....•...••...••.........•••...•.. 157

V .1.2. Typical Mission to Simulate .•....•....•.•..••.••••..•••..•••.•••••••••.•••••.••••••••••••••.• 158

V .1.3. Simulation Needs ••..••...•••........••..............•..•.....••...•......•..•.....•...•......•...... 160

V.2. Simulator Design and lmplementation ... 161

V .2.1. Method ..••.....•....•..........•...•.. l62
V.2.1.1. AUV Motion Simulation ... 162

V.2.1.1.1. Frames ofReference .. l62
V.2.1.1.2. Equations of Motion .. 164
V.2.1.1.3. Solving the Equations of Motion .. 168

V .2.1.2. Water Slice Simulation ... 170
V.2.1.2.1. Generation of a Temperature Map 171
V.2.1.2.2. Use ofthe Map by the CTD Simulator l72

V .2.1.3. Other Main Requirements ... 17 4
V.2.1.3.1. Logger .. l74
V.2.1.3.2. Fins Controller .. l75
V.2.1.3.3. Scheduler ... J76

V .2.2. Implementation•................................•....•.•.......•...•.•.••...•• 177

V.2.2.1. Required Modules ... 177

V .2.2.2. Module Interactions .. 179

V.2.2.3. Simulation Interface .. 179
V.2.2.3.1. Simulation Parameters .. l80
V.2.2.3.2. Simulation Output .. l81

V.2.2.4. Thermocline Tracking Interface .. 181

IX

V .2.2.5. Implementation of Each Module ... 181
V.2.2.5.1. Simulation lnitialization .. l81
V.2.2.5.2. Simulation Tennination ... l82
V.2.2.5.3. Scheduler ... 182
V.2.2.5.4. Vehicle Motion Simulation .. l83
V.2.2.5.5. CTD Simulation ... l85
V.2.2.5.6. Fins Controller Simulation .. l86
V.2.2.5.7. Logger Simulation ... l87
V.2.2.5.8. Summary Generator ... 188

V.2.3. Graphical User lnterface 41 ••• 189

V.2.3.1. Overview ... 189

V.2.3.2. Implementation ... 190
V.2.3.2.1. Main Window ... J90
V.2.3.2.2. Timing Parameters Edition .. 190
V.2.3.2.3. Input and Output Files Specification l91
V.2.3.2.4. Tracking Controller Specification l92
V.2.3.2.5. CTD Simulation Configuration ... l93
V.2.3.2.6. Mission Parameters ... l93
V.2.3.2.7. Running the Simulation .. l94
V.2.3.2.8. Displaying Results ... l94
V.2.3.2.9. Tenninating the Simulation ... 194

V.2.3.3. Graphical Layout. .. 195

V.2.4. Test of the Simulation Platform ... 195

V.2.4.1. Description of the Test Simulation ... 196

V .2.4.2. Simulation Configuration .. 196

V.2.4.3. Results ... 198

V.2.4.4. Conclusion .. 201

V .3. Thermocline Tracking Controller Simulation 201

V .3.1. Method .. 201

V.3.2. Thermocline Tracking Depth Controller .. 204
V.3.2.1. Approach ... 204

V.3.2.2. Design ... 205

V .3 .2.3. Implementation ... 208

V.3.2.4. Testing ... 210
V.3.2.5. Conclusions ... 221

V.3.3. Thermocline Tracking Sternplane Controller 221
V.3.3.1. Approach ... 221

V.3.3.2. Design ... 222

X

V.3.3.3. Implementations .. 226

V.3.3.4. Testing ... 229

V.3.3.5. Conclusions ... 234

V .4. Comparison of both Methods and Conclusions•........... 235

VI. CoNCLUSIONs AND FuTURE W ORK •• 237

VI.l. Summary of the Thesis Work .. 237

VI.2. Main Conclusions and Future W ork ... 239

APPEND IX ••• 24 2

Summary File Generated by the Simulation Tool 242

BIBLIOGRAPHY •• 244

XI

List of Illustrations

Figure 1: A Three-Layer Ocean ... ?

Figure 2: Variations of the Temperature Profile with Latitude .. 8

Figure 3: Two Representations of the Seasonal Thermocline ... 9

Figure 4: Example of Diurnal Temperature Profile Variation ... lO

Figure 5: Combination of Permanent and Seasonal Thermoclines lO

Figure 6: Example of Idealized Temperature Profile and Temperature Gradient Profile .. l2

Figure 7: Data from March 14th, 2002 Cross Shelf Experiment. 16

Figure 8: The Ocean Explorer (OEX) .. 28

Figure 9: Ocean Explorer System Overview ... 29

Figure 10: Overview of the Control Software Architecture ... 35

Figure 11: The Morpheus Ultramodular A UV .. 36

Figure 12: Centralized vs. Distributed Control Architecture ... 38

Figure 13: A Node Attached to the Distributed Control Network40

Figure 14: The OEX-B Intelligent Distributed Control Network42

Figure 15: Software Overview: Main Functional Groups .. 50

Figure 16: Shmem.in Content Example ... 52

Figure 17: LonDaemonNv Table Content Example .. 54

Figure 18: Lgr.in Content Example ... 55

Figure 19: Integration of the New Main Computer Stack .. 63

Figure 20: Simplified GPS Data Flow Chart ... 67

Figure 21: GPS Variables and Logical Connections Synoptic Diagram 69

Figure 22: GPS Data Processing and Conversion Algorithm Summary 74

Figure 23: Multiple Batteries with one Single Application ... 78

Figure 24: Batteries Energy Gauge Reset from MissionCheck. .. 80

Figure 25: OEX-D Distributed Control Network. ... 82

Figure 26: Thruster Test Results .. 87

Xll

Figure 27: Dead-Reckoning Navigation Compared to GPS Position 93

Figure 28: AUV State Summary .. 94

Figure 29: AUV Depth during Depth-Controlled Mission .. 95

Figure 30: AUV Altitude, Depth and Bathymetry during Altitude-Controlled Mission ... 96

Figure 31: Speed Test Results (Rpm and Speed Data) .. 97

Figure 32: Vertical Lawn-Mower Pattern .. 105

Figure 33: CTD Noise Characterization from Pool Test Data ... 109

Figure 34: ADCP Data from Pool Test. ... 110

Figure 35: Macro Instruction "Vertical Leg" ... Ill

Figure 36: Whole Mission Plan Summary ... l12

Figure 37: CTD Casts at Edges of Mission Location before Launching the Vehicle l13

Figure 38: Mission Summary (Navigation) ... l15

Figure 39: CTD Casts at Edges of Mission Location before Launching the Vehicle 116

Figure 40: Mission Plan for December 18th Mission .. 116

Figure 41: Temperature and Conductivity Profiles (December 16th) 118

Figure 42: Temperature and Conductivity Vertical Gradient Profiles (December 16th).l18

Figure 43: AUV Vertical Path from Dead-Reckoning Navigation and CTD Depth 120

Figure 44: AUV Horizontal Path from Dead-Reckoning Navigation 121

Figure 45: Raw Depth and Temperature Data from AUV CTD Sensor l22

Figure 46: CTD Data Noise and Vertical Temperature Profile l23

Figure 47: Raw Water Current Velocity in the Vehicle Body-Fixed Frame 124

Figure 48: Temperature and Conductivity Profiles (December 18th) 125

Figure 49: Temperature and Conductivity Vertical Gradient Profiles (December 18th).126

Figure 50: AUV Trajectory in both the Vertical and Horizontal Planes l27

Figure 51: Upward Looking ADCP and SBE CTD Payload Interface Module 133

Figure 52: CTD Casts at Edges of Mission Location before Launching the Vehicle 138

Figure 53: Temperature and Conductivity Profiles (March 19th) 140

Figure 54: Temperature and Conductivity Vertical Gradient Profiles (March 19th) 140

Figure 55: AUV Vertical Path from Dead-Reckoning Navigation and CTD Depth l42

Figure 56: AUV Horizontal Path from Dead-Reckoning Navigation 143

Figure 57: AUV Horizontal Path, Corrected for Current-Induced Drift. 144

Figure 58: Raw Depth and Temperature Data from AUV CTD Sensor l45

Figure 59: Vertical Temperature Profile of the Water Column from A UV CTD Data ... 146

Xlll

Figure 60: Temperature Map from AUV CTD Data ... 147

Figure 61: Raw ADCP Current Magnitude Profile as seen from the Vehicle 148

Figure 62: ADCP Velocity Error and Corresponding Validation Mask 149

Figure 63: Absolute Current Velocity Magnitude ... 150

Figure 64: Temperature Profiles Comparison .. 151

Figure 65: Temperature Maps Comparison ... 153

Figure 66: Sketch of a Typical Thermocline Tracking Mission 160

Figure 67: Simulator Structure Overview .. 161

Figure 68: 3-D Geographical Frame .. 163

Figure 69: Body-Fixed Frame .. 163

Figure 70: Local-Level (xL, zL) and Body-Fixed (xB, zB) Frames for Simulation 164

Figure 71: Sparse Temperature Map .. 172

Figure 72: Simulation Modules Interactions .. 179

Figure 73: Timing Parameters Section of the GUI .. 191

Figure 74: 1/0 Parameters Section of the GUI ... 192

Figure 7 5: Tracking Controller Section of the GUI ... 192

Figure 76: CTD Configuration Section of the GUI ... 193

Figure 77: Mission Configuration Section of the GUI ... 193

Figure 78: Graphical Layout of the whole GUI ... 195

Figure 79: Test Simulation Inputs: Temperature Profile and Depth Command Pattem .. 198

Figure 80: Trajectory of the Vehicle .. 199

Figure 81: Depth Comparison (Desired, Measured, Actual and Maximum) 199

Figure 82: Simulated Noise on Depth Measurements ... 200

Figure 83: Simulated Noise on Temperature Measurements ... 200

Figure 84: Measured Depth Error and Stemplane Angle ... 201

Figure 85: Local Temperature Gradient Measurement. ... 203

Figure 86: Simple Temperature Map ... 211

Figure 87: Complex Temperature Map showing a Diving Thermocline 212

Figure 88: Simulation Results: Vehicle Trajectory over the Temperature Map 214

Figure 89: Depth Variables (Desired, Measured, Real and Mean) 215

Figure 90: Temperature Profile Measured by the Vehicle ... 216

Figure 91: Simulations Results for Noisy CTD Measurements (Low and High Noise) .. 217

Figure 92: Temperature Profile Measured in Case of High Noise 218

XIV

Figure 93: Real Temperature and Temperature Gradient Profiles used for Simulation .. 219

Figure 94: Simulation Results: Vehicle Trajectory over the Temperature Map 220

Figure 95: Simplified Reasoning: Four Cases ... 223

Figure 96: Simple Membership Functions .. : .. 227

Figure 97: Control Surface ... 229

Figure 98: Simulation Results: Vehicle Trajectory over the Temperature Map 231

Figure 99: Depth, Pitch and Stem plane Angle vs. Time ... 232

Figure 100: Temperature Profile Measured by the Vehicle ... 233

XV

List of Tables

Table 1: IDCS Channel Characteristics Summary .. .41

Table 2: Main Computer Components ... 62

Table 3: Network Variables Interface for the GPS Node ... 70

Table 4: Binding Information Table for GPS Network Variables 71

Table 5: LonDaemonNv Table Section for GPS Network Variables 71

Table 6: Shared Memory Variables Declaration for raw GPS Variables 72

Table 7: Shared Memory Variables Declaration for Converted GPS Variables 75

Table 8: Logger Input File Section for GPS Variables .. 75

Table 9: Vehicle Health Data Summary for Mission 1 on 10114/02 85

Table 10: Vehicle State Data Summary for Mission 1 on 10/14/02 86

Table 11: CTD Noise Characterization from Pool Test Data .. 109

Table 12: Payload CTD Network Interface .. 135

Table 13: Simulation Modules Description ... 178

Table 14: Simulation Parameters ... 180

Table 15: Simulation Initialization Implementation Summary .. 182

Table 16: Simulation Termination Implementation Summary .. 182

Table 17: Scheduler Implementation Summary ... 183

Table 18: Motion Simulation Implementation Summary .. 184

Table 19: CTD Simulation Implementation Summary .. 186

Table 20: Fins Controller Implementation Summary .. 187

Table 21: Logger Implementation Summary ... 187

Table 22: Message Writing Implementation Summary ... 189

Table 23: Input Parameters for Test Simulation .. 197

Table 24: Tracking Controller Main Module Implementation Summary 209

Table 25: Measurements Processing Implementation Summary 209

Table 26: Oscillations Generation Implementation Summary .. .210

xvi

Table 27: Controller Parameters for Test Simulation212

Table 28: Simulation Parameters for Controller Test.. .. 213
Table 29: Simulation Parameters for Controller Test in Low Noise Environment..216

Table 30: Simulation Parameters for Controller Test in High Noise Environment.. 216

Table 31: Simulation Parameters for Controller Test with Real Temperature Data 219

Table 32: Controller Parameters for Controller Test with Real Temperature Data 220

Table 33: Characteristics of the Fuzzy Engine .. 225

Table 34: Inference Rules .. 228

Table 35: Controller Parameter for Test Simulation .. 230

Table 36: Simulation Parameters for Controller Test.. .. 230

xvii

I. Introduction

1.1. Motivation for the Thesis Work

Understanding the world we live in- especially in our case, the ocean- requires some

extended studies, including detailed experiments and measurements. Although some of

these can be carried out using remote sensing techniques, they need to be complemented

with in-situ measurements. Instrumented unmanned mobile platforms are very useful for

undersea measurements since they allow for fast 3-Dimensional sampling. Especially,

Autonomous Underwater Vehicles (AUVs) provide low-cost platforms for these types of

missions.

Because of both the spatial and temporal variability of oceans, in order to obtain

significant results, the optimal sampling mission would need to be performed over a large

area, instantaneously, with infinite resolution. Obviously, this is not feasible. Therefore, a

compromise has to be decided between accuracy, resolution, extent of the area, duration

of the mission, energy consumption and cost of the mission.

A possible choice of mission path is in the form of a "lawn mower pattern" that consists

of a grid of parallel straight lines. The characteristics of this pattern, such as total area, leg

separation, cruise speed, are determined based on prior-knowledge - or assumptions -

about the feature to sample. These types of patterns have proved to be very well suited to

certain kinds of problems. Indeed, they have the advantages of being exhaustive and of

1

allowing the vehicle to travel in an energetically efficient way.

However this pattern is efficient - in terms of sampling performances - only when

enough prior knowledge is available about the feature to be mapped. Moreover, this kind

of pattern is not always suited to the feature of interest, and may provide limited

information. Finally, when choosing such a pattern, one is already committed to traveling

a long distance. In such cases, the efficiency of the survey may be dramatically reduced.

The worst case is that of a dynamic feature, about which only little knowledge is

available, and whose very essence makes it difficult - or impossible - to be surveyed

along a regular pattern. Unfortunately, many features one would benefit to analyze often

fall in that category, as illustrated by the numerous attempts to track jellyfishes or map

chemical plumes, to name a few.

A possible way to improve the efficiency of these surveys would require the AUV to

determine by itself the area of interest, by reacting interactively to sensor measurements.

These techniques, referred to as "feature-relative navigation", would allow the AUV to

navigate no longer along a predefined pattern, but along a pattern that is constantly

updated depending on what the AUV senses about the feature to sample. It is commonly

admitted that the implementation of such techniques would offer a possibility to

dramatically increase the efficiency of a survey mission, and use AUVs at the best of their

capabilities.

Until recently, most of the work in the area of feature-relative navigation has been

confined to tracking of static man-made features, such as the inspection of underwater

cables or pipelines. But now, the application of these techniques to scientific sampling is

being successfully addressed, suggesting the possibility to extend this to various

2

applications.

In the case we are considering here, the feature to track is a thermocline, that is a layer of

water with a more intensive vertical gradient in temperature than that found in the layers

above or below. Characteristics of thermoclines, such as location, thickness, depth, or

intensity of the temperature gradient, vary with numerous parameters, and in tum, affect

several phenomena, such as sound propagation or biological activity to name a few. For

this reason, it is of some interest to measure the spatial variability of the thermocline in a

given area.

The localization of a thermocline is usually addressed with multiple grid-arrayed

Conductivity-Temperature-Depth (CTD) sensor casts, or with remote sensing techniques

such as satellite or radar measurements. However, in-situ measurements are expected to

give more detailed and accurate results. CTD casts, conducted at different points, require

both significant prior knowledge about the thermocline variability - in order to design the

survey grid - and significant post-processing to interpolate the point measurements in

order to reconstruct the whole field.

Therefore, it is highly desirable to have an autonomous platform follow a thermocline

layer. This would allow for more efficient high sampling rate measurements, which,

incorporated with the trajectory of the platform, makes possible to develop a precise map

of the thermocline. Moreover, this would also allow the measurement of various

parameters along the thermocline, which is not possible otherwise.

These goals can be achieved with an AUV capable of performing survey missions safely

and efficiently. The AUV has to be upgraded so that it has the ability to follow a

thermocline. To do so, a thermocline controller needs to be designed. To facilitate an easy

3

implementation of such a controller, reduce testing and validation time, while

maintaining a satisfactory level of efficiency and safety, the best solution involves

spending much time in developing and performing various simulations.

The department of Ocean Engineering at Florida Atlantic University (FAU) currently has

two series of survey-class AUVs, the Morpheus and the Ocean Explorer. The AUV

platform considered here is one ofFAU's Ocean Explorers.

1.2. Statement of the Problem and Summary of the
Thesis Work

The aim of the work described in this thesis is to address the problem of tracking a

thermocline with an Ocean Explorer autonomous underwater vehicle. The first task is to

upgrade one of the OEX vehicles high-level software so as to offer a more convenient

programming interface. Specifically, a new vehicle, the OEX-D, is built from parts taken

from the existing OEX-B, OEX-C and Morpheus. Once the vehicle is fully tested and

able to perform survey missions efficiently, it is used to gather oceanographic data

pertinent to the thermocline. Particularly, temperature data is collected to construct a

temperature map of a given water slice. Based on this information about the variability of

the temperature profile, as well as that obtained from other experiments, a thermocline

tracking controller is simulated for that vehicle. In order to efficiently test the controller

simulator, a convenient and robust, yet simple, simulation tool is designed. This includes

a basic vehicle dynamics simulation, a realistic CTD simulator that provides meaningful

temperature and depth inputs to the tracking controller, as well as some other

functionalities such as the possibility to record the time history of selected variables. This

4

constitutes a systematic simulation platform on which any designed tracking controller

can be exhaustively tested.

This thesis describes the work that has been conducted in order to build the new OEX-D

AUV from existing parts taken from other vehicles, to use this vehicle to perform

temperature mapping missions, and to design a simulation tool on which a few

thermocline tracking controllers are tested.

1.3. Structure of the Document

The structure of this document is as follows: first, we summarize the theoretical

background required for a complete understanding of the motivations of the thesis and the

work that has been conducted. This includes a brief description of thermoclines, a

literature review of the topic of feature tracking, or more generally feature-relative

navigation, and finally a description of the most important parts of the existing AUVs that

were used in building the new OEX-D. We then discuss the work we carried out, in three

main topics: the building and testing of the OEX-D, its use in missions intended to gather

data about the temperature structure of the water column, and the design and

implementation of a simulation tool and several thermocline tracking controllers. Finally,

we draw some conclusions and guidelines relative to possible improvements of the

OEX-D, and the effective implementation of a thermocline tracking capability in that

vehicle.

5

II. Background

This chapter summanzes the necessary theoretical background, along with some

motivations, for the thesis work. Three topics are studied: first, existing knowledge

related to thermocline and its mapping, then the concept of feature relative navigation,

and finally, the essential components of the Ocean Explorer AUV.

II. 1. Thermocline Mapping

Seawater temperature has long been the most commonly studied oceanographic variable

because it is easily measured and because of its direct influence on the chemical,

biological and physical properties of seawater [1]. Numerous applications of this property

have made the temperature structure of the ocean a major oceanographic study.

11.1.1. Thermocline Definition

According to the layered ocean model, below the free surface, the water can usually be

divided into three zones (Figure 1) in terms of its temperature structure [2]. There is an

upper zone with temperature similar to that at the surface, a zone below this in which the

temperature decreases rapidly with depth, and a deep layer in which the temperature

changes slowly. The upper layer is either called the mixed layer, because of its

homogeneity, Ekman layer or epilimnion. The last term is mostly used in describing lake

waters. The thermocline is the layer of water with a more intensive vertical gradient in

6

temperature than that found in the layers above or below it [1]. The deepest layer is

commonly referred to as deep (isothermal) water, or, especially for lake water,

hypolimnion. The term "thermocline" was originally proposed for a lacustrine

environment, by Birge in 1897.

Tf'mptrature ············>

Figure 1: A Three-Layer Ocean

These layers are of varying depth, thickness, areal extent and permanence [3].

Thermoclines can be affected by practically any physical process occurring in the oceans

and by meteorological processes above the surface. Thermoclines, in tum, affect various

properties such as sound propagation, water transparency and biological population

distribution.

Three kinds ofthermoclines are commonly defined [1], which are described hereafter.

7

11.1.1.1. Permanent Thermocline

This is generally the deepest thermocline, with its upper boundary residing between 100-

700m below the surface. It is said to be permanent since changes in its structure do not

seem to be related to seasonal or shorter periods. It tends to be symmetrical about the

equator, being shallow, moderately thick and quite strong near the equator, becoming

thicker, deeper and less intense in the mid-latitudes, and ending at the surface in an

intense gradient in the vicinity of± 50-60° latitude (Figure 2) [2].

TEMPERATURE •c
0 10 2.0 3o•c 0 10 2o•c 0 to •c

0

t IIINTCit
,•

UPPER
ZONE

l DICOTMI:MlAI.
I.AYI:It

E
MAIN

!000
THUIIIOCI.IN£

t .I; ON£

X
1- DHP
0.. ZONf w
0

1
%000

LOW NIO HIGH

LATITUDES LATITUDES LATITUDES

Figure 2: Variations of the Temperature Profile with Latitude

11.1.1.2. Seasonal Thermocline

It is so named because of its variation with the seasons. It develops in spring, becomes

stronger with the summer and disappears during fall and winter. It is found nearer the

surface than the permanent thermocline, and in those areas where the seasons show

noticeable differences. Mid-latitude oceans in particular, demonstrate a well-developed

seasonal thermocline.

8

Temperature ('C)
2 4 6 8 W U M ~
o~~~~~~~--~~r-~

Mar

20

~

100

" I
I

,': :Nov
I I J

1 -r'
,,~ I

:Jan
I

--~

~-~

I

: Aug
I
I

~---~'sept

~

100

l
I
I
I
I
I

\ ~--------

Mooth

Figure 3: Two Representations of the Seasonal Thermocline

F

6 5

In Figure 3, two different representations of the thermocline are shown. On the left, the

temperature profile is shown, with the thermocline corresponding to non-constant

temperature ranges of the profile. On the right, the thermocline is located where the

isothermal curves get closer to each other. In both figures, it appears clearly that the

location, thickness and strength of the thermocline vary with the seasons [4].

In spring, the water is nearly isothermal. As the weather warms, the water surface

receives more heat than it looses to the air and becomes warmer. The wind then acts to

cause mixing of this surface water to a slightly greater depth. As more heat is received

and the wind continues to mix it deeper, the thermocline layer will be found farther from

the surface. The maximum depth and intensity of the thermocline depend on the strength

and the duration of the wind and the amount of radiation received.

11.1.1.3. Diurnal Thermocline

Thermocline can develop on smaller scales. The diurnal thermocline (Figure 4) is perhaps

the one that occurs on the smallest detectable time scale. A thermocline can form very

9

near the surface during the day and disappears at night. The intensity can be affected by

such things as the degree of cloudiness and the temperature difference between sea and

atr.

...
~-20
,c. ...
g-30
0

40

3.0"

0615 0800 1000 1200 1407 1600
Local time

1800

Figure 4: Example of Diurnal Temperature Profile Variation

11.1.1.4. Realistic Temperature Profile

0610

These different thermoclines combine together to form the whole temperature profile that

is obviously more complex and smoother than what is described in the previous

definitions. An idealized example is given in Figure 5.

Temperature (C)

10 20 0 10 20 0 10
0

I 20
Mixed layer
deepening

Shallow Mixed layer

:S
0.
Q) 60
0

80

100

120
Summer Fall Winter Spring

Figure 5: Combination of Permanent and Seasonal Thermoclines

10

11.1.2. Thermocline Characterization

Then the question that arises is how to locate a thermocline in the ocean. To begin to

answer this, we can look at some numbers about the real temperature distribution. The

order of magnitude of the variation in temperature with depth in the deep thermocline

(low troposphere) is around 0.05°C/m [1]. For comparison, in the cold deep layer

(stratosphere), the vertical gradient drops to 0.004°C/m at lOOOm, 0.001 °C/m at 2000m

and 0.0005°C/m below 3000m. An example of the order of magnitude of the temperature

gradient in the mixed layer can be obtained from the data of our October 2001 Ocean

Current Profiling Experiment off Dania Beach. Based on 25 meters of the mid-section of

the mixed layer, a mean temperature gradient of around 0.006°C/m could be measured.

Moreover, the temperature profile variation over the day appeared clearly. This 0.05°C/m

gradient in the thermocline is quite weak, but still higher than in the other layers.

Moreover, stronger temperature gradients have been found in shallower thermoclines.

A good example of a strong thermocline is reported in the experiment of the Littoral

Ocean Observing and Predictive System (LOOPS) conducted in Massachusetts Bay in

September 1998 [5]. The experiment consisted of shipboard profiling systems and AUVs

deployed along sawtooth patterns. During this experiment, it was found that the water

column, with depths of 20-55 meters, could approximately be divided into three layers:

- 1) A 10-20 m thick surface layer with warm and fresh water,

- 2) A 10-30 m thick bottom layer with cold and salty water,

- 3) In between, a thin thermocline layer with sharp vertical gradients.

In that thermocline layer, a vertical gradient of 8°C over less than 5m (1.6 °C/m) was

11

typically observed. A thin chlorophyll maximum layer was often present in this strong

thermocline layer as evidenced in the fluorometer data sets. Several horizontal patches of

phytoplankton were evident as well.

Obviously, the gradient variation over the different layers is quite smooth. It is

particularly interesting to look at the variation of the temperature in the thermocline.

Based on Stommel's conceptual model [6], which uses the planetary-geostrophic

equations (PGE) [5], assuming that the vertical advection is balanced mainly by vertical

diffusion, it can be shown that the temperature in the thermocline layer can be modeled as

an exponential of the depth z, z being zero at the top of the layer, negative downward.

The temperature gradient is thus larger near the top of the layer, which is therefore the

easiest boundary to detect, as appears in Figure 6.

Temperature profile Temperature gradient profile
0 0

·50 ·50

\ -100 ·100

-150 II -150 \
-200 ·200 \

:[:[
£ ·250 £·250
0. 0. ., .,
Cl Cl

-300 -300

-350 -350

-400 ·400

·450 ·450

-500 -500
0 10 20 30 ·0.2 ·0.15 ·0.1 ·0.05 0

Temperature (deg.C) Gradient (deg.C/m)

Figure 6: Example of Idealized Temperature Profile and Temperature Gradient Profile

12

Numerous references [1], [2], [5], [6], [7], [8] also show that the location of the

thermocline is highly related to the location of the pycnocline (a layer of rapid variation in

water density with depth), and possibly a halocline (a layer of rapid variation of water

salinity with depth). Specifically, in particular conditions, the top of the thermocline may

correspond to a local maximum in the salinity profile. Moreover, some parameters like

the oxygen concentration, the chlorophyll density or the water currents vary with the

thermocline. These relations among various parameters can give additional ways to locate

the thermocline upper boundary.

11.1.3. Temperature Profiles and Thermocline Mapping

Two approaches exist to determine the position of a thermocline: simulation of

mathematical models, and direct measurements.

The modeling of the thermocline or more generally of the temperature distribution in the

ocean is an important area of research. Scientists are testing the likelihood of different

hypothesis and assumptions, and are evaluating the goodness-of-fit of various models. An

example of these researches is the World Ocean Circulation Experiment (WOCE)

program, related, among others, to what they call "The Thermocline Problem", which

tries to make a connection between dynamical theories and observational programs [9].

Direct measurement approach uses various sensors and techniques. The first and most

widely used method to measure the temperature is the use of thermometers. The simple

thermometer presents the disadvantage that the readings are corrupted as soon as the

thermometer traverses layers of different temperature before reading. For this reason

these thermometers were enclosed in thermally isolated bottles. The bottle is filled at the

13

desired depth, then closed and taken on board. Since the bottle is isolated, the temperature

reading is that of the depth where the bottle was opened. An improvement of this

technique was introduced with the Deep Sea Reversing Thermometers (DSRTs) [8]. This

thermometer is specially constructed so that the act of turning it over at the desired depth

locks in the temperature reading. The main drawback of these thermometers is that they

are point sensors that give the temperature at a particular depth of a particular location.

The reconstruction of a 3-Dimensional temperature map requires a lot of measurements,

which is time consuming.

To solve this problem, new sensors were introduced in two main forms:

BathyThermograph (BT) and Conductivity-Temperature-Depth sensors (CTD).

Mechanical BT was the first instrument developed to rapidly measure temperature

changes with depth [8]. This torpedo-shaped device traces a temperature-versus-depth

profile on a small slide that can be read directly once the BT is retrieved. The BT has then

been replaced by expandable BT (XBT) [3]. In this version, the device sinks at a known

constant velocity, and the temperature data is electrically transmitted to the shipboard

recorder, while the depth is obtained from the elapsed time. The XBT, as indicated by its

name, is not recovered. An Aircraft deployed XBT (AXBT) also exists and uses the same

principles [3].

The CTD is an electronic sensor that measures simultaneously the conductivity,

temperature and depth. The main advantage of the CTD over thermometers is that, as BT,

they measure profiles and not only the temperature at one point. Moreover, where the BT

is launched once, along a vertical path, CTDs can be used in different ways. They can be

embedded on almost any platform. For this reason, it is the preferred sensor used in

14

underwater vehicles. The use of such a sensor on AUVs allows to determine temperature

map along almost any desired path, which is a great advantage compared to point

measurement sensor since it allows to take into account the spatial variation of the

measured parameter without the need for numerous sensors.

Recently, new measurement methods have been introduced such as acoustic tomography,

[8] which is based on the observation of acoustic propagation in seawater to determine

the medium properties. The main disadvantages of this method are that it uses a complex

array of sensors, which is quite expensive and hard to deploy, and it requires a lot of

computations.

Finally, other methods try to obtain the depth of the thermocline from the measurements

of other quantities such as surface temperature anomaly, that can be obtained by satellite,

eddies and internal waves analysis [3].

11.1.4. Thermocline Tracking

As explained before, according to its definition, the thermocline is related to the vertical

variation of the temperature. For that reason, the question may arise as to the possible

advantages of using an AUV to track a thermocline. Indeed, this is interesting not

necessarily to analyze the thermocline itself, but rather its variation over horizontal

distance.

An interesting way to illustrate that idea is to look at some data from the Cross Shelf

CTD Experiment. This experiment was intended to estimate the variation of the CTD

profile over some horizontal distance across the Florida Current. It consisted of a number

of CTD casts at various locations along a line oriented towards the East-West direction.

15

The experiment was repeated several times with one month interval so as to also estimate

the variability with time. The following data (Figure 7), that shows the variability of the

thermocline over distance, is taken from the experiment conducted on March 14th, 2002.

Cast'li6

-10 -------:--------1-

-20 -------l--------1--

------------------; _______ , _______ r
-- ___ T ____ --r-

-ro ---- r···-----
-70 ------i·-------1-·

.eo ---·---.-----------

-90 -- ~--

-'oo2:1;;----,2f;-4 --,2~ 22 24 26

T("CJ T ("C)

CTD Casts Location

Longitude (Total min.)

Cast #3

................ ,.

---·-·-r··----·:-

-------.----------

-------:------··1·

--- ---·--------·

--------:-------:--

--------.... ---------

Cast #2

------T·------1-

[
-------r--------j-

-----··t··---·. --

rr
--,-------r

Cas! #1

---··-r·-----1-

-------;-··-··--1-

------+---+-;---

~ ~ ~ n M 2
T ('C) T("C)

Figure 7: Data from March 14th, 2002 Cross Shelf Experiment

The interesting thing to notice is that each of these six CTD casts took between 30

minutes and 1 hour. It took 5 hours to get the temperature profile at these 6 points. Some

other experiments, with closer cast locations took approximately the same time, since

16

what is time consuming is not to travel between points, but rather to perform the CTD

casts. Moreover, once the data are collected, it is necessary to perform a lot of data

processing to eliminate the noise in the measurements, especially that due to the motion

of the ship and the current that prevents the CTD from being deployed vertically with

constant depth rate. Once the measurement are cleaned of noise, it is still necessary to

interpolate the data so as to reconstruct the information between the sampling points. The

conclusion is that it takes a lot of time to obtain results with a poor resolution.

Now, if we assume an AUV capable of tracking a thermocline, a large distance can be

covered in a small amount of time. Moreover, the resolution is dramatically increased.

This illustrates the first advantage of using an AUV to track the top of a thermocline: It

would allow for a fast and high-resolution snapshot. This would make it possible to

obtain a precise map of the top of the thermocline, which can be useful for various

applications, as well as for the verification or refinement of some theoretical models. The

applications include understanding and forecast of weather systems, sound propagation

for oceanographic and military purposes, biological studies and so on.

The second advantage of the tracking is that once we are able to track a thermocline, we

can measure various parameters along its extent. This cannot be done otherwise, except

maybe using some kind of profiler to locate the thermocline while traveling and towing a

sensor platform, which is obviously more expensive. Being able to measure various

parameters along a thermocline boundary would improve our understanding of the

phenomena that take place at the interfaces between layers.

17

11.2. Feature-Based Navigation and Feature Tracking

Feature tracking is one particular example of a larger class of problem known as

feature-relative navigation (or feature-based navigation) [10], which requires the vehicle

to determine its trajectory online, in response to various sensor data.

11.2.1. The Concept of Feature-Relative Navigation

The problem consists of locating a feature of interest without exhaustive search, and

tracking it in an environment where a-priori information is unavailable [10], [11]. The

goal is to maximize the amount of data one can obtain from these features.

Bennett and Leonard [10] suggested a distinction of three scenarios in which the

capability to navigate relative to contour features is required: adaptive mapping of a

region, adaptive mapping of a dynamic structure and geophysical navigation using natural

terrain features. They gave examples for each case. Automated survey of ice keels in the

Arctic presents one instance of the problem of adaptive region mapping, in which an

AUV should be capable of locating and mapping the extent and distribution of ice keels.

Examples of adaptive mapping of a dynamic feature are mapping of mixing-zones, or

tracking of dynamic features such as eddies. The work conducted at FAU in order to have

an AUV follow the wake of a surface vessel [12] is also an example of these problems.

The third application, geophysical navigation using natural terrain features is a technique

whereby a vehicle matches sensor measurements to an a-priori map to determine its

position.

Current research areas encompass military applications such as mine-hunting [13], [14],

commercial applications, like the survey of man-made underwater structures such as

18

pipelines, telecommunication cables, and so on [15], and scientific applications such as

efficient oceanographic sampling [10].

11.2.2. Advantages

It is commonly admitted that "the full potential of AUVs to revolutionize ocean sampling

cannot be realized until methods are developed to allow AUVs to react to sensor

measurements in real-time as they are being acquired" [10], [16].

The main advantages in the use of AUVs for ocean sampling purpose are autonomy,

relative low cost, expandability, and the possibility for discrete or clandestine operations.

The autonomy allows the platform to be highly independent of the surface support and

human supervision. This has a great impact on operations costs. Moreover, AUVs are

decoupled from surface, which allows them to operate in conditions where towed or

remotely operated platforms are unusable, such as in rough seas [17]. Their autonomy and

possible expandability allow AUVs to perform various missions in possibly hazardous

environments [18]. Finally, the discretion and possibility for clandestine operation are

some important advantages mainly for military applications, where it is not desirable that

the enemy be aware of the operations.

Implementing tracking capabilities, or more generally feature-relative navigation

capabilities, can improve the use of AUVs, given that they may dramatically enhance

their efficiency in terms of survey duration, resolution, power consumption and data

quality. A typical AUV mission may require the vehicle to locate and sample a feature of

interest while traversing a minimal distance [11]. Although the commonly used "lawn

mower patterns" ensures a complete coverage of the given area, by choosing this method,

19

one IS already committed to traversing large regwns that may provide little or no

information.

Oceanic processes are characterized by both temporal evolution and spatial variability

[19]. Therefore, for efficient ocean sampling, it is necessary to acquire synoptic data at a

fast rate, in order to avoid temporal smearing, and with a high sampling density, to avoid

spatial aliasing in the reconstructed field. But usually, to obtain significant information, it

is also necessary to gather data over a wide area, which is contradictory with the previous

requirements. For surveys carried out with AUVs, compromise between resolution, total

survey time and area on one hand, and vehicle speed and energy on the other, must be

made. One proposed way to improve the efficiency is to adapt that compromise to the

environment and the information that is being acquired. These strategies, known as

intelligent or adaptive sampling, attempt to increase the survey efficiency by

concentrating measurements in region of interest [20].

11.2.3. Difficulties

Feature relative navigation tasks are difficult because they require the integration of

advanced techniques from intelligent control, navigation, sensor fusion, perception,

modeling, mapping, and others, in real-time, to enable the vehicle to perform its mission

safely and efficiently [10].

The vehicle has to constantly plan its local path based on measurements that are being

acquired. The difficulties in local path planning are due primarily to the complexity and

uncertainty of environment model and sensory information, and the contradiction

between inaccurate vehicle model and vehicle control in real-time [21]. Moreover, the

20

difficulty increases as the variations of the measured parameters decrease and approach

the noise level or the resolution of the sensors. A lot of processing is required to obtain a

good perception of the environment on which a trajectory planning decision can be based,

but these computations have to be done in a very limited time, so as to enable the vehicle

to react quickly enough to the changes in its environment.

Bennett and Leonard stated in April 2000 [10] that "In these scenarios ... , it is desirable

for the A UV to detect and track features based on the data measured by the vehicle

sensors. These tasks are beyond the state-of-the-art of what has been demonstrated to date

in high level control of AUVs."

11.2.4. Techniques Involved

The techniques used for efficient adaptive oceanographic sampling range for fairly

unsophisticated strategies, like appropriately-sized grid surveys to quite complex

algorithms such as coupled observation-modeling systems [20]. Between these two

extremes lie various other methods, by which measurements are concentrated in the

region of greatest interest, usually regions with high spatial gradients. For example, to

map an ocean front, an AUV might first run a very coarse survey to localize the front, and

then concentrate the operations in its vicinity. The implementation of feature-relative

navigation possibilities requires some detailed study in three areas, namely feature

identification, search methods for feature finding and intelligent control for feature

tracking.

21

11.2.4.1. Feature Identification

Feature identification relies on the use of multiple sensors whose information has to be

combined using sensor fusion techniques. Sensors outputs have to be processed

efficiently, in order to enhance the qualities of the data. Mobile robots most likely have

multiple sensors. Traditionally, sensors have been used purely complementary.

Nevertheless, there are now some methods of close integration of multiple sensor

information that can be applied before modeling, matching or identification of targets

[15], [17], [22]. The complexity of this sensor fusion spans all the way from the purely

elementary to the very complicated.

The sensors in use today all have their special characteristics and are therefore generally

aimed towards specific areas where their properties are best utilized. This usually gives

reasonably good results but it may not be good enough for some tasks, especially those

that demand a high reliability, or involve operations in difficult environments [17]. In

order to ensure high quality data in all circumstances, it is necessary to combine in a

convenient way data from multiple sensors, taking into account their properties such as

update rate, range, confidence and accuracy. The main reason for integrating these sensor

data is to achieve a common representation that not only is as good as but better than

what would be achieved by processing the data independently and then comparing results.

Using multi-sensor fusion techniques on a system may improve reliability, robustness,

confidence, efficiency and resolution. Four level of sensor fusion are commonly

recognized: signal level, pixel level, feature level and symbol level (or intelligent level).

A complete intelligent system may involve multi-level sensor fusion [22]. It is also

important to merge the data from the sensors at an early stage, not only to reduce the

22

amount of redundant information, but also to make it possible for higher level algorithm

to take advantage of the process as early as possible. These techniques of sensor fusion

are usually recognized as particularly important in target tracking applications. Examples

of this sensor fusion technique are the use of redundant sensors to obtain a single

information with high reliability and high signal to noise ratio, and the use of radically

different sensors that co-operates to provide complex information.

Another concept, which has emerged from the Massachusetts Institute of Technology

(MIT) Artificial Intelligence Lab, is the concept of sensor fission [23]. Based on the

observation that sensor fusion techniques may be computationally expensive, they

decided to ignore it. Instead, they use a form of sensor fission where different sensors

trigger different behaviors, and arbitration is done at the actuator stage. By organizing the

intelligence system in this way, such that various sensors introduce themselves at various

levels of control to initiate distinct behaviors, there is no need for maintaining a model for

the world or having to make judgments about which sensor to believe should there be

conflicts. Nevertheless, it appears that this kind of judgment is still done at the arbitration

level.

11.2.4.2. Feature Finding

One of the key issues in feature tracking is feature finding, which involves a searching

method. The searching for any target is nothing more than running along a selected path

until the target is found. But the choice of that path has important effects on the

probability to find the target in a reduced amount of time.

The simplest method that has been used is the straight-line pattern. The AUV runs

23

straight ahead until either the feature is found or a timeout or out-of-range occurs.

Obviously, such a method is not very efficient unless it is a priori known that this

trajectory will cross the feature. That may be the case for the tracking of a feature with a

long extent, such as cables.

A more exhaustive method is based on regular patterns such as "lawn-mower" pattern,

which involves multiple parallel straight line, radial pattern, which consists of following

different radii of an imaginary circle, or, more suited to the vehicle dynamics, circular

patterns. These patterns allow an exhaustive coverage of a small area. Nevertheless, these

patterns may take an important amount of time. Moreover, if once the feature is found,

the searching is aborted, it can prevent from locating other features that may be more

interesting (depending on what features we are looking for). Therefore, these methods

may be subjected to what is usually called deadlocks [11].

More recently the idea of intelligent search method has been introduced, such as simplex

search, annealing, or taboo search (or tabu). All of these offer viable solutions to the

problem of goal optimization in a relative unknown environment [11].

11.2.4.3. Intelligent Control for Feature Tracking

Once the target has been found, the AUV must track it. The simplest controller that can

be used is based on a closed loop control of the distance between the target and the

tracker, as measured by various sensors. Nevertheless, in some cases, depending on the

feature to track, this kind of control may be totally inefficient. New "intelligent" control

techniques are being applied to target tracking. In general, the intelligence of a control

system can be characterized by its ability to manage and process uncertain and imprecise

24

information with attributes such as adaptability, memory and learning. Intelligent control

as practiced today encompasses many fields from conventional control to the more recent

fuzzy, genetic, and neuro-control technologies.

Numerous studies have shown that the solution for efficient tracking is based on the

implementation of a behavioral architecture, with emphasis on the perception-action

behavior [10], [14], [22]. Indeed, such an architecture has the advantage to guarantee a

faster response than a hierarchical architecture. In hierarchical architectures, the high

level control relies on a central world model. What is being sensed has to be compared

with the available model, then incorporated with all the other pieces of information, on

which a decision can be made. The main drawback of this architecture is its inability to

handle rapidly changing environment in a timely fashion [10]. A direct perception-action

method decomposes the procedure of complex information processing, simplifies the

uncertain problem in high-level, reduces the computational complexity of planning, and

enhances the real-time reactivity to the environment [21]. In these behavioral

architectures, the control strategy is embedded in a set of preprogrammed condition

action pairs or "reflexes" [10]. Moreover, the decision-making among all the information

and multiple goals is inherently done by the arbiters among the behaviors, which

simplifies the high-level planning tasks. It has also been shown [21] that local path

planning and navigation control based on fuzzy logic are also key techniques for

intelligent reactive planning. Fuzzy control does not rely on an entire environment model,

reduces the quantity of complex computation and reasoning, and is able to handle both

sensor inaccuracy and system model uncertainty [24]. Also, the use of fuzzy logic allows

to take into account some elastic constraints that allow partial satisfaction [25].

25

The first technique historically used has been predictive tracking based on "information

augmentation" [26]. It aims at maintaining robust tracking performances, augmenting the

nominal tracking function by knowledge-based data such as motion capabilities of the

target. Then, using sensor measurements, projected on the target model, the robot is able

to predict the region in which the target is likely to be at the next instant [15]. The main

problem is that it requires a model accurate enough to be useful. In many cases, the exact

models are either difficult to obtain or need complex mathematical descriptions, thus

cannot be used in real-time. An answer to this problem can be brought by learning

techniques that the robot can use to improve, or build online, the target model [27].

Another way to use learning methods, commonly supposed to be more efficient though

more complex to design, is to get rid of the target model, and let the robot improve its

tracking capabilities by learning [24], [28]. Neural networks techniques are generally used

in mobile robots for environment recognition or to achieve reactive navigation. It has

been shown that complex models and control schemes could be replaced by a

connectionist learning approach, based on neural networks. Using these techniques, the

robot learns to change its behavior directly from experience of its actions in the world,

based on a connectionist implementation of model-free reinforcement learning, through

the use of a reward signal [24].

Several other aspects or techniques of intelligent control are still being developed or are

to be developed. One of the main goals of implementing intelligent control for tracking

purpose is to emphasize a strong perception-reaction behavior. Such a behavior tends to

overrule the complex phases of reasoning and modeling in order to make the AUV more

reactive while its structure becomes less complex [14], [10].

26

11.3. The Ocean Explorer

This part describes the FAU AUV used for this thesis work. A brief overview of the

AUVs existing at the Advanced Marine Systems (AMS) Laboratory at FAU is given,

followed by a detailed description of the knowledge required to understand the

development of the OEX-D from parts taken from existing vehicles.

11.3.1. Existing Advanced Marine Systems Laboratory Vehicles

Since the late eighties, the Department of Ocean Engineering (OE) at FAU has been

strongly involved in the development of AUVs [29]. Particularly, the AMS Laboratory is

pursuing a wide range of research projects related to AUVs, Intelligent Control Systems

and Naval Shipboard Automation [30]. Small, long range, low cost AUVs have been

developed as sensor platforms for educational, scientific and military applications [31].

Currently, two generations of AUVs are being developed or refined: The Ocean Explorer

(OEX) B and C series, and the Morpheus.

11.3.1.1. The OEX-8

The Ocean Explorer is a family of small, low-cost AUVs designed and built at FAU.

They are primarily designed for oceanographic survey missions and coastal warfare [32].

The OEX (Figure 8) is a platform for multiple sensor payloads used for performing search

and mapping operations in shallow water [33].

27

Figure 8: The Ocean Explorer (OEX)

11.3.1.1.1. Features

The vehicles most significant feature is their highly reconfigurable architecture. The idea

that allows achievement of this goal is to gather the mission dependent systems and

sensors in a payload that is self-contained and exchangeable [32], [33]. The OEX then

consists of:

- A 4ft long tail section, housing of all the navigation systems and sensors, propeller,

batteries, computer and controllers,

- A collection of modular payload noses that are mission dedicated. The nose section is

totally available for any desired type of sensor, except for an emergency dropweight

system that allows the vehicle to surface should a problem occur.

When necessary, a mid-body payload can be added. The sections are assembled by

bayonet-mount interfaces, that allow for a fast and easy switching between payloads.

The vehicle is flooded, and the equipments are enclosed in a few waterproof containers,

named pressure vessels, connected together using wet cabling [34].

28

The OEX is a Gertler body, whose dimensions are limited to 21 inches diameter, and 7 to

12 feet length, depending on the payload (Figure 9). The vehicle is rated for a 300m

depth, and a speed range of 2 to 5 knots. Its batteries allow an endurance of 4-12 hours,

depending on the configuration, the housed payload and the speed.

Figure 9: Ocean Explorer System Overview

An autopilot running on a computer controls the vehicle [32]. The preprogrammed

missions [33] consist of a set of waypoints and setpoints, along with some background

requirements such as bottom avoidance, health monitoring, and other safety features.

OEX AUV s house various sensors. Some of them are dedicated to navigation while

others are only used for data acquisition that are mission dependent. At this time, many

payloads have already been designed. Other designs are made easier by the use of a

simple mechanical, electrical and logical interface that allows non-AUV engineers to

design and integrate new sensor payloads [31],[35].

So far the OEX-B and C are similar. They differ mainly by their architecture which will

now be discussed more specifically.

29

11.3. 1. 1.2. Hardware

The hardware architecture is essentially made of a common network, based on Lon Works

and Neuron technologies, on which sensors, actuators and main computer form some

"nodes", communicating together. One main computer is in charge of the high-level

control and the computationally intensive tasks, and various nodes take care of the local

low-level control and data acquisition, which is commonly referred to as local logic. This

creates an Intelligent Distributed Control System (IDCS), which plays an important role

in the reconfigurability of the OEX [32].

On the OEX-B, the main pressure vessel, housing the main computer, is based on a

VersaModule Eurocard bus (VMEbus). The VME architecture, defined by the IEEE

1014-1987 standard, is based on a backplane mounted as a cage (or "crate") on which

standard VME cards are connected on single slots [36]. On that bus is mounted the main

computer, based on a Motorola 68030 processor. The crate also houses other cards such

as Lon Works gateway, Ethernet controllers, and serial adapters [32].

The Lon Works gateway is used to communicate with the IDCS. Most of the sensors and

actuators communicate with the main computer through Lon Works, although a few of

them use specific interface such as direct connections to the VMEbus, or serial RS232

ports.

Throughout the vehicle runs a "main bus" carrying power (48 VDC, and sometimes 12

and 24 VDC), and communications (LonTalk, Ethernet and sometimes serial) [37].

30

11.3. 1. 1.3. Software

The OEX-B software is based on two parts: The main computer software and the Neuron

nodes local logic applications.

The main computer runs the VxWorks operating system (OS), available from Wind

River. This is a Real-Time OS (RTOS) particularly designed for the embedded system

industry, and available on most popular computer platforms [38]. That computer mainly

runs a high-level mission scheduler, the Navigation and Autopilot managers, as well as

some processes that handle communications and data logging to name a few.

Then each node on the network participates in the software, running its own local logic

application which is mostly responsible for local low level control, data acquisition, and

health monitoring. These applications, designed using Lon Works tools, share information

with one another through the network.

The OEX-B software is not described further here since the main computer software will

be replaced, and the node applications are described later.

11.3.1.2. The OEX-C

The OEX-C is very similar to the OEX-B, since it was designed so as to implement a few

improvements. Only the differences with the OEX-B are discussed hereafter.

11.3. 1.2. 1. Improvements

Among others, the following significant improvements were implemented on the OEX-C:

- Standardization: Standardization of the IDCS, the main bus, the software, the health

monitoring and so on,

31

- Addition on a Inertial Navigation System (INS),

- Modification of the batteries so as to increase their lifetime, improve their charging

methods, in a word have much efficient batteries,

- Addition of a much convenient and powerful Human Machine Interface (HMI) for a

diver/operator,

- Addition of a much convenient development and programming interface.

As far as the standardization is concerned, where the OEX-B sensors sometimes

communicate over dedicated connection to the main computer (VME or serial), every

sensor and actuator of the OEX-C communicates over Lon Works. The health monitoring

is now implemented the same way in every pressure vessel. Where the main buses on the

OEX-B sometimes carried 12 and 24VDC and serial lines, the standard buses on the

OEX-C only carries 48VDC, LonTalk and Ethernet. The Ethernet connection is not

intended for subsystems to communicate together, but with an external computer.

So as to improve the navigation efficiency, a new INS was designed by Grenon [29]. This

dramatically improved the accuracy of the position estimator. The implementation of this

INS required the installation of a second computer.

Concerning the diver/operator interface, the OEX-B only offered a control box made of a

few LEDs and switches that allowed very limited operations. A console was designed for

the OEX-C, to offer more control through the use of menus and dot matrix text display.

A much convenient development and programing interface was implemented through the

design of a new software for the main computer.

32

11.3. 1.2.2. Hardware

The OEX-C hardware is based on the same kind of network as the OEX-B. On that

network are connected the sensors and actuators, and two computers.

The two computers, are based on a PC104 architecture. This architecture, born from the

standards established in 1992, has been created with the goal to offer the power and

flexibility of a PC in a size and power requirements suited for embedding. PC104 cards

stack together to eliminate the need for backplane or cage [39]. These computers are

Pentium-based PC104 computer cards. Additional cards provide in the same stacks Hard

Drives and LonWorks interfaces. Both computers interface with LonWorks through a

Microprocessor Interface Program (MIP) board, and are moreover connected together in a

local Ethernet network accessible from the outside.

11.3. 1.2.3. Software

While the computer-hosted software is responsible for the high level scheduling and

computationally intensive tasks, the low level software is distributed over the LonTalk

network. Each node is programmed with its own local logic, as on the OEX-B. The nodes

applications are described in details later.

The OEX-C achieves high-level command and control through use of QNX microkernel

based OS, available from QNX Softwares Systems Ltd., which provides a true real-time,

multi-tasking, multi-threaded OS. QNX also provides priority-driven preemptive

scheduling and fast context switching [40] which are essential for an effective and robust

real-time system.

33

The main control software is based on a hybrid architecture that combines hierarchical

and behavioral control architectures.

The hierarchical approach is a planning-based multilayer architecture. Usually, sensors

information arrives at the lowest level and is propagated to the highest level. Each layer

modifies the data. At the highest level, a decision is made, which in tum is propagated to

the low-level actuators layer.

On the other hand, the behavioral architecture approach does not recognize such high/low

level distinction. The raw sensor information is made available to any process that

requires it. Then every task is decomposed on basic behaviors that executes

independently, cooperatively or competitively. At the other end, the outputs generated by

the behaviors are combined by some arbiters that in tum control the actuators.

The hybrid architecture is a mix of the previous ones. A high-level planner mainly loads,

configures and activates as necessary some behaviors from a library, and is responsible

for the whole supervisory operations. Each behavior is formed of a reactive combination

of primitives [41]. It performs an independent task that cooperates with other behaviors to

perform a given mission. The output commands- or desired setpoints- generated by the

behaviors are then combined by some arbiters that decide what the final output

combination is. Finally, at the lowest level, the sensors deliver their information and the

actuators execute the commands.

The software architecture of the OEX is based on multiple processes, managers and

arbiters, shared memory, logger and monitor [25], [41]. An overview is provided in

Figure 10.

34

Lon alk N twork

Shared Memory Database

Figure 10: Overview of the Control Software Architecture

The multiple processes strategy allows to deal with numerous tasks whose computation

load vary, and allows for a more efficient scheduling. This also makes it easier to

integrate new modules in the system.

The managers are used to implement a particular behavior, and schedule its execution.

The arbiters are special behaviors used to resolve among other behaviors. They are

responsible for taking the outputs from other behaviors and deciding which combination

should be the active output. The decision is made based on the confidence level,

importance or priority of each behavior.

The shared memory allows the processes to communicate with each other. It has been

chosen because it is considered the most flexible yet simple kind of InterProcess

Communication (IPC) [25]. The common data are stored in a memory segment that may

be accessible by any process that asks for it. Data integrity is ensured through the use of

MUTual EXclusion (MUTEX) scheduling techniques, based on critical sections of code,

that allow only one process to write data at a time.

35

The logger is responsible for automatically logging some selected variables from the

shared memory into a file that can be used for post-processing.

The monitor allows a distant host system to remotely monitor or edit selected shared

memory variables.

11.3.1.3. The Morpheus

The design of the Morpheus results from expenences learned from the previous

generations of AUVs built at FAU, while adding new original features. Two of the main

lessons learned from the Ocean Explorers are the importance of modularity, and the

relation between operation cost and weight and size [34].

The result is an ultramodular plastic mini AUV, called the Morpheus, as a reference to

the Greek god who had the ability to change his shape. The Morpheus (Figure 11) is

composed of several standard pressure vessels that form the hull of that dry vehicle.

Modules are selected and assembled based on specific needs of each mission.

Figure II: The Morpheus Ultramodular A UV

The Morpheus's hardware is based on the ideas that have proved their efficiency with the

OEXs: distributed control network and PC104 computer stacks. The software is very

similar to that of the OEX-C, especially the high-level software, and therefore is not

described specifically here.

36

11.3.2. The New OEX-D Project

The general idea that drives the OEX-D project is to upgrade the OEX-B using some

features of the OEX-C and Morpheus.

The vehicle, as an OEX-B mechanical system, will be kept as is, while the main computer

and its software will be replaced by that of the OEX-C/Morpheus. The goal to achieve is

to offer an operation and development interface similar to that of the OEX-C/Morpheus.

Whenever possible, the local logic embedded in the OEX-B nodes will be kept since it is

designed to specifically interface the OEX-B sensors and actuators.

Therefore, the OEX-D is merely made of components coming from different vehicles.

These components will now be described with more details than the overview given

above, with emphasis on the parts we have to deal with for the thesis.

11.3.2.1. The Common Intelligent Distributed Control System

The Intelligent Distributed Control System, common to the OEX and Morpheus AUVs, is

based on the Lon Works technology of which we will now give an overview. A discussion

with a much specific emphasis on the application to the case of the OEX follows.

11.3.2. 1. 1. Genera/Idea

A control system is usually made of sensors, actuators, and controllers running the control

application programs [42].

Until a few years ago, most of the control system were typically based on a centralized

architecture in which every sensor and actuators were controlled by a single computer

[43]. The application running on the computer was then complex, had to deal with many

37

tasks simultaneously so as to perform the control, and was not easily modifiable.

The idea behind distributed control is to divide a control system into several subsystems,

each made of sensors, actuators and controllers [42], [44].

Figure 12 compares centralized and distributed control architecture.

Figure 12: Centralized vs. Distributed Control Architecture

The key components in a distributed control system are the communication protocol and

the hardware support. Until recently, each distributed control problem was considered

unique because of a lack of standards in that domain. Lon Works technology is one of the

standard solutions that can be used to create such distributed, interoperable systems.

The Lon Works technology, developed by Echelon and available as an open standard, is a

platform that allows to create control system architectures that are open, distributed and

interoperable [42]. This technology is based on a highly distributed, peer-to-peer

architecture that connects together several device so that the local logic embedded in each

device participates in the whole control application, hence the distributed control.

Lon Works technology consists of tools, modules and circuits required to build intelligent

devices and install them in distributed control networks [43].

38

11.3.2. 1.2. Components

The IDCS is based on the following components [42]:

- Nodes, that are basic elements of control. A node is made of a controller and the

sensors and actuators it supervises,

- One or several communications media to connect the nodes. If several different media

are used, they are connected together with either bridges or routers,

- A logical design of the network, that describes how a node is logically connected to

another,

- A standard communication protocol: the Lon Works protocol also known as Lon Talk

protocol, described by the ANSIIEIA 709.1 Control Networking Standard.

Each node is in turn composed of [45]:

A programmable device, similar to a microcontroller or microprocessor, that

implements the LonTalk communication protocol, and performs the application it is

programmed for. This device is commonly referred to as Neuron Chip.

- A Transceiver that provides the interface between the Neuron Chip and the

communication medium

- A circuitry to connect the Neuron Chips to the 1/0 devices they control and supervise,

- An application that defines the behavior of the node.

Figure 13 details a node attached to the channels linking several nodes.

39

Communications Channel

-~-/ N
{

I
Microcontroller

t
\
'·

Sensors
/Actuators } _ _,/

./' •···..• /'' ._,
I \ . .

(Node ! (Node .1
"' I \ I

\ / \ /
.,_,.-J.~ ,···

/"J'............,'\.',
I \
I Node :
' I \ ,.

\...... .,.......,

Figure 13: A Node Attached to the Distributed Control Network

11.3.2.1.3. LonWorks Application

Lon Works applications consist of intelligent devices or nodes that communicate over a

control network [43], [45]. The major particularity of LonWorks is its communication

interface based on Network Variables (NVs). The idea is to make information, stored in

variables, available throughout the whole network. This allows to create a control

network that is information-based instead of command-based [42]. Where the network

messages on a command-based system are explicit commands from a node to another, the

information-based system only communicates information about the state of a node, so

that each other node can make a decision depending on the whole state of the system, and

perform the adequate command. Doing so, each node only runs its own local logic based

on state information coming from the outside, and does not have to model the whole

system. This allows for a better interoperability, scalability and reconfigurability.

The information transiting on the network are either based on [43]:

- Network Variables (NVs), variables "stored" on the network and therefore accessible

to any node. In order for a node to access a variable , either as a writer or a reader, the

40

NV has to be bound to that node, that is logically connected,

- Messages, that can be unicast (towards a single node), multicast (towards several

nodes) or broadcasts (toward every node).

The application is programmed using network management tools to create the logical

network, and a language to program the local application of each node. This language is

the Neuron C, supporting most of the feature of ANSI C, and including extensions to use

the specificities of Neuron Chip [46]. The main features of that language are: A new

Network Variable (NV) object, a new "when ()" statement, introducing event-driven

control, and I/0 objects and operations specific to Neuron Chips.

11.3.2. 1.4. Application to the OEX

On the OEX, and later the Morpheus, the IDCS based on Lon Works relies on usually one

node per actuator or sensor to control, and one node for the main computer(s), connected

together by a 1 ,25Mbps Twisted Pair (TP) serial bus. The characteristics of that bus are

summarized in Table 1 [43]:

Channel Medium Bit Rate Compatible Maximum Maximum
Type Transceivers Devices Distance

TP/XF-1250 Twisted Pair, 1.25Mbps TPT/XF-1250 64 125m
bus topology

Table 1: IDCS Channel Characteristics Summary

41

An overview of the OEX-B IDCS is given in Figure 14.

-------------·----Main PV------~
IObueTEthemet I VMBBackpl I I MainComputer

I 40 MHz 68030 w FPU
1 VxWorb BMeaDram I

Navlplion/Awopilo! 800 II!Jpl RF

Preuwe Veuell

Ethernet

2 Me& Ram Dlak

LONNME Oalcway
r;:-·

I. ~pch
L~

RS 232 Serial POIII

Figure 14: The OEX-B Intelligent Distributed Control Network

The advantages that IDCS brought to the AUVs are [44]:

- It allows a faster and easier reconfiguration, through the use of "plug and play"

devices. Changing a particular sensor for instance, is totally transparent for the system.

Only the local node has to be modified so that the data coming from the sensor are

parsed to fit the previously defined NV interface.

- Modifications are limited: adding devices mainly consists in plugging in the network

and writing the software that uses the device. Software rewrites are limited because the

communication protocol, based on the seven layer ISO/OSI model, provides high-level

functionalities.

42

- The robustness is improved. When a single node crashes, the rest of the system hangs,

and only a limited part of the system has to be changed, which can be done easily

thanks to the use of standard components.

- The main computer performs less tasks and hence can be solely devoted to high-level

control.

11.3.2. 1.5. Parts

From the hardware point of view, the nodes used on the OEX-B, and therefore on the

OEX-D first time, are either based on PSGlO, LTMlO or HPSN. Both PSGlO and

LTMlO devices are off-the-shelf products available from Echelon. The HPSN is a node

custom made by the Ocean Engineering Department's Electronics Laboratory.

The PSG-10 is an embedded Programmable Serial Gateway (PSG) used to build gateways

between LonTalk network and a system with RS232C interface [47]. It consists of a

Neuron Chip, Random Access Memory (RAM), application Programmable Read Only

Memory (PROM), a First In First Out (FIFO) buffered serial interface, and a port to

connect a transceiver towards a Lon Works channel. The important thing about this part,

as far as the development is concerned, is that the application memory segment is in a

UltraViolet Erasable PROM (UV(E)PROM). To program such a device, the UVPROM

has to be erased using UV light, then programmed with a PROM burner.

The LTM-10 LonTalk Module (LTM) consists of a miniaturized board hosting a Neuron

Chip, flash memory, RAM, and connectors for application 1/0s and transceiver [47]. The

programming is much more convenient than that of PSGs, since the application is stored

on a flash memory, or Electrically Erasable PROM (EEPROM). This allows to program

43

the memory without having to take it out of the device.

The HPSN (High Performance Standard Node) is a compact, multi-purpose, low power

board that implements a custom node based on a Neuron Chip, on which health and

environmental sensors, serial interfaces, other 1/0s and regulated power supply come as

standards.

All these devices are attached to the network through a TPT/XF-1250 Twisted Pair

Transceiver (TPT). The TPT/XF consists of a transformer isolated differential

Manchester encoding communication transceiver and connectors for power supply,

Neuron Chip Communication Port (CP) and TP network lines [47].

The main computers are connected to the Lon Works network through a Microprocessor

Interface Program (MIP) board. The model used on OEX-C/Morpheus, a MIP-P50, is a

standard product available from IEC Intelligent Technologies as a PC104 Adapter [29]. It

is a firmware that transforms a Neuron Chip into a communication co-processor for any

host processor. This makes it easy to create host applications that communicate using the

LonTalk protocol and run on processors other than the Neuron Chip, so as to add

processing power to a LonWorks network [48]. The MIP-P50 communicates data with

the host processor through the PC104 bus, and an optional uplink interrupt line can

reduce the latency on incoming traffic [49]. On the other side, it is attached to the

network using a TPT/XF-1250 transceiver. The connection is buffered to ensure data

integrity during network traffic burst [29].

44

11.3.2.2. The OEX-8 Sensors and Actuators

Thanks to this LonTalk network, the mandatory sensors and actuators, coming from the

OEX-B tail, are connected together. A brief description of each device and its

corresponding node is given hereafter.

11.3.2.2. 1. Main Health System

The Main Health system is in charge of monitoring the health and controlling the power

supply of the main pressure vessel. It constantly monitors the temperature, humidity,

pressure and checks for a leak. This system is custom built by the Electronics Laboratory.

It is based on health sensors (temperature, leak, voltage, current and so on), connected to

a LTMIO device, on which the application performs the health monitoring and power

control tasks.

11.3.2.2.2. Global Positioning System fGPSJ and Differential GPS

This subsystem is in charge of the GPS/DGPS positioning of the vehicle. It consists of a

topside dual antenna, a Radio Frequency (RF) splitter to separate GPS and DGPS signals,

and a DGPS/GPS receiver. The GPS receiver node is based on a PSGIO that parses the

GPS/DGPS data coming through the serial interface, and sends the information to

LonTalk. It also implemented a Virtual RS232 link (VRS232) that allows an operator to

directly communicate with the GPS from a terminal emulator on the main computer [41].

11.3.2.2.3. GPSIDGPS Antenna

This subsystem, although called GPS/DPGS antenna, is rather the motor that controls the

rising and lowering of the topside antenna. The antenna is motorized so as to be about

45

30cm atop the vehicle when deployed, to improve the reception of RF signals, and, once

retracted, merge with the surface of the vehicle body, to reduce the drag. The node is

based on a LTMIO running the application that monitors the antenna motor health, and

controls the motor according to oncoming commands to rise or lower the antenna.

11.3.2.2.4. Conductivitv Temperature Depth fCTD) Sensor

The use of this sensor is dual. Its primary use is for navigation purposes: measuring

pressure and conductivity, it can compute the depth, and using also the temperature, can

compute the sound velocity, used to correct the measurements obtained from other sonic

navigation sensors. On the other hand, the CTD data may be of interest for oceanographic

studies. The node is based on a PSG 10 that parses the CTD data coming through the

serial interface, and sends the information to LonTalk. It also implements the VRS232.

11.3.2.2.5. Doppler Velocity Log fDVL)

This sensor essentially measures the relative velocity of a group of scatterers with respect

to the body, by measuring the Doppler shift of signal transmitted along four beams. The

DVL can measures its ground velocity, or the velocity of a water water volume. Gating

the incoming echo with respect to time, that is distance, the DVL can measure the

velocity of different volumes, or bins, of water. In such a case the DVL profiles the

current, and acts as an Acoustic Doppler Current Profiler (ADCP). This sensor is

primarily used for navigation, measuring the velocity of the vehicle and its altitude. It can

also be used as an oceanographic payload profiling the current under the vehicle. The

node is based on a PSG 10 that parses the DVL data coming through the serial interface,

and sends the information to LonTalk. It also implements the VRS232.

46

11.3.2.2.6. Attitude and Heading Reference Sensor (AHRSJ

The AHRS is an Inertial Measurement Unit (IMU), made of 3-axis accelerometer and rate

gyro. The data can be used for navigation, and sometimes to estimate the noise due to the

vehicle motion and vibration in data recorded by scientific payloads. The node is based

on a PSGlO that parses the AHRS data coming through the serial interface, and sends the

information to LonTalk.

11.3.2.2.7. TopSide Acoustic Modem (TSAMJ

The AUV employs an acoustic modem for data telemetry and remote command and

control of the vehicle [31]. Multiple modems can be used, at least, one being mounted on

the AUV, another on the support vessel. This allows the support crew to monitor a few

essentials pieces of data from the vehicle, to command the vehicle to start/stop missions,

and possibly have it perform predefined macro instructions. The node is based on a

PSGlO that bridges the TSAM serial interface and LonTalk.

11.3.2.2.8. Thruster

The thruster is a Direct Current (DC) motor that, mounted with the propeller blades,

pushes the vehicle through the water. The motor can be controlled either in terms of

current (torque) or voltage (rpm). It can spin in both directions, pushing the vehicle

forward or pulling it backward. To enable close loop control on the rpm, a sensor

measures the actual motor rpm. The node is based on a HPSN that interfaces LonTalk

with a motor controller board, and monitors the health.

47

11.3.2.2.9. Fins

Four fins are mounted near the back of the AUV: two rudders, one on top, the other on

the bottom, and two stemplanes, one on each side. They control the direction of the

vehicle, in terms of heading (rudders), and pitch (stemplanes). Each fin is mechanically

independent from the others, but both rudders and both stemplanes are coupled in terms

of command. They are commanded by DC motors to angles between -20 and 20 degrees

of the vehicle forward axis. To enable close-loop control, four sensors measure the actual

position of each fin. Each of the four nodes is based on a HPSN that interfaces LonTalk

with a motor controller board, and monitors the health.

11.3.2.2. 10. Drop weight

This is a very important safety feature of the AUV. It is an additional weight that can be

released in case of emergency. Once the weight is released, the vehicle, previously

neutral, becomes positively buoyant, and surfaces. The dropweight monitors the whole

vehicle network for critical errors indication, and fires an emergency abort and surface

command when necessary. It has its own battery that allows the weight to be released

even in case of main power outage. The node is based on a HPSN that interfaces LonTalk

with a motor controller that commands the dropweight shaft motor, monitors the health of

the dropweight and controls the charging of its battery.

11.3.2.2. 11. Batteries

The AUV tail encompass eight battery cans, each providing approximately 48VDC when

fully charged, and having a capacity of 5.4Ah, for a total of 43.2Ah, or approximately

2kWh. They provide power to the whole AUV. Each battery node is based on a

48

customized LTMIO running the application that monitors the battery health, controls the

charging, reports information about the available power, and command the batteries to

tum on or off. Each battery can charge itself from the power bus. They can be charged

while mounted in the vehicle thanks to the health monitoring which triggers a slow

charge mode with low duty-cycle when the temperature of the battery is too high.

11.3.2.2. 12. Control Box

The control box is the interface a diver or operator has with the system. It consists of 15

LED indicators that provide information about the state of the vehicle, and three Hall and

Reed switches to tum the vehicle on/off, start/stop a mission, or reset the whole system.

Attached to the control box is also a circuit-breaker, which is a switch enabling an

isolation between the batteries and the other part of the vehicle so that the batteries can be

charged by external power without the vehicle being powered on. The node is based on a

customized LTMIO running the application that monitors the control box health,

monitors the switches and sends corresponding commands on the network, and control

the LED display based on oncoming network informations.

11.3.2.2.13. Compass

This sensor is a magnetic compass, that is a "smart" three axis magnetometer. It measures

the Earth magnetic field along three axis, and using incorporated tilt sensors, converts the

magnetometer readings to the magnetic heading of the vehicle. It is possible to configure

the compass to correct the readings for local deviation so as to output the true heading.

The node is based on a PSG 10 that parses the Compass data coming through the serial

interface, and sends the information to LonTalk. It also implements the VRS232.

49

11.3.2.3. The Morpheus/OEX-C Host Software

Now the Host computer software of the OEX-C/Morpheus, that is to be used on the OEX-

D, will be described with more emphasis on the developer/integrator point of view.

11.3.2.3. 1. Svstem Overview

The supervisory control algorithms consist of a group of function controllers termed

managers which are responsible for scheduling and monitoring of individual functions or

behaviors [41]. There also exist a set of low-level daemons responsible for basic 1/0s and

regulatory functions. Figure 15 summarizes the main functional groups of the software. A

quick description of each of these groups follows.

SpocdYlgr I l~!uding1\·1gr Pitchlvlgr

StatcMg,r

~venlMgr Pl>nnor~1gr]

Pl.·(Ji..:essDa l aDaemon
~avlv1g.r

L onlnDaemon

LonOmDaemon

M;,lnit..;.1tDaemon Logg".cDaemon :\1od('.m.Daemon

Figure 15: Software Overview: Main Functional Groups

50

The planner manager is responsible for interpreting the mission description from the input

file, and generating navigation commands. The navigation manager is responsible for the

supervisory execution of a command. It fetches commands issued by the planner in the

navigation queue, converts it into settings for the vehicle autopilot, monitors the

completion of the current command and removes it from the queue upon completion

(success or timeout). The commands normally enqueued in the planner queue can be

overridden by the modem queue for remote control or the error queue for emergency

control. The guidance manager takes individual commands from the navigator and

distributes them to the lower level behaviors it controls. The position manager estimates

the current position of the vehicle. The state manager is responsible from translating

measurements from sensors into a description of the vehicle state. SpeedMgr,

HeadingMgr, PitchMgr and DepthAltMgr are individual managers responsible for a

single control. They may rely on multiple behaviors to perform a control. The event

manager monitors events, or conditions, that occur in the system and perform appropriate

predefined actions. The LonDaemons are in charge of communications with Lon Works.

The monitor daemon makes it possible to monitor and edit shared memory variables. The

logger demon regularly copies selected variables of the shared memory into a log file for

post processing. The modem daemon handles communication through TSAM. The

processData daemon is responsible for the translation of raw data coming from the

sensors into converted engineering data.

Among all the processes that run on the main computer so as to have the vehicle achieve

its mission, only a few will be described in details here since they are the ones we have to

deal with for the development of the OEX-D. These processes are those that interface

51

with the LonTalk network, sensors and actuators, which differ from one vehicle to

another. Indeed, many of the high-level processes only interact with the shared memory

and do not really care about what is connected on the outside.

11.3.2.3.2. Shared Memorv

The shared memory constitutes the core of the software. It defines a database of variables

that any process can access. It basically consists of a common memory segment mapped

onto the local context of each process attached to the shared memory. To ensure data

integrity, shared memory units are protected by the use of MUTual EXclusion (MUTEX)

techniques for critical sections of code. Since the share memory is already working, we

do not need much knowledge about the way it is programmed. As we will mainly have to

add or remove variables, we only need to look at the shared memory constructor.

The share memory definition is based on the shmem.in file (Figure 16), which lists all the

variables to be declared, along with their types, size if necessary, default values, and

information about the way they are to be interpreted, such as the unit of their content.

GPSHealthin
(

lousVo 1 tage
JousCurrent
temperature
leak
humidity
pressure

} ..
AntMotorHealthin

temperature
leak
humidity

"d(.:••

"HH"
"kPA''

nleak"

:motorCurrent nr:, .U. ''

antennaPos it ion "n/ a''
} ..

short = O;;
short= O;;
short= o;;
short = o;;
short= O;;
short= o;;

short = 0;
short = O;
short = O;
short = 0;

short = 0;

Figure 16: Shmem.in Content Example

52

There exist naming conventions, restrictions on the type of variables that can be defined,

and grammar rules that have to be respected for that file. More details about these topics,

as well as some guidelines about when to group variables in structures or declare them

separately, can be found in [41].

A library of shared memory manipulation functions has been written, which allows a

process to perform various operation on the shared memory. These functions can be used

to read/write the content of a variable, get a local copy of a variable or set a global

variable based on a local one, get the address, identification, type, size, dimension, or

timestamp of a variable, and so on. Details about these functions can be found in [41].

11.3.2.3.3. LonDaemon Module

LonDaemon provides a software interface between the application running on the host

and the LonTalk network. It basically creates a bridge between the network and the

shared memory.

On a regular basis, the LonDaemon checks the shared memory for variables related to

outgoing NV s and checks the network for incoming NV s. In case an update has occurred

in shared memory, the daemon takes the shared memory variable, translates its format to

a LonTalk one and drives the MIP to send the NV on the network. In case a NV update

has occurred, the daemon drives the MIP to get the actual value of the NV, converts it

from the LonTalk format to the local QNX format, and copies it to the shared memory.

The LonDaemon mainly consists of four processes: lonDaemonRx and LonDaemonTx

are drivers that handle the transmission, and lonDaemonNv provides the synchronization

between internal variables and NVs. A fourth process, LonDaemonDiag is a utility used

53

to provide a management interface with the network nodes, and is described later.

The main process we have to deal with to interface the network is LonDaemonNv.

Indeed, the LonDaemonTx and LonDaemonRx drivers work by themselves, based on the

information provided by LonDaemonNv. In this process, a table lists all the network

variables to manage, along with their characteristics such as direction, size, necessity to

acknowledge the communication, and the name of the functions that check, update or poll

each variable (Figure 1 7).

{ •• Hctrr"1TC1 A l.l•.n,;nlCi3 H,
LdNvUpdateModemToAuv,

{ "Jnr-...,rJJat.aTol1'odenl'',
NULL,

31, NV_IN,
LdNvPollModemToAuv,

28, NV_OUT,
LdNvPollAuvToModem,

UNACKD,
NULL),

UNACKD,
LdNvCheckAuvToModem),

Figure 17: LonDaemonNv Table Content Example

For each oncoming variable, it is necessary to write a function that polls the network, and

a second one that updates the share memory with the data obtained from the network. For

each outgoing variable, no update function is necessary, but a function that checks the

share memory for new value is required, as well as a function that polls the network to

send that value.

11.3.2.3.4. ProcessData Module

ProcessData is responsible for the translation of raw data coming from the network into

converted engineered data. Because of the limitations of the Neuron Chips capabilities,

and in order to optimize the computation and data throughput of the nodes, only integer

values are manipulated on the network. Therefore, a data is often sent in several parts, in

formats that are not directly usable. Moreover, processing of multiple oncoming pieces of

data is sometimes required to derive other information. ProcessData is dedicated to

54

handling these tasks. On a regular basis, it checks the shared memory for update of raw

sensor data. When an update occurs, it performs the required conversion and processing,

and writes the results in separate shared memory variables.

11.3.2.3.5. Logger

The logger is the process responsible for regularly checking the shared memory and

logging selected variables in a file, for debugging and post processing. The variables to be

logged are listed in the text file lgr.in, along with various information about how the

variables are to be logged (Figure 18). Options are provided in terms of logging frequency

of a variable, and conditions for logging such as "Always", "Once", "If Updated", "If

Changed", and so on.

auvHeading 8 IfChanged;
AuvDepth.depth 8 IfChanged;
AuvDepth.depthRate 8 IfChanged;
AuvAlt.altitude 4 IfChanged;
AuvAlt.altitudeRate 1 IfChanged;
auvSpeed 4 IfChanged;
auvRpm 1 IfChanged;
auvTorque 1 IfChanged;

Figure 18: Lgr. in Content Example

The process is scheduled using a timer. Each times it executes, it scans the shared

memory for the desired variables. If the condition for logging is satisfied (frequency,

update, ...), the variable is copied in the log file.

11.3.2.4. Tools

Various tools are used with the AUV, which can be classified as development tools,

monitoring or checking tools, and pre and post-mission processing tools.

55

11.3.2.4. 1. Development Tools

The two most used tools for the development are LonWorks tools, namely NodeBuilder

and LonMaker. The NodeBuilder Development Tool is available from Echelon, and

according to them, "provides an integrated hardware and software development

environment running on an PC-compatible host computer. The tool includes components

required for the rapid development of Lon Works devices" [45]. NodeBuilder is a device

level development tool that allows to program and debug individual Lon Works devices. It

mainly consists of a wizard that assists developers in defining devices templates, a text

editor for creating Neuron C source files, a cross-compiler for creating Neuron Chip

object code, a linker to build final applications from object code and various libraries, and

finally a cross-debugger that helps developers debugging an application running on a

connected Neuron device.

As far as the modification of the AUV is concerned, we mainly use NodeBuilder to

compile the Neuron C code that is the source of Neuron device application. Then it builds

the application so that it can be loaded in a specific type of node defined by its template.

A template essentially lists the various memory segments, along with their size and

address, as well as other information such as neuron processor used, clock frequency,

type of channel and transceiver.

The LonMaker Integration Tool is also available from Echelon, and according to them,

"is a multipurpose LonWorks network engineering tool that runs on a PC under the

Windows OS and uses Visio as a graphical interface" [50]. It essentially consists of:

- A network design tool that allows the design of a network, with or without being

connected to it.

56

- A network installation tool that allows an off-site designed network to be installed.

The engineered device definitions are associated with their corresponding physical

devices, which can then be managed in various ways (load, reset, browse ...).

- A network documentation tool. The Visio based graphical interface creates a drawing

that accurately represents the network, and can thus be used for documentation.

- A network maintenance tool that allows the devices, routers, channels or subsystems to

be modified, replaced and tested to support system maintenance.

Using the graphical interface, we add nodes to the network. If the computer is actually

connected to the network, it is then possible to load an application into the device

(provided that the memory segment for the application is Flash or EEPROM-based). Then

the device can be "winked" in order to check the communication. A few other test

methods are available. Adding a functional block related to a device, other management

possibilities are offered, especially to browse in real time the network variables defined

for that device, which is very useful during the development phase, particularly in terms

of timing debugging. Many other features available on NodeBuilder and LonMaker are

not described here. The reader interested in detailed explanations related to these tools

should refer to Echelon documentation such as [43], [45], [50]. Various other tools are

necessary, among which many of them do not need to be named here. Nevertheless, a few

other tools are mandatory, namely the WSI compiler, the BP PROM burner and the

Watcom C compiler. The WSI compiler is used to translate or "compile" an output file of

NodeBuilder into a bitstream file that can be transmitted to a Programmable Logic Device

(PLD). In our case, we need it for programming the UV(E)PROM used on PSGIO Neuron

devices. The BP prom burner is used with the above to actually program the PROM of a

57

PSGlO with a bitstream. It drives a PROM burner, which is basically a mounting adapter

for the PROM, and a logical circuitry that places the PROM in programing mode, and

counts the address to which each byte is to be written. The Watcom C QNX-based

compiler is used to compile and build the C language Main Control software. Not mu~h

knowledge about this tool is required for common development, since the

OEX-C/Morpheus software comes with a number of makefiles that help the developer

building the application.

11.3.2.4.2. Monitoring Tools

The monitoring tools mostly used for development and pre-mission check are the

Monitor, the LonDaemonDiag, MissionCheck and ReadyMission tools.

The Monitor client is a tool written in Python programming language, that enables a

computer connected to the AUV through TCPIIP sockets to browse and edit the content

of any shared memory variable. On the vehicle side, a monServer daemon attached to the

shared memory handles the request coming through TCPIIP for browsing or updating a

particular variable. On any computer, a TCPIIP client connects to the monServer and,

through a menu-based interface, allows the operator to browse variables previously listed

in text files.

The LonDaemonDiag utility, developed by the AUV Laboratory, provides network

management and diagnostic possibilities. It is related to the LonDaemon processes, which

handle the LonTalk communications between the main computer and the network.

LonDaemonDiag, as a diagnostic tool, allows the operator to list and browse the nodes

connected on the network, to display and edit the NV s, and perform basic operation such

58

as reseting a node. As a management tool, it allows the developer to bind the network,

that is to logically connect each NV to its writers and readers nodes. For more details

about the LonDaemonDiag tool, refer to [41].

The MissionCheck tool is a utility that performs various tests on the vehicle. It exercises

and monitors all the actuators and sensors of the vehicle. The following actions are

performed:

- Check for errors flagged by any node on the network.

- Check the health monitoring devices and report summarized informations. If the health

information for a node is not updated a warning is issued.

- Test each actuator, by sending commands and checking their executions. An error is

reported whenever a command is not satisfactorily executed.

- Test each sensor, and report the most recent readings.

- Test the logger. Scan the lgr.in file and compare it to the shared memory. Return a

warning in case of syntax error, and return the number of variables to be logged.

The ReadyMission utility simulates the mission currently defined in the mis_plan input

file. The file is parsed and corresponding navigation commands are generated. Then the

response and position of the vehicle are estimated. The results are stored for post

processing, and any errors are logged. The output generated by this utility is analyzed

with a Matlab script that displays important data, allowing the developer to check that the

mission will be performed as expected.

59

11.3.2.4.3. Processing Tools

A certain number of processing tools have been developed, ranging from fairly simple,

such as FfP macros, to much complex, such as post-mission data extraction. A few FfP

macros have been developed to simplify common FfP operations. Among others, these

macros are used to send mission files to the vehicle, get output files or reports generated

by pre-mission checks, and so on. Various Matlab scripts exist to perform common data

display and analysis on the data extracted from the vehicle logger. The extract tool

extracts selected variables from a mission logger file using various available options. For

post-processing, the operator can extract any combination of variables history. For

commonly extracted data sets, scripts are written that call the extract utility with the

required parameters. In addition to the data, headers with variables name and unit are also

created. For more details about the extract tool, refer to [41].

60

Ill. Upgrading the Ocean Explorer

With the knowledge summarized in the previous chapter, the Ocean Explorer D was built

as an upgrade of the existing vehicles. Once again, the goal was to restore an existing

OEX-B and improve it by addition of the more convenient high-level programming and

operation interface used on both the OEX-C and the Morpheus. This choice makes all

FAU vehicles have the same Operating System (OS), facilitating common operating

procedures. Specific steps to reach this goal were:

- Implementation of a new computer on an OEX-B,

- Installation of the OEX-C/Morpheus main computer OS and software,

- Interfacing of the main computer and distributed nodes softwares,

- Tests and various fixes.

Each of these steps is summarized in this chapter.

Ill. 1. Implementation of a New Computer

As explained before, the main computer software we wanted to install runs on the QNX

RTOS, available for PC platforms. Therefore, the Motorola-based computer had to be

replaced by one which was PC compatible. Moreover, the choice was dictated by the need

to reduce the power requirements. Finally, it is better to use a proven technology on

which the software to run has already been tested. For these reasons, the same computer

61

as on the OEX-C/Morpheus, a Pentium-based computer in a PC104 form factor, was

selected in order to take advantage of the PC104 architecture, the peripherals were chosen

in that form factor whenever possible. The essential peripherals are: hard-drive, MIP

LonTalk adapter, and Ethernet controller. Moreover, for first step developments, it is

desirable to have a console (keyboard and display) directly connected to the computer, as

well as a floppy drive. The chosen parts are listed in Table 2:

Component Manufacturer Reference Comments

Motherboard Electronic CPUT6VEF PC104, 133MHz Pentium MMX,
Equipment LCDNGA display controller,
Production & 64Mb SDRAM, Intel 82559 fast
Distribution Ethernet 10/lOOBaseT controller,
GmbH(EEPD) hard-drive and floppy controllers.

Hard Drive Toshiba MK3017GAP 30Gb, 2.5in, AT A interface.

LonTalkMIP IEC Intelligent MIP-P50 PC104
interface Technologies Parallel Adapter

Miscellaneous EEPDGmbH Cable kit for Cables and connectors for VGA,
PC104 keyboard, floppy, and so on.

Table 2: Main Computer Components

The main computer itself was easily assembled, since the PC 104 cards stack one on top

of the other, using the PC104 bus for communication. The hard-drive, being stand-alone,

was placed on top of the stack, attached to a PC104-size mounting board. The LonTalk

MIP board was configured so that its base address is set to (360)16 (360 hexadecimal), and

it uses the interruption number 5. Every peripheral 110 was wired to a standard connector

accessible from outside the stack for convenience.

The computer then had to be integrated in the main pressure vessel, both mechanically

and electrically. As described in 11.3.1.1.2, that pressure vessel mainly consists of a VME

backplane. A new PC104/VME adapter was designed by the Electronics Laboratory. It

62

consists of a standard VME card on which the whole stack, as well as its 110 connectors,

are attached. This adapter also provides the computer with power and LonTalk, which are

the only lines it has to share with the backplane. The integration of the new computer in

the main pressure vessel was completed by connecting its Ethernet port to the embedded

4-channellOBaseT hub.

Figure 19 summarizes the integration of the new computer stack in the main pressure

vessel.

BAO<PLANE

Power, LonWorks

* .,.Power ...
.... ...

PC104
Elhemet Hard Drive PC104 Bus PC104 CPU ..,. E-Net .. PC104

D 4 Ch Hub ro 2.5" Parallel 266M HZ, VGA Adapter
10BaseT e IDE LDnWorks 1 Q/100 ENet Card

ID
OJ Adapter 64MB DRAM .,.Display
2

Keyboard

""" ...
• .. ·~ .. ~~ ~ .

~ (J)
I1J I1J

(J) t: (J)

c c I1J :::! .._ .._
E :::! 0 ID I1J I1J ID 5 .r::: .r::: Q) w ~ ~

(J)r::: w c 0 oJ s• w w
0 _g w c ... u D ro .._ u Q) ro c :::> Q) I1J c

~
.._ [l_ .r::: c
I1J ()

... c c ... w 0 0 ro X () ()
[l_ w :::>

[l_ » E
() ro ro a. 0

(J) .0

0. , ~
Figure 19: Integration of the New Main Computer Stack

63

111.2. Operating System and Software Modifications

This part involved installation of the QNX OS and the OEX-C high-level software, and

the task of interfacing between the main computer and the distributed nodes softwares.

111.2.1. Operating System and High-Level Software Installation

Before installing the OS, we first configured the Basic Input Output System (BIOS) of the

computer: we mainly disabled the Plug-and-Play (PnP) controller, set various parameters,

and configured the Hard Drive (HD) controller. The HD we mounted can be used in two

addressing modes: either classical geometric addressing, or Logical Block Addressing

(LBA) mode. The geometric addressing mode, which is the only one available with the

selected version of the OS, was chosen. This allows the HD to be configured to a 8.4Gb

capacity. The BIOS was configured for that mode. We installed the OS, formatted the HD

to create a primary bootable QNX partition, and mounted it as the filesystem root. Then

we installed the QNX4.25 patch D that fixes several bugs, and a new Ethernet controller

driver for the integrated Intel 82559 fast Ethernet chip.

To enable FfP, TELNET and RLOGIN access, we installed the TCPIIP 4.23 support, and

set the Hostname and Internet Protocol (IP) address for the computer. Various definition

files were modified to properly configure the TCPIIP package. This mainly consisted of

the configuration of the host name resolver, settings for the Domain Name Servers

(DNSs) and gateways, and various restrictions for distant access.

Next, we added a few tools such as Sysmon (a system resources monitor), the tcsh shell,

the Watcom C compiler and libraries, and the Mkdep utility (that forces rescanning of all

files dependencies when building a project code). We also installed and configured the

64

driver for the Lon Works MIP adapter.

Finally, we changed the system configuration and initialization, to automatically load the

Network, Pipe and Queue managers, and start the TCPIIP socket processes upon startup.

We also changed the Process Manager configuration in order to enable the use of up to

600 semaphores. It was thus necessary to rebuild the kernel.

The OS was then ready for the installation of the software. We created a directory

structure with three directories for the AUV software, one for the executable code, one

for the OEX-C software source, and one where the source would be moved as it is

integrated. We then copied the software from the OEX-C repository. We finally modified

the system initialization so as to perform a vehicle initialization whenever the computer

starts. This mainly launches the required daemon processes, to have the AUV ready to

start a mission every time the computer is powered up.

111.2.2. Software Integration

Then, we had, physically connected together, all the Neuron nodes with their application,

and the new main computer with its software. We had to integrate the whole software

together. This integration step is relatively complex to describe, for it was repetitive, and

required numerous tests and fixes after a few modifications were done. Therefore, a basic

description of the integration task is given, followed by a thorough, yet simple, example

of the interfacing of a Neuron node. Then a few more complex tasks are described based

on another specific example. Finally, some other modifications undertaken to bring some

improvements to the system are summarized.

65

111.2.2.1. General Method

The following method was used for the software integration: First of all, we identified all

the nodes on the network, and tried to communicate with them. Then we planned the

Network Variables (NVs) interface so that the declarations on each side (all nodes and

main computer) matched. Once this was done, the interface was codded: First the Neuron

nodes softwares were modified to define the correct NV s, and configure each node in a

state suitable for automatic binding with LonDaemonDiag. Then the interface was

defined on the main computer side, through modification of the LonDaemonNv NV table

and associated functions, and the declaration of the corresponding shared memory

variables. When necessary, a function to convert the raw data coming from the network

was added to the processData process. In such a case, the additional shared memory

variables to store the converted data were defined. Then, the network was bound, defining

the binding information table, and using the LonDaemonDiag tool. Finally, the shared

memory variables created or modified were reviewed in the logger input file and monitor

variables lists to ensure that the correct name was used for each variable. Throughout this

integration process, many tests were performed whenever a single modification was

completed.

The software integration was done in several steps. First, we tried to have the whole main

pressure vessel working. After that, we added the DVL, GPS antenna and dropweight,

then the batteries and control box, and finally, the thruster and fins.

66

111.2.2.2. An Example of Software Integration Tasks: Integration
of the GPS

To explain the software integration tasks, the integration of the GPS is given as an

example. This node is chosen because it is relatively simple to implement. The GPS

essentially communicates with the main computer to provide GPS fix information.

The GPS node on the OEX embeds an application that mainly parses the GPS data

coming through a serial port, and sets accordingly several fields of a network variable.

Moreover, the application listens to the network for update of a command NV that tells

the node to perform a few specific operations such as changing the configuration of the

GPS or polling a data set. On the other side, the main computer needs to get the raw data

from the GPS and convert it into a convenient format. It also has to set the required

command codes to control the GPS. This data flow is summarized in Figure 20.

Main Computer

High Level sonware

• I

I I
I I

I I
I + Neuron Node

GPS GPS ,_._. Converted Data Command\ lonWorks r Command Formatting \ RS232 GPS
Processing

GPS ,J \..._ Data Parsing ~
..._._..

Receiver

Raw Data

Figure 20: Simplified GPS Data Flow Chart

We had to bring together the interface between both sides. The first step was to identify

the node on the network. We located the GPS node board in the VME crate and checked

its connections. Then we identified the type of Neuron device, in our case a PSG 10, and

located its service pin, a switch that makes the Neuron node send an identification

67

message on the network. Using the LonMaker tool on a development computer attached

to the network, a new device was added on the network drawing. Its properties were set to

the best of our knowledge (type of node, transceiver, and so on). When we depressed the

service pin, LonMaker identified various properties of the node, especially the Neuron

IDentification (NID), which uniquely identifies the node on the network. Then the second

step was to clearly plan the variable interface. The network variables needed are:

- A multi-fields (structure) NV sent by the GPS to the main computer to communicate

the raw GPS fix data. This NV is also sent to the control box node so that it is able to

display the GPS status (GPS, DGPS or nothing at all) through a defined LED pattern.

- A simple (integer) code issued by the main computer to command the GPS to the

various configurations it can be set.

- Moreover, another simple variable is used by the main computer for controlling the

antenna motor to rise/lower the antenna. This NV is also monitored by the GPS so that

it knows when the antenna is supposed to be up or down, indicating when GPS signals

are likely to be received.

On the main computer side, these NVs are to be matched with shared memory variables.

Two "command" and one "raw incoming data" variables are required. Moreover, it is

necessary to process the raw GPS data and convert it into a convenient format. This is

done by ProcessData, which requires another shared memory variable to store the

converted data.

All the variables were named according to the naming conventions in use in the

OEX-C/Morpheus software. The overall variable needs and logical connections are

summarized in Figure 21.

68

~------------------------------------=-=-:.,~~~-~·-~-~-~-~.~-~~~~~~~~.:.:.:.~.~~~
1 Control 1 GPS Node 1 • Main Computer

High Level Software I
r------,,-----;--------r------r---. -----
ProcessData I Monitor

Process +
1+---+GpsCnv

gpsCommandOut AntMotor ' ~
CommandOut ~

'------ Gpsfixln Logger

Shared
~----~~M~e~m~owL---~----~------r---~ ____

I
lonDaemon 1

Process 1

+
I,

gpsfrx

I

1
1

1 Antenna 1
I Box Node I I Motor I

: : : Node 1
I I 1 I
1 I I I

I I I' I 4 I + t t o I ····,-··· I l ,
'--g;sfix gpsCmd antMotorCmd "" '\/ /'-. /'\

... ~... /"7rCmd

h , t I LonWorks

Figure 21: GPS Variables and Logical Connections Synoptic Diagram

Once the integration task was thoroughly planned, we modified the node software. First,

we had to allow the automatic binding of the network using the LonDaemonDiag tool.

This was done through the addition of two preprocessor directives (or "pragmas") in the

source file:

- #pragma set_node_sd_string "GPS"

- #pragma enable_sd_nv _names

The first pragma allows the node to broadcast a self-documentation (sd) string on the

network, that can be used instead of the NID to identify the node by its name. The second

enables the node to provide the name of the NV s in addition to their identification code.

Then, the NV interface was redefined according to our plan (Table 3).

69

NV Comments
Type Name

Network output GPS_FIX<1l gpsFix Output GPS data (latitude, longitude, ...)

Network input long integer gpsCmd Set mode or request data form GPS

Network input long integer antMotorCmd Indicate when the antenna is risen/lowered

Table 3: Network Variables Interface for the GPS Node

(I) GPS_FIX is a custom defined type. It consists of a structure of 14 integers to store each piece of data

forming a GPS fix.

Then we went through the node source code to verify it, and especially check the

consistency of the constants or codes that are supposed to be defined in other files. Once

everything had been verified, the source code was recompiled and the application was

built, both using NodeBuilder. Then, using the WSI compiler and the BP PROM burner, a

new UVPROM was burnt and placed in the Neuron device. The device was replaced in

the LonMaker drawing so that the tool takes the Neuron node modifications into account,

and the node was rapidly tested. Finally, using LonDaemonDiag, we checked that the

node was seen on the network from the main computer side, and was correctly identified

by both its NID and self-documentation name. We also checked that the NVs were

correctly seen by the main computer.

The next step was to logically connect the GPS node with the other nodes it has to

communicate with. Here, as described previously, the node principally communicates

with the main computer host application for commands and data exchange. It also

somehow communicates with the antenna motor node, since both devices receive the

command to rise the antenna when a GPS fix is to be taken. The GPS node also

communicates with the control box node, since this one monitors the GPS fix NV in

order to display the GPS status. The logical connections are defined in the

70

BINDINFO.TBL table (Table 4), in which each variable is listed, with its readers and

writers. This binding information table file is used as an input for the LonDaemonDiag

utility when it performs the binding.

NV Name Writer(s) Reader(s)

gpsFix GPS Host application, control box

gpsCmd Host application GPS

antMotorCmd Host application Antenna motor, GPS

Table 4: Binding Information Table for GPS Network Variables

Then we had to write/check the interface of the antenna motor, the control box and host

application. For the antenna motor and control box, it was just necessary to check that the

incoming NVs antMotorCmd and gpsFix were correctly defined, with the same names

and types, and used as expected. Especially, we checked that both the GPS and antenna

motor nodes had the same convention for the codes used to rise or lower the antenna.

Then came the interface with the host application. The first thing to do was to enable the

main computer to gain access to the GPS NV s through LonDaemon. In the

LondaemonNv process, the NVs table (Table 5) was modified to declare these GPS NVs,

specify various properties and list the addresses of the functions used to check, update

and poll each variable.

{"NV name", Size, Direction, Acknowledgment,
Update function, Poll function, Check function},

{"gpsFix", 28, NV_IN, UNACKD,
LdN v UpdateGpsFix, LdNvPollGpsFix, NULL },

{"gpsCmd", 2, NV_OUT, ACKD,
NULL, LdNvPollGpsCommand, LdNvCheckGpsCommand},

{ "antMotorCmd", 2, NV_OUT, UNACKD,
NULL, LdNvPollAntMotorCmd, LdNvCheckAntMotorCmd},

Table 5: LonDaemonNv Table Section for GPS Network Variables

71

The corresponding functions were then declared and written, which is not detailed here.

To summarize, these functions check for update of NV s or shared memory variables,

perform the required format manipulations (swapping Least and Most Significant Bytes

(LSB/MSB)) and synchronize copies of variables between network and shared memory.

The corresponding shared memory variables were created to store the copy of each NV

(Table 6).

Name Unit Type Initialization Comment Corresponding
NV

GpsFixin nfa<l) nfa<Il nJaOl GPS data gpsFix

gpsCommandOut "n/a"<2l integer 0 0: Off, gpsCmd
1: On,
2: Fix,
3: Idle ...

AntMotorCommandOut "n/a"<2l integer 0 0: Nothing, AntMotorCmd
1: Down,
2:Up.

Table 6: Shared Memory Variables Declaration for raw GPS Variables

(1) The variable GpsFix1n is a structure of 14 fields, not detailed here. For that reason, the unit, type and

initialization value are reported here as nla, although these are set for each field of the structure in the

software.

(2) Here, "nla" means that there really is no unit for these variables, and that is the information that is set

in the software.

At that point, the NVs were interfaced with the shared memory. To send a command to

the GPS, it is only necessary to write the required code value in the shared memory

variable. But it was not that simple for the data coming from the GPS. GPS-fix data is

written in shared memory using a format that is convenient for the network

communication, but not for direct use in the main computer software. It is received in

several pieces giving the latitude and longitude in degrees, minutes and fractions of

minutes, and so on. Moreover, all variables are integers only. In order to have this

72

information represented in a convenient format, it is necessary to process the data and

perform the required conversion. This task, among others, is handled by processData, in

which a piece of code was written so as to perform the tasks summarized hereafter

(Figure 22). This also gives an example of the kind of conversion performed in

processData.

73

From
Shared Memory

~

To
Shared Memory

GpsFixln: hours, mins, sees, seesFraction
status, hdop10,
latd, latm, latmFraction
longd, longm, longmFraction •••

All integers

latd(cnv)=latd(in)
longd(cnv)=longd(in)
hdop=hdop10/10
I atm(cnv)=l atm (in)+ I atm F ra cti on /10000
lo ngm(cnv)= lo n gm (in)+lo n g m Fra cti o n/1 0000
hours(cnv)=hours(in)
mins(cnv)=mins(in)
sees(cnv)=sees(in)+seesFraction/100
status(cnv)=status(i n)

hours, mins, sees,
ns, latd, latm, ew, longd, longm,
status, hdop

Fields are integers, characters or
floating point numbers as

necessaJ)I

(in) : .-aw data
(cnv): converted

data

Figure 22: GPS Data Processing and Conversion Algorithm Summary

74

The corresponding shared memory variable where the processed data is to be written was

then declared in the shared memory definition (Table 7).

Name Unit Type Initialization Comment

GpsCnv nJa<I> nJaO> nfa<0 Converted GPS data

Table 7: Shared Memory Variables Declaration for Converted GPS Variables

(1) The variable GpsCnv is a structure of 11 .fields, not detailed here. For that reason, the unit, type and

initialization value are reported here as n/a, although these are set for each field of the structure in the

software.

The integration of the GPS was then finished. It was just necessary to check that every

process that asks for an access to the GPS variables in shared memory is looking for the

right variables and is not using different names. Finally, the names of the shared memory

variables were modified or added in the logger input file (Table 8).

Shared Memory Log Log Comment
Variable Name Frequency Condition

GpsFixln 1Hz Change Most fields are not actually logged0 ><2>

gpsCommandOut 1Hz Change Not actually logged<1>

AntMotorCommandOut 1Hz Change Not actually logged<1>

GpsCnv 8Hz Update Some fields are not actually logged<1><2>

Table 8: Logger Input File Section for GPS Variables

(1) Usually, all variables are listed in the logger input file. Once tested, the variables that are not essential

to log are commented but kept in the file so that any required modification of the logger configuration

is easier.

(2) For complex variables made of several fields, each field is considered as a single variable. Therefore,

some fields can be logged while some other not, or the logging frequencies and conditions can be

different among the fields of a same structure.

The integration was approximately as described above for most of the nodes.

Nevertheless, the integration of some nodes was more difficult either because:

- The data received from some sensors require more complex processing. That is the

75

case for instance for the DVL, whose data are processed with that describing the AUV

attitude and that coming from the CTD, to provide reliable information to the

navigator. In such cases, the data coming from the network is interfaced with the

shared memory through LonDaemon as usual, but processData makes a more complex

processing, using several shared memory variables, to convert the data to a convenient

and meaningful representation.

- The nodes used on the OEX-D are significantly different from what is used on the

OEX-C, therefore, more software rewrites were required. That was the case for

instance for the batteries, which are using different nodes and are managed differently

on each version of the OEX, or the control box, which doesn't exist on the OEX-C. In

such cases, some modifications of the nodes applications were required, and the

integration with the high-level software was a little more complex.

111.2.2.3. A More Thorough Example

A more thorough example can be given with the integration of the batteries, for which

more software modifications were required. The main reason is that, where the OEX-D

(as well as the OEX-C and Morpheus) now uses the LonDaemonDiag utility to bind the

network, that of the OEX-B was bound using the LonBuilder tool. Because binding the

network with LonBuilder was a time consuming process, the binding was usually not

modified on the fly. Nevertheless, it was necessary to be able to add or exchange batteries

depending on specific mission needs. But it was, and is still, necessary that a node, the

control box for instance, be able to communicate with any battery on the network. In

order not to have to rebind the whole network every time batteries are exchanged or

76

added, communication had to be done without having to a priori know the number of

batteries and each battery Neuron ID (NID). To do so, explicit messaging as well as some

other features not described here were used. Concerning the OEX-D, since explicit

messaging is complex and not managed by LonDaemonDiag, it was decided to use

classical NV s instead. Doing so, when batteries are exchanged or added, it is necessary to

bind the network again, which only takes a couple of minutes with LonDaemonDiag.

Thus it was necessary to modify the application code of the batteries as well as the control

box and rewrite the appropriate software interface on the main computer side. All explicit

messages were removed and replaced by one simple variable to tum on or off all the

batteries, and two variables per battery to report battery information and health. When the

vehicle is turned on through the control box, the battery command NV is set to ON, and

then each battery can decide to tum on or off depending on its state and that of the bus.

The other difficulty was that at least eight batteries are to be used on the vehicle. Every

battery runs the same application, but needs to be uniquely identified so that the main

computer is able to store each battery information. It is impossible to use the neuron self

documentation name, since this attribute, defined in the neuron application, is the same

for every battery. But when the application of a node is loaded, it is possible to set an

attribute called "location" identifier, which is then specific to an association

node-application. It can thus be used to identify a specific battery. The neuron code was

modified so that each node application retrieves its location ID, and uses it in network

communication. Battery information and battery health NV s, that have to be specific to a

single battery, were modified so as to be some structures in which one of the fields is a

copy of that location ID. This method is summarized in Figure 23.

77

Only one battery node application source file

#pragma set_node_sd_string ''Battery'' Application building

NodeBuilder
Only one battery
aplication built

r--------------,r----,-------1....-· ••
Node Loading Node Loading

•••

L----======~_jl..._ ____ • • •
LonWorks

Figure 23: Multiple Batteries with one Single Application

Once the neuron software was ready, and the required modifications had been done in the

control box node (that communicates with the batteries), the batteries were interfaced

with the main computer using the same procedure as described in the previous example of

the GPS. The batteries NVs were added in the BINDINFO.TBL table, each NV was

added in the lonDaemonNv table, along with the corresponding functions, the shared

memory variables for raw data were created, raw data conversion functions were

reviewed in processData, and the shared memory variables to store the conversion results

were created.

Once the batteries had been integrated with the vehicle software itself, a few tools had to

be modified. The most significant modification was made in the missionCheck tool. In

78

this utility, run before every miSSIOn, a procedure checks the state of each battery.

MissionCheck was supposed, on the OEX-C and Morpheus, to display for each battery its

location ID, state, voltage, current going out, current coming in during charging, total

energy available, used, and remaining. But on the OEX-D, the batteries are not equipped

to measure the current coming in during charging. As it is impossible to display that

value, the corresponding field was removed from the display. But moreover, without

measuring the current input, the energy information field cannot be updated during

charging, which is critical. Each battery itself reports its energy available and used based

on the current output history since last reset. But it was necessary to take into account the

charging. The missionCheck utility was modified so that each time it is run, it checks for

batteries reporting a "FULL" state, for which the energy used field is non-zero. For each

such battery, it asks the operator if he wants to reset the energy of that battery. In case the

answer is yes, that information has to be sent to the corresponding battery. A new NV was

then added to send that command. The NV has a field indicating which battery is the

target of the command. The neuron code for the batteries was modified so that when an

update occurs on the reset energy NV, the node compares the target ID in the NV with its

own ID, and if they match, it resets its energy used to zero, and energy available to a

predefined constant. This NV also had to be integrated in the shared memory,

lonDaemonNv and BINDINFO.TBL in the manner previously described for all other

NVs. This battery energy gauge reset procedure is summarized in Figure 24.

79

Mission Check

Get info for
Battery IA;index) in
shared memory
and display it

Get state of
Battery IA;index) in ~ - - ...,
shared memory

N

Display
''Battery IA;index) FULL
Reset?"

\

\
\
\
\
\

' l
I
I

...----..J.....-..,._-..., I
Set variable ResetBsttery. 1
T arget=index
Reset= TRUE

Battery Application

,..

0 • • •

Process Flow

- - - - Data Flow

Figure 24: Batteries Energy Gauge Reset from MissionCheck

As usual, the variables list in the input files for the logger and monitor were modified to

match the newly defined variables. That completed the integration of the batteries.

80

111.2.2.4. Other Software Modifications

Numerous other tasks specific to a node or a piece of code were undertaken, but their

description is beyond the scope of this chapter. The purpose here is only to give an

overview of the methods used. In addition to the integration task described so far, a few

improvements or fixes of the software were performed when, while interfacing some

pieces of code, some bugs or ways of improvements were discovered. In some cases,

these modifications were also added to the Morpheus software.

One of the major improvements is that added to perform a clean shutdown of the main

computer. The way it worked before on each of the OEX and Morpheus was that

whenever the on/off switch on the control box or console was activated, two NVs were

set. The first one was directed towards the MainHealth so that it turned off the power to

the main computer. After a delay, the second one, which on the OEX-B was actually an

explicit message as explained before, was sent towards the batteries to tum them off. The

problem with that procedure is that it performed a hard power shutdown on the main

computer. The computer was thus unable to terminate the current processes, close the

open files and so on. This was likely to create some errors on the hard drive, mainly on

the files that were being modified. A simple, yet significant improvement was brought to

that procedure: the NV sent to the MainHealth to tum off the computer power supply is

now also sent to the main computer. When it receives the NV update indicating that the

power is to be turned off, a software procedure performs a clean system shutdown,

enabling the computer to properly terminate the current processes and close all open files.

In the MainHealth node application, a delay was added between the reception of the NV

update and the actual power down procedure. Doing so, the computer is properly shut

81

down before the power is turned off. Since this improvement is simple to implement and

is thought to bring a significant enhancement to the long-term reliability of the main

computer, it has also been implemented on the Morpheus.

Another improvement in the OEX-D software was the implementation of the Virtual

RS232 (VRS232). A similar functionality was available on the OEX-B software but it has

now been standardized according to the VRS232 used on both OEX-C and Morpheus. It

allows an operator logged on the main computer to communicate through Lon Works with

sensors having a serial interface, as if the sensors were directly connected to some of the

serial ports on the computer. This is mainly used to test sensors, or configure them using

specific settings not implemented in the neuron node applications. For instance, this is

used every time the compass has to be calibrated: the command to begin/end the internal

calibration is sent through VRS232.

Once the software integration is completed, the AUV can be seen as the distributed

control network given in Figure 25.

Channel1

Figure 25: OEX-D Distributed Control Network

82

Then the vehicle had to undergo detailed tests to ensure its working and identify the

problems that needed to be fixed in order to have a vehicle ready for real missions.

111.3. Tests

Numerous laboratory tests were performed during the development of the OEX-D, but are

not reported here. Once the vehicle was deemed to be ready as far as possible to tell from

laboratory tests, a major pool test was conducted, followed by the first at-sea test.

111.3.1. Pool Test

The objectives of the pool test were first to check the health of the system, then exercise

all sensors and actuators in water, not only to check that everything was working

satisfactorily, but also to derive some information about the functioning, such as power

consumption of some subsystems, or the time required for certain operations. To do so,

three missions were run.

111.3.1.1. Mission Planning

The purpose of the first mission was to log various data while the vehicle was idle. The

mission was then written so that the vehicle did nothing during 10 minutes. The purpose

of the second mission was to exercise the fins. The mission was written so as to

successively command the rudders and stemplanes to various setpoints. The third mission

aimed at exercising the thruster. The mission was written so as to successively command

the thruster from 10% to 100% of the maximum rpm. For all three missions, the logger

was configured to log 438 variables.

83

111.3.1.2. Mission Execution

On October 14th, 2002, these missions were run in the pool at Seatech. Because three of

the batteries had problems and were under investigation, only five batteries were

available for that test. A missionCheck was run to test the whole vehicle, except the

acoustic modem (TSAM) because the vehicle wasn't yet in the water. Everything was

working, and a DGPS fix was reported in about 20 seconds. The vehicle was then

lowered in the water and tighten to the pool walls, while, using a monitor client, we

checked the health variables for indication of leak. Once the vehicle was in the water, a

second full missionCheck was run, that reported a 7% error on the thruster rpm. The three

missions were successively started through TSAM. During the whole test, we kept

monitoring the health variables, in order to be able to abort the mission and take the

vehicle out of the water should a problem occur.

111.3.1.3. Mission Analysis

The missions output files (consoles, and loggers) were analyzed, according to the purpose

of each mission. Various analyses were performed, of which only the significant results

are summarized here.

111.3. 1.3. 1. Mission 1

The console didn't report anything unusual. The health variables were extracted from the

logger file, and are summarized in Table 9.

84

Variable Value Comment

Leak 4087-4096 counts Maximum value, no leak

Humidity 0-8% Where measured

Temperature 25-30 oc Most nodes<1l

35-40 °C Control box, dropweight
and main pressure vessels0 l

Bus voltage 58-55 v Slowly decreasing

Bus current <80mA Most nodes

600mA Main pressure vessel

1.3-30 A Antenna motor<2l

Battery voltage 56-57 v Except battery #1: 0 V(3l

Battery current 300 rnA x 4 batteries Battery #1 of:f<3l

Error 0 None

Table 9: Vehicle Health Data Summary for Mission 1 on 10114102

(1) The control box, dropweight and main pressure vessels were significantly warmer than the other nodes.

(2) There obviously was something wrong in the measurement of the antenna motor node current.

(3) Battery # 1 remained off during the whole mission.

The temperature in the pressure vessels would have to be monitored to ensure that it does

not exceed allowable limits. Concerning the antenna motor, a 1.3 A current was measured

at rest, and when rising/lowering the antenna, the current exceeded 30 A, which is not

realistic. The current at rest should be that consumed by the LTMlO node, a few

milliamperes. There probably was a mistake in a conversion factor. Battery #1 remained

off during the whole mission, which may be explained by the fact that it was significantly

less charged than the other batteries and the power requirements weren't as high as to

require battery #1 to tum on. Otherwise, there may be a malfunction in that battery node.

Then the "mission" variables, describing the AUV state, were analyzed, and are

summarized in Table 10.

85

,------

Variable Value Comment

Relative position (East, North) (0,0)-+ (1,1.4) m Small drift O)

Heading 350-+ 320 ° Slow variation O)

Pitch -1.7- -1.9 ° Static pitch around -1.7° <2)

Roll 7.8- 8.5 ° Static roll around 8° <2)

Depth 9-13 em

Altitude 598-61 em

Table 10: Vehicle State Data Summary for Mission 1 on 10114102

(1) The small, slow variations in position and heading are mainly due to the drift of the A UV before it was

tighten to the pool walls.

(2) There exist a static pitch and roll since the vehicle had not been trimmed before the pool test.

The primary conclusion is that the health of the vehicle seems correct, although the

temperature in a few pressure vessels was a little high. It would be necessary to check that

the battery #1 was off because it wasn't charged enough, and not because of another

problem. The bug in the antenna motor current conversion had to be fixed.

111.3. 1.3.2. Mission 2

The console didn't report anything unusual for mission 2, but we discovered that the

console output for the third mission has been appended at the end of the second mission

console. The health and actuators variables were extracted from the logger. Again,

humidity and leak checks were fine. The temperature kept increasing slowly. The battery

voltages kept decreasing from 56 V to 55.5 V. We then particularly analyzed the data

related to the fins. Whenever a command was sent to a fin, it reacted with a 100-200ms

delay, and then reached the setpoint in 350ms. Small overshoots were sometimes evident,

but there was no steady-state error in the fin position. When exercised, the fins motor

consumed a current below 1.5A. The fin test reported everything working normally.

86

111.3.1.3.3. Mission 3

As said before, there were no console output file, and the output was appended to the

previous mission console. The same health and actuators variables were analyzed. The

temperature in the pressure vessels kept rising. The thruster temperature increased with

the rpm, from 29°C to 32°C. The batteries voltages dropped while the rpm increased,

from 55.9V to 53.4V, and eventually went back to 55V when the thruster stopped. Again,

leak and humidity checks were fine. As far as the actuators are concerned, it is interesting

to look at a comparative plot of the commanded and actual rpm (Figure 26).

Rpm time Htstory

00

--------r---------"--------·r----·---r------·r

: r I Lf.

i: [I T .
40 -------·r-------T -------(------r-------r------

30 --------r----- . --~---------~---------~-------

Oth rrder error) .

I I 0 I I ---.----------.----------.----------.----------.--------. . ' . . .

10 ••• ---------:----------~---------:---------:----------:--------
' . ' . ' ' . .
' ' ' ' ' . ' ' . . .
' ' .
' ' '

0o~~1oo~~m~~3~00--~4~oo--~s~oo~~~~--=7oo
Time (s)

1/0 Characteristic of the rpm Control
100 ~--.=-~Ch=ara~ct~eri~sti=c==~==,-,----:----~

- 4th degree polynomial fitting
.... 1

00 ------------"·-----------·"·---------··r···---------.-.~--?'----

00 ·--------·-·r·----------··r·-------·----r··----·--·.>l···------·-

70 ··--·-------~---------··+·--·--·--·+--··'·----+--·-------·
I I > I
I I ' I

' . ' '
I I ' '
' '' . ' ,, '

' ' " . 1: :1 r.r~·~r
~~ ' r'.f·L

3J ------------~-----,•· --f------ -----+-------------:------------
' . . .
' '

Othiorder error 1

20 ---------·::;·.:::::··--·-:---·---------:-----------·r·---------
1 : : :

10 ····+············+············+············+···········
/ 1 . i i

0o~·-----=20~---4=o----~oo~---=oo~--~1oo
Command rpm (% full speed)

Figure 26: Thruster Test Results

There exists a non-zero steady-state (zeroth order) error, that seems to increase with the

87

rpm. This may be explained by a gain error in the feedback loop of the motor controller.

A saturation is obvious for commands above 70%, which can be explained by the fact

that only five batteries were present. It was thus not possible to deliver enough current for

the thruster to keep increasing rpm. When the actual rpm was around 52%, the current in

the thruster was around 9A. Each of the batteries was delivering 2A, except battery #1,

which was delivering only 1.5A, probably because it was not fully charged. This

confirmed that almost all the current coming from the batteries was consumed by the

thruster. When the batteries were unable to output more current, the thruster saturation

occurred. Aside from this steady-state rpm error, the thruster seems to be working

satisfactorily, although the same kind of test should be performed with all batteries fully

charged.

111.3.1.4. Conclusion

The pool tests showed that:

- The vehicle is healthy, there is no sign of leak or humidity problem. Nevertheless, the

temperature in some pressure vessels was quite high. This may be explained by the

fact that the pool water wasn't cold enough to sink the heat from the pressure vessels.

- Overall, the vehicle seems so far to be working satisfactorily, although a few things

require a fix or more investigation:

- The antenna motor current measure probably has a scaling problem,

- Battery #1 needs to be checked, to ensure that its behavior during that test was

due to a incomplete charge and not a malfunction,

- The thruster has to be tested at high speed when all batteries are available,

88

- The steady-state error problem in the thruster rpm needs to be investigated,

- The problem of a mission console being appended to a previous console file has

to be solved. This problem has been seen from time to time with both OEX-C

and Morpheus.

The antenna motor current scaling problem has been fixed. Indeed, the factor used for the

conversion from NV value to shared memory value was wrong. All available batteries

have been fully charged, and the behavior of battery #1 has been monitored. There didn't

seem to be any problem. The vehicle was then ready for an at-sea test.

111.3.2. At-Sea Test

This experiment was intended to be a general test for the vehicle. Its major capabilities

had to be tested so as to ensure the general working of the vehicle and identify the points

that needed more work. Five missions were planned, so as to test the overall navigation

capability of the vehicle, then more particularly test the depth control, altitude control,

and finally the speed capability in straight run.

111.3.2.1. Mission Planning

The first mission was intended to be a general test of the vehicle. This mission was

planned as a surface mission, for safety reasons, and in order to be able to compare the

vehicle dead-reckoning navigator data with GPS data. The mission was written as a

300m x 300m surface box pattern. The vehicle was controlled to a 3kt speed, was using

homing control on the two first legs, and tracking on the two others. The GPS wasn't used

for navigation, but was logged for later comparison.

89

The second mission was the exact copy of the previous one, except that the vehicle was

controlled with thruster rpm instead of speed. Indeed, some problems had previously

occurred with the speed controller of the Morpheus, which uses a similar high-level

software. Therefore, it was likely that the speed controller would not work here either.

Therefore, only one mission was written with speed control to test its working, and the

other were written with rpm control. So this mission was also a 300m x 300m surface

box, without use of GPS for navigation. The rpm was set to 50% of the full speed, which

was assumed to approximately correspond to a 3kt water speed.

The third mission was planned as a 300m x 300m box pattern with a depth command set

to 3m. The vehicle was controlled to 50% rpm, and was only using tracking control. The

maximum safety depth was set to 15m, and the minimum safety altitude to 3m. The use

of the GPS for navigation, when available, was enabled.

The fourth mission was planned as a 200m x 200m box pattern with an altitude command

set to 5m. The vehicle was controlled to 50% rpm, and was only using tracking. Since the

maximum safety depth was set to 15m, the water column had to be shallower than 20m so

that the vehicle could achieve its mission. The minimum safety altitude, which had to be

less than 5m, was kept to 3m.

The fifth mission was planned as a straight run with a constant true heading command

towards South. The rpm command was increased from 30% to 100%, with a 10%

increment every minute. The depth command was set to 3m.

As usual, GPS fixes were added at the beginning and end of each mission.

90

111.3.2.2. Mission Execution

These five missions were run off Dania Beach on October 16, 2002. After a

missionCheck that reported no error, the vehicle was launched and the first mission was

started through the modem. Right after completion of the GPS fix, the thruster spun at

full speed, then stop, start again and so on. The mission was aborted as it appeared clearly

that the speed controller wasn't working, as had been previously seen with the Morpheus.

The second mission was then started. The vehicle performed its surface box satisfactorily.

It was only noted that on the southbound leg, the vehicle, running leeward, was regularly

submerged by waves. Therefore, it was likely that some GPS fixes would be missing on

that leg. The mission ended normally, and the third mission was started. The vehicle

dove, and, according to the tracking system, it correctly performed its box pattern, while

reporting a depth of 3m through the modem. The vehicle then surfaced, and the fourth

mission was started. The vehicle dove, performed its box pattern around 5m altitude and

surfaced. The last mission was started, and the vehicle dove towards the South for its

speed run. Through the modem, the vehicle reported a measured water speed of 2m/s, but

a saturation occurred, and the following higher rpm command did not make the vehicle

go faster. At the end of the lOOOm run, the vehicle surfaced and was recovered.

111.3.2.3. Mission Analysis

Various analyses were performed on the data obtained from the missions loggers. Only

the important results are summarized here.

91

111.3.2.3. 1. Mission 1

This mission wasn't successful because of the speed controller problem. To get an idea of

the reasons for that failure, certain speed controller related variables were extracted from

what had been logged before the mission was aborted. To summarize our investigations,

we observed:

- During the mission, the speed controller rpm output was oscillating between 5 and

20% of full speed. The actual rpm remained 0 until, after the GPS fix, the autopilot

rpm command was set to 60%. At that point, the actual rpm approximately followed

the oscillating rpm command outputted by the speed controller.

- The measured AUV speed remained between ±0. hn/s during the GPS fix, and

increased to ±0.3m/s when the thruster started spinning.

It is likely that there is a problem in the speed controller, since:

- This problem has previously been seen with the Morpheus,

- The feedback providing the actual AUV speed seems to be working.

Therefore, this is probably a high-level software issue, rather than a software integration

mistake.

111.3.2.3.2. Mission 2

Since this was the first mission at sea, the health data were observed with much attention.

Nothing particular was observed, except a quite high temperature in the main pressure

vessel (33°C) and the control box (37°C). Then the navigation data was analyzed,

comparing the position estimator and the GPS data, in order to estimate how well the

vehicle computed its position by dead-reckoning (Figure 27).

92

AUV position

3.18

3.16
C>

~
<;' 3.14
2 .E
~3.12

~
3.1

3.08

-5.92 -5.9 -5.88 -5.86 -5.84 -5.82 -5.8 -5.78 -5.76
Longitude (min)+80deg

Figure 27: Dead-Reckoning Navigation Compared to GPS Position

The navigation was surprisingly accurate, especially given that the compass had not been

recalibrated. During the whole mission, the difference between the position estimated

with dead-reckoning and the GPS data remained under 4m. As expected, the GPS data on

the southbound leg was of poor quality because of the waves that regularly submerged the

antenna and caused the GPS receiver to lose track of satellites. On the above plot, the

difference in the navigation between tracking and homing control appears clearly,

especially along the East-West legs. Since a significant current was directed towards

North, the vehicle was more likely to drift when crossing that current. On the second leg

(Northwest to Northeast comers), the vehicle was using homing, and although it was

drifting with the current, it was always pointing towards the waypoint, which it eventually

reached after a curved run. On the fourth leg (Southeast to Southwest comers), the

93

vehicle, using tracking, was trying to stay on the direct track joining the previous and next

waypoints. Other interesting information is summarized in Figure 28.

0 200 400

g>~300
~ g> 200
lll ~ 100
I 0~~~~~~~~~~~~~~~~~~~~~~

0 D ~ 0 ~ 1~ 1D 1~ 1~
0~----~----~--~----~----~~--~----~----~~.------,

0

: : : : : : : : - Depth · ------ --~----- ------~--- ------ -~---- ------- ;---------- +------ ---- f-- -------- +--- ---- ---~ - .AJtitude

200 400

· : : ; : - Bathymetry

600

600

800

800
Time (s)

1000 1200

1000 1200

Figure 28: AUV State Summary

1400

1~ 1600

While cruising, the AUV reported a speed of around lrnls. This confirms that the problem

seen previously with the speed controller does not seem to come from a lack of feedback.

We can check that altitude and bathymetry increased as the vehicle went towards the East.

Some little jumps appear in the depth measurement on the southbound leg, since the

vehicle was regularly submerged by waves. A static roll around 10°, and a static pitch

around 2° are evident. The AUV was oscillating a lot because of the waves when it was

idling during GPS fix, but became more stable as it began to move. We can observe more

important oscillations in the pitch readings during the southbound leg. Since the waves

94

were coming from behind, the wave encountering frequency was reduced,and was then

probably approaching the natural frequency of the vehicle. Overall, the mission ran as

expected.

111.3.2.3.3. Mission 3

In this mission, the main concern was the depth control. Again, the health data was

analyzed, and no problem was found. The navigation was satisfactory, and the AUV

correctly performed its box pattern. We then had a closer look at the depth time history

(Figure 29).

Depth vs. Time

0.5 ----- -------~------~-------:-------~--
' I I I
I I I I
I I I I
I I I I

1 .. --- .. - - .. - -~- ---- •! ----- .. -:-- .. --- .. ~--
I I I I
I I I I
I I I I

I I I I

1.5 ------~------£------~-------~-- ---~------
~ ~ : ! --- - - :-- -- : - .- -

'"\.1 I I I

li 2 -~'f-:::--t-------:-------r- ---~------
Q)

0
2.5

3.5

. ' '
' ' ' ___ _, _____ _

'

~M...,..IWI.IMI,._."iN,.--- ~------
' '

4L---~--~--~---L--~--~--~

0 200 400 600 800 1 000 1200 1400
Time (s)

Depth vs. Time

3 --"- ""- IF\-~-- ~--1·- ---~-
' I ~~~~
I I I I

'
' '

-~----~
' '

=a 2.5 -- ~--

Q)

0 ' ' ' ' ' ' ' ' ' '
2 U --- _: ---- : _____ : ---- : ___ -~

240 260 280 300 320 340
Time (s)

Figure 29: AUV Depth during Depth-Controlled Mission

We can observe a lot of jumps, with a significant magnitude. Successions of jumps as

large as ±1m in a few second often occur, which is not realistic at all. Indeed, even if the

vehicle may be able to dive at hnls, it is clearly unable to dive and then climb at such a

high velocity without transition. These jumps were thought to be related to some noise in

the CTD measurements, due to the acoustic modem transmitting nearby, as had

95

previously been observed with the OEX-C. Nevertheless, it seems odd that the jumps did

not occur regularly, with a frequency related to that of the modem transmissions. Besides,

since the vehicle was controlled based on the depth measured form the CTD, it tried to

correct for the measured errors due to the CTD noise. Therefore, the activity of the

stemplanes was increased, and correlated with the CTD noise. This reduced the

smoothness of the trajectory, and increased the power consumption. Otherwise, in the

absence of such noise, the depth controller maintained the AUV within ±15cm of the

commanded depth.

111.3.2.3.4. Mission 4

In this mission, the main concern was the altitude control. Again, the health and

navigation data were analyzed, and no problem was found. We then had a closer look at

the altitude time history (Figure 30).

Q)

"'C
::::0

~
"'C
c:
"' ,..,
~E's
E~ ,..,

..c:
10
(IJ

..c:
Q.
Q)

0

8

-Depth
10 - Bathymetry

-Altitude

0 200 400

-----------~----------. .

600 BOO 1000 1200
Time (s)

Figure 30: AUV Altitude, Depth and Bathymetry during Altitude-Controlled Mission

We can verify that the controller maintained the vehicle within ±1m of the commanded

altitude, and even within ±20cm during the second half of the mission. These lm

96

oscillations between 200 and 400s may be explained by the variations of the seabed while

the vehicle was traveling towards the North. These variations are evidenced in the above

plot of the bathymetry, although this plot must be considered carefully since the

bathymetry estimation is perturbed by the noise in the depth measurements. Since the

seafloor variations were quite fast, the vehicle may have been unable to react quickly

enough to maintain a 5m altitude. However, once the seabed became smoother during the

second half of the mission, the altitude control was much efficient. Overall, the altitude

control worked satisfactorily. We can still observe a lot a jumps in the depth

measurements.

111.3.2.3.5. Mission 5

This mission was a speed test. It is then interesting to look at the vehicle speed and

thruster data (Figure 31).

. ' ' - -------.!----- ---- _,_- -------- t.--------- .!.. -------- -·-- ----- --!.--------I I I 1 I I
I I I 1 I I

I I : 1 I I

o~---~----~------~----~----~----L-~----~

I
<3
Q)
Q)

2

~0

0 100 200 300 400 500 600 700

'
' ' ------ ... --------- -·---------- .. --- ------ .. --------- -·- --------

I I I I I
I I I I I

I I I I

I I I I
I I I I

Time (s)

Figure 31: Speed Test Results (Rpm and Speed Data)

97

-Command
-Actual

- Raw
- Filtered

The steady-state error problem we saw during the pool test still persists. Again, a

saturation occurred because only five batteries out of eight were used. Particularly, the

fastest speed achieved was 2m/s, for a commanded rpm of 90% (achieved: 63%). At that

point, one of the batteries ran out of energy and turned off. The remaining batteries were

then outputting their maximum current, which wasn't enough to maintain a 2m/s speed.

The vehicle slowed down to 1.9m/s, and the following command to increase rpm could

not be satisfied.

Looking at the fins data, we observed a lot of oscillations in their position. The magnitude

of these oscillations increased with speed, until, at full speed, the fins kept going "bang

bang" by as much as 20°. This can be explained by the mission plan we used, in which

the commands given were a 180° heading and a 3m depth, without tolerance. Then the

fins always tried to correct the slightest deviation. Moreover, as noticed before, the

stemplanes activity was increased by the jumps in the depth measurements.

Looking at the attitude angles, we observed that the roll, which was statically around 10°,

decreased towards 1 o as the speed increased. Thus, a vehicle perfectly trimmed would

likely roll by as much as 10° at full speed, probably because of the torque applied by the

water on the blades.

Otherwise, the vehicle almost ran a perfect straight line towards South, only drifting

about 10 meters towards East in a 900m long run, which approximately corresponds to a

0.7° heading error.

98

111.3.2.4. Conclusions

The conclusion of this at-sea test is that, overall, the vehicle performed well. According

to the AUV engineers present during that mission, the OEX-D seems even more robust

than the previous versions of Ocean Explorer. Indeed, the five missions were run

successively with one minute interval without any problems. The vehicle did not abort

any mission by itself, dropping the ballast weight, as had regularly been seen with the

other OEXs. The navigation was surprisingly accurate, even without the compass having

been recalibrated for years.

Aside, there remain a few things to fix or investigate. For instance, the jumps in the CTD

readings, thought to be due to the modem transmitting in its neighborhood have to be

investigated in order to try and find a way to reduce that noise that undoubtedly has an

influence on the actuators activity when the vehicle is controlled on a depth command.

The thruster rpm steady-state error still needs to be fixed, as well as the speed controller.

Another piece of information derived from this experiment is an estimate of the power

consumptions of the vehicle without payload. Based on the three box patterns run, and

considering only the part of the missions when the vehicle was actually cruising (at 2

knots), a mean power consumption of the order of 150W was measured.

99

111.4. Various Fixes and Conclusion

After the development of the vehicle in the lab, a few other fixes were performed based

on observations from the pool test and first at-sea mission. These fixes mainly consisted

of:

- Fixing the antenna motor current reading,

- Trying a way to fix the speed control. It seems that the speed arbiter was not

configured correctly, and thus was unable to perform a speed control. This

configuration has been modified. In order to assess the efficiency of that fix, a speed

test was later conducted, but unfortunately still proved not to be working. This

malfunction is currently under investigation.

- Trying to reduce the jumps in the CTD measurements. To do so, the sensor was

replaced by another of the same model, which had been modified by the Electronics

Laboratory at Seatech so as to implement a lowpass filter designed to reduce the

modem-generated noise.

Overall, the vehicle is safe and efficient. There doesn't seem to be any major software or

electronic issue. The navigator, position estimator and most of the controllers seem to be

working satisfactorily, although the depth controller is not as efficient as it should be, and

no closed-loop speed control is available.

It was then decided that the OEX-D was an operational vehicle, ready to be used for

performing real missions, that would undoubtedly reveal a few other problems to be

solved.

100

IV. Mapping the Thermal Structure of a Water
Column

This chapter describes the experiments in which the OEX-D was used to map the thermal

structure of a water column. Three missions were run in December 2002 and March 2003

off Dania Beach. The scientific goal of these experiments was to observe the structure of

a vertical water slice, mainly around the upper part of the thermocline layer, in terms of

its thermal structure. To this end, the AUV carried a CTD sensor along a predefined

pattern throughout the chosen water slice.

The motivations for these missions were twofold: Firstly, they were intended to gather

measurements to improve our knowledge about the thermal structure of a water slice.

Particularly, the emphasis was on the order of magnitude of the temperature variation

with depth within and outside the thermocline, as well as the variations of the temperature

profile and the thermocline over the horizontal distance. Secondly, the aim was also to

acquire data that, through post-processing, would enable the reconstruction of a

temperature map of a water slice. Such a map of the temperature of a water slice can later

be used as an input for a thermocline tracking simulation. Because of the primary goal of

the thesis, we were mainly interested in acquiring temperature. Nevertheless we also

wanted to measure the water current profile in order to estimate how the variation of the

current may be related to the thermocline.

101

IV.1. Requirements and Assumptions

In order to perform exhaustive sampling, temperature data was acquired with the OEX-D.

Indeed, as already discussed in Chapters 1 and 2.1.4, the use of an AUV for such

purposes is more efficient than several shipboard CTD casts. To enable thorough

sampling of a vertical water slice while allowing the AUV to travel in an efficient way,

the vehicle was programmed to perform a "vertical lawn-mower pattern" consisting of

several horizontal legs vertically spaced.

To reduce the mission time, in order to prevent temporal variations from being mistaken

for spatial variations, the AUV depth variation should be monotonic. The AUV should

thus either run the deepest leg first, followed by subsequent shallower legs, or the other

way around. The leg separation distance is also a parameter influencing both the spatial

resolution of the survey and the mission duration.

In order to enhance the compromise between resolution and instantaneousness of the

survey, the pattern should be finalized only when more information about the water

column is available.

The survey location should be chosen where a significant thermocline is likely to be

found. Moreover, the mission path extent should be oriented so that the horizontal

variation of. the temperature profile is maximized. A water slice oriented along the

East-West direction, across the Florida Current was selected. The reason for this choice

are threefold: Firstly, previous experiments, such as the "Cross-Shelf CTD experiments",

have shown that no significant thermocline was likely to be found closer to the shore. On

the other hand, at that distance, a thermocline, shallow enough for the AUV to sample it,

102

is likely to be found. Secondly, at that location, the seafloor variation is important, which

is believed to have a significant influence on the horizontal variation of the temperature

profile. In order to see important variations in the seafloor, and hence possibly in the

thermocline, the survey legs have to be sufficiently long, say lOOOm. Finally, it is of

interest to run across the Florida Current, since, where the current is significantly strong,

some variations of the current profile related to the thermocline may more probably be

observed.

In order to map a single water slice, the AUV has to remain in the same water column

throughout the whole mission. Assuming that the Florida Current is mainly oriented

towards North, and considering the current variations to be sufficiently small along the

East-West direction, the vehicle, crossing the current and drifting with it, would remain in

the same water slice.

IV.2. Method of Survey

Based on the goals and requirements described above, the following method of survey

was chosen: The AUV was programmed to run several horizontal lOOOm long legs across

the Florida Current, along the East-West direction. The deepest leg was run first, and then

the AUV depth was reduced for each subsequent leg. In order to maximize the amount of

information obtained from the survey, the parameters, such as number of legs and

separation distance between legs, were decided at the very last moment, based on

knowledge acquired at that time with shipboard CTD casts. Therefore, the AUV mission

had to be written in a way that allows these parameters to be modified on the fly.

103

The data recorded were:

- CTD temperature,

- ADCP current profile,

- 3-Dimensional AUV position (horizontal position from the position estimator, and

depth from the CTD).

- AUV attitude and velocity (to post-process the ADCP data).

Moreover, we also wanted to take advantage of these missions to acquire other data

provided by the sensor payload referenced to as the Turbulence Package, described later.

To enable the Turbulence Package to acquire meaningful data, the water speed of the

AUV should exceed 0.5m/s. A water speed of 1.25m/s was chosen.

In order to ensure that the vehicle remained in the same water slice and drifts with the

current, we had to prevent it from correcting its navigation for any drift it may sense. This

was actually fortunate because, given the mission location, the water column was between

100 and 200m deep. Thus, during most of the mission, the seafloor was out of range of

the DVL, which prevented the vehicle from measuring its ground velocity. Therefore, the

vehicle was only able to estimate its motion with respect to a reference layer of water.

When the vehicle exactly drifted with the water, it measured a zero velocity, and therefore

did not sense the drift and did not try to correct it. But this also means that the horizontal

path of the vehicle was a-priori unknown since was dependent on the current. For this

reason, it was necessary to have a reliable tracking system to determine the absolute

position of the AUV.

The planned mission path, projected along the East-West and vertical directions of the

water slice, is presented in Figure 32. In 3-D referenced to the ground, this pattern would

104

spread horizontally, mainly towards the North, because of the cm;rent.

n legs

IL:.d

1000m
Water de th 125 m Water depth 200m

Figure 32: Vertical Lawn-Mower Pattern

Finally, the mission location was chosen to be in the South Florida Ocean Measurement

Center (SFOMC) range, off Dania Beach, in the vicinity of the South Florida Testing

Facility (SFTF) 600ft deep ADCP, because that range corresponds to the needs described

above, and the STFT ADCP would provide complementary current data. The ADCP is

moored at 26°3.8' N, 80°3.6' W. To remain in its vicinity, the launch point for the AUV

was chosen at 26°3.7'N, 80°4.0'W.

IV.3. December 2002 Missions

The idea was to run two missions in December 2002 within a few days interval in order to

allow appropriate modifications to the mission plan in case of problems revealed by the

first mission, so as to be able to achieve the second one satisfactorily. As described

hereafter, we planned to prepare one mission and run it twice. The data from both

missions were then analyzed separately.

105

IV.3.1. Preparing the Missions

The mission plan for the two missions run in December 2002 was designed according to

the goals and guidelines detailed above. To prepare the mission, the following tasks had

to be performed: payload integration, sensor calibration, pool test and vehicle trimming,

and mission writing.

IV .3.1.1. Payload Integration

For these two missions, the only sensor which was not already a part of the vehicle was

the Turbulence Package, a payload designed by the Center for Hydrodynamics and

Physical Oceanography. Moreover, although the vehicle DVL had been previously

integrated, it was not yet possible to use it as an ADCP to record the water current profile

under the vehicle. A few modifications were required to enable such a use of that

instrument on the AUV.

IV.3. 1. 1. 1. Turbulence Package Integration

The Turbulence Package payload comes as a small cylindrical appendage that sticks out

of the vehicle nose. The cylinder houses the acquisition system that records the data

coming from the sensors mounted on the front end of the cylinder. The package is

powered by a separate battery can. Since the Turbulence Package is self contained, no real

integration with the vehicle was necessary. The sensor package was mounted at the tip of

the vehicle nose. The battery can was secured inside the nose, which also housed a

dropweight and a light strobe.

106

IV.3. 1. 1.2. Enabling the ADCP Mode of the DVL

The DVL itself can be configured to operate as an ADCP that outputs the current profile

data. What needed to be added was the possibility to switch the DVL to water profiling

mode by updating the appropriate shared memory variables from the mission plan, and

record the water profile data in the main computer logger.

Since this DVL had previously been used as an ADCP on an OEX-B, there already was

the code in the Neuron node application that performs the following tasks:

- Read a Lon Works NV command to change the DVL mode to water profiling and send

the appropriate DVL command strings through the serial port,

- Read another NV parameter to set the water bin size for the profiling mode and send

the appropriate DVL command strings thought the serial port,

- Read the water profile data coming from the serial port and translate it into NV s

content to be placed on the network.

What was necessary was to interface these NV s with the main computer shared memory

and logger. This kind of task has been detailed in the previous chapter, and is therefore

not described further here. Once the integration is completed, the water current profile

relative to the AUV, over 16 bins under the vehicle, can be recorded in the logger file.

IV.3.1.2. Sensor Calibration

The sensors used for these missions were the CTD, the DVL and the magnetic compass.

The depth offset of the CTD was measured, and entered in the shared memory

reinitialization file, so that it would be removed from the raw measurements. Possible

offsets in the temperature and conductivity readings are not critical since we are mainly

107

interested in the variations of these quantities.

As far as the DVL is concerned, the only possible calibration is that of the heading sensor.

But the DVL is currently configured to output the data in a frame referenced to the

instrument. The heading sensor of the DVL is not used and thus does not need to be

calibrated.

The vehicle magnetic compass calibration, required to achieve an accurate navigation, is

done in two steps: Firstly, the internal calibration procedure of the sensor is run.

Secondly, a deviation table is computed to correct the sensor output, as detailed in [51].

The vehicle is slowly rotated in different attitudes, so that the internal calibration

procedure can estimate and correct the effects of local magnetic disturbances. Then, to

acquire the data required for the computation of the deviation table, the vehicle is slowly

rotated horizontally while the output from the compass and gyro are logged. Integrating

the gyro readings and comparing them against the compass heading, a deviation table is

built and the residual error is estimated.

IV.3.1.3. Pool Test and Vehicle Trimming

As before any mission, the vehicle was taken to the seawater pool at Seatech for a test and

trimming. The purpose of the pool test is to ensure that the vehicle is safe and operational.

When the vehicle was lowered into the water, its health was monitored during a couple of

minutes to check that there was no leak. Then, a test more specific to the mission needs

was performed. In our case, we had to ensure that the CTD and DVL were working

properly, and that the water current profile was recorded. To do so, we ran a short mission

in the intracoastal waterways, enabling the ADCP mode of the DVL, and logging the

108

CTD and ADCP data. In order to estimate the importance of the modem-related noise on

the CTD measurements, the acoustic modem was configured to request navigation data

every 30 seconds. A quick analysis was performed on the CTD data (Figure 33 and

Table 11).

~::~~~1
0 50 1 00 Time (S) 150 200 250

g:~;~~I\!Wl
0 50 1 00 nme !Sl 150 200 250

Figure 33: CTD Noise Characterization from Pool Test Data

Resolution Min. Max. Mean Range Std. Deviation

Depth (em) ~d=1 3.7 15.3 9.2 11.6 1.7=1.7 ~d

Temperature (°C) ~T=0.001 24.070 24.130 24.120 0.077 0.015=15 ~T

Table 11: CTD Noise Characterization from Pool Test Data

It appeared that the filter that had been added to the CTD efficiently removes the

modem-related noise on the depth channel. Nevertheless, a significant and regular noise

appears every 30 seconds on the temperature measurements, and is undoubtedly caused

by the modem. Because the magnitude of that noise is less than 0.1 °C , and because

reducing that noise would require the filter to be redesigned, with the drawback that it

would reduce the bandwidth of the sensor, it was decided to keep the sensor as is, and to

avoid using the modem during the mission, except when really necessary.

Then the water current profile from the DVUADCP was analyzed. Only the current

109

component along one axis is plotted in Figure 34 as an example.

0
.-..2
E
~4
is
08

0 50

Forward Velocity(m/s)

100 Time (s) 150 200

Figure 34: ADCP Data from Pool Test

250

The velocity is non-zero in the first 3-4 meters, as expected in a 3m deep water column.

The same kind of profile was obtained along the two other axis. This confirmed that the

ADCP output is logged during missions.

The vehicle was then trimmed so that it is as little positively buoyant as possible, and it

has a zero pitch and roll at equilibrium. The aim of this trimming is to ensure that it

requires as little actuators action as possible to have the vehicle on a steady flight, that the

vehicle doesn't sink, and that it surfaces once the dropweight is released. That trimming is

achieved by the use of the appropriate combination of foam and lead.

IV.3.1.4. Writing the Mission

The mission was written based on the considerations discussed in 4.1.

The idea, in order to be able to modify the mission on the fly is to write most of it as a

macro function for which only a small number of parameters would have to be defined.

One way to write such a macro is to use relative waypoints.

A macro "VerticalLeg L Dl D2 D3" was then defined as follows:

110

(1) Go to waypoint L meters East at depth D1,

(2) Go to waypoint 50 meters East at depth D2,

(3) Go to waypoint 50 meters West at depth D2,

(4) Go to waypoint L meters West at depth D2,

(5) Go to waypoint 50 meters West at depth D3,

(6) Go to waypoint 50 meters East at depth D3.

This macro instruction is presented in Figure 35.

(4)

01 - - - -1- - - - ·-*-___ __,.. __ ...;..(1:...) --~

I I I I

L
>K)I ~ 50m ~ 50m

Depth

Figure 35: Macro Instruction "Vertical Leg"

Then programming the whole path mainly consisted of as many calls to that macro as

necessary, with different depth parameters. The mission was written as summarized

below and presented in Figure 36.

(1) Start mission,

(2) Configure DVL for water profiling mode with 1.5m water cells,

(3) Get GPS fix,

(4) Dive to first waypoint L1 meters East, at depth D1 (L1 is computed once D1 is set, so

that the average slope is around 15°),

(5) VerticalLeg 1000m D1 D2 D3,

111

(6) VerticalLeg lOOOm D3 D4 D5,

(7) ...

(8) VerticalLeg lOOOm, Dn-2,Dn-l,Dn,

(9) Get GPS fix (which first makes the vehicle surface),

(10) Stop mission.

(1)(2)(3)

I
On 1

I
On-1 I

On.2 I

I
I

05 I

I
04

03

(4)

(10)

(9)

----~·--(llo-)-==~
(7)

"""")(
(6) _---~

\. .. ::---~)(t----- ______/'

;~'------02 1 t!il -- /:

01
1

k'-----------o--:-------------(' :
l1 ' I I

~ 5Dm ~ !DOOm)I(5Dm)i
Depth

Figure 36: Whole Mission Plan Summary

Finally, the logger input file was checked and modified so that all the required variables

would be logged.

IV .3.2. Miss ion Execution

The first mission, planned to be run on December 13th, 2002, had to be rescheduled

because of malfunction of the AUV thruster. The thruster motor controller board was

replaced and tested, and the mission was rescheduled for December 16th, 2002.

After a thorough test of the AUV, we left the dock and proceeded to the mission location.

We first performed a CTD cast at the easternmost edge of the mission area (26°3.7'N,

80°3.0'W), then went back to the western launch point (26°3.7'N, 80°4.0'W) to perform a

112

second cast. A quick analysis of the data obtained from both CTD casts (Figure 37) gave

the parameters of the mission.

:[
.t::: a
"' Cl

0

-20

-40

-60

-80

-100

-120

Temperature Profile at Edges of planned Path

I I I I I 1 - - - - -----, ------ ----·- - ---- - -- -,. --- -----•. ., ----- - - - --·- - - -- ---- -,. --
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I

- -- -- - - --., - - - - -- -- - -,- ---- - - - - - ,. - - -- - -- - •• ., - - - - ----- -,-- - -- - - - - - r - -
I I I I I I
I I I I I I

I I I I I I
I I I I I I

I I I I I I
I I I I I

I I I I I I
---------,----------~---------r---------,----------~---------r-

' ' ' ' ' ' ' ' '
' ' '
' ' ' ' ' --- ------; ------- ---:- ---- -----r ------- --· ; ------ ----:-- --- ---
I I I I I

I I I I I
I I I I I
I I I I
I I I I

' ' ' '
---------1----------~---- -------- -'-- ------ • .L- -------

,
' '

- Western Edge
- Eastern Edge

' '
- - --- - - -·--- -- - - - - - .. - - - - - -- - - ..t - - - - -- -- - -·-- - --- - - -- ,. - - - - - -- - -

I I I 1 1
I I I 1 1
I I I 1 I

I I 1 1
I I 1 I
I I 1 I

-140~----~----~----~------~----~·------~· ----~
12 14 16 18 20 22 24 26

Temperature (degC)

Figure 37: CTD Casts at Edges of Mission Location before Launching the Vehicle

Unfortunately, the main thermocline was quite deep, and its variation over the horizontal

distance was not as significant as expected. Indeed, the main thermocline seemed to be

almost constant between 80 and 120 m, with only a few tenth of a degree difference

between eastern and western edges. A weak shallow thermocline seemed to develop

between 10-20m at the western edge, and dive to 30-40m at the eastern edge. In order to

map the upper part of the main thermocline, and capture the shallow thermocline

variations, we decided to run 8 equally spaced legs between 90m and 20m depth.

The AUV was launched and the mission started. The AUV was unable to dive, and the

reason was found to be related to the bottom safety procedure. It seemed that when the

bottom was out of range of the DVL, the altitude was reported as zero, which prevented

113

the vehicle from diving. Given that on the deepest leg the AUV would still be more than

20m above the seafloor, the bottom safety was removed and the mission restarted. As far

as it was possible to determine at that time, the mission ran according to our expectations,

except that the tracking system was not working satisfactorily. It only gave a few points

from time to time, showing significant seater. The end of the mission also showed the

vehicle sinking, and we sent a command to release the dropweight so that the vehicle

surfaced. It was found that the battery can powering the Turbulence Package payload had

been flooded.

After the vehicle was recovered, we performed a last CTD cast at the recovery point

(26°7.3'N, 80°3.3'W), for later processing aimed at estimating the time-dependent

variation of the temperature.

A rapid mission analysis was performed, which gave the results summarized in Figure 38.

r~~··~:J
~ 0 500 1000 1500

East Coordinate (m)

AUV Path from Dead-Reckoning Navigation and CTD Depth
o~--~~~: -----:~--~

-20 - --------- ' '
I

'E \-
-_;; -40 --- -------:\..-~-----~---,-r

g. \ 0 -60 ---- ______ ,___,_ ___ -+----,?"
-80 ------ __ :_..._ ___ ___ J'?-

-100 '------'------'--------'
0 500 1000 1500

East Coordinate (m)

3D AUV Position form Dead-Reckoning Navigation and CTD Depth

-20

-'=-
g. -60 -----

0-80 ---------(--

-100
150

North Coordinate (m) 0

1500

500 East Coordinate (m)
-50 0

Figure 38: Mission Summary (Navigation)

114

As that seemed to correspond to our expectations, we decided to run the exact same

mission on December 18th, 2002. The only required modification was to fix the tracking

system. We found that there was a grounding fault and battery malfunction in the tracking

system mounted on the tail of the vehicle. To correct these problems, we replaced the

whole tracking system on the AUV.

Then we went back at sea on December 181
\ 2002. We went to the easternmost edge of

the mission location (26°3.7'N, 80°3.0'W), performed a CTD cast, went back to the

planned launch point (26°3.7'N, 80°4.0'W), and performed a second CTD cast. The data

obtained from these casts are presented in Figure 39.

Temperature Profiles at Edges of Planned Path

I I I I I I

-20 - - - - - - - - - ~ - - - - - ---- -:- -- - - - -- -- r ---... ---- .. -1- - - - - - -- - -:--- - -- - ... - - r -
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I

-40 -- - - - ---- ~ - - - -- - - -- -:- - - - - - - - -- ~ - - - - - - - - - ~- - - - - - - - - -:- - - - - - - - - - ~
I I I I I I
I I I I I I
I I I I I I
I I I I I I

5 -60
I I I I I
I I I I I I , , r -· , - - .. , -...... -
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I

---------:----------:----------:---------:------ ·:..:-:J--is:· e~..-:

-5
<:>.

0
-80

~~~·~~~=· ;8~~·--~~~·~~~~ 
I I I I 

' ' ' 

. . . r---------j----------j---------100 

Temperature (degC) 

Figure 39: CTD Casts at Edges of Mission Location before Launching the Vehicle 

We parametrized the mission so as to run the deepest leg at 90m and the shallowest at 

1Om. In order to accurately map the regions showing important temperature variations 

over depth and distance, closer legs were run between 70 and 90m. The mission pattern is 

presented in Figure 40. 

115 



AUV depth= 1Om 

81egs 

~--~-----------~t.d =20m 

~----+--------· !t.d= 10m 

~---~------~~d=5m 
AUV depth= 90 m 

1000m 
Water depth: 125 m Water depth 180 m 

Figure 40: Mission Plan for December JB'h Mission 

We launched the AUV and started the mission. Again, we were unable to obtain good 

tracking. It took some time to locate the vehicle once it surfaced at the end of the mission, 

but the vehicle was finally recovered. Again, a third CTD cast was performed at the 

recovery point (26°5.5'N, 80°3.7'W). 

IV.3.3. Data Analysis and Results 

For each of the two missions, each piece of data was analyzed separately. 

IV .3.3.1. December 16th Data 

The shipboard CTD data was first analyzed. Then the AUV mission data was examined, 

to estimate how the AUV performed the pattern it had been programmed for. Then the 

CTD measurements acquired by the AUV were studied. Finally, the water current profile 

measured from the vehicle was considered. 

116 



IV.3.3.1.1. Shipboard CTD Data 

A detailed analysis was performed on the shipboard CTD data, of which only the 

significant results are summarized here. Both the temperature and conductivity as 

functions of depth were analyzed. The motivation for the analysis of the conductivity 

profile was to see if it could provide a complementary way to locate the thermocline. 

Only the part of the data corresponding to the CTD going down was kept because it is 

considered more reliable, since, when the CTD is going up, the probes are more likely to 

be in a turbulent wake of the instrument. After having been sorted based on the depth 

measurements, all three variables were filtered using a Moving Average (MA) filter 

(Figure 41 ). 

Temperature Profile Conductivity Profile 
Or-------~----~TO 

: : 
j 1 

-20 ----:------------ !--
' ' 

' ' ~·---~----------,---------
' ' -------------r------------ ~--40 -40 

' ' ' ' ' ' ' ' ' ' ' ' 
-----J----------~--------- -' ' -------------~----------- :--:§: -60 :§: -60 

' ' ' ' ..c:; 
0.. 

..c:; 
0.. 

"' "' 0 ' ' 0 
' ' 

-----~----------~-------- - -' ' 
' ' 

-------------~----------- -~-' ' -80 -80 
' ' ' ' 
' ' ' ' ' ' 

' ' 
-------------~---------- ~--' ' 

-100 -100 
' ' 

-120 -120 

15 20 25 55 
Temperature (degC) Conductivity (mS/cm) 

Figure 41: Temperature and Conductivity Profiles (December 161h) 

(1): 26°3.7'N, 80°3.0'W, 14:30 UTC, (2): 26°3.7'N, 80°4.0'W, 15:00 UTC, 

(3): 26°7.3'N, 80°3.3'W, 22:00 UTC 

Once the data was filtered, the derivatives of temperature and conductivity with respect to 

depth were taken (Figure 42). 

117 



Temperature Gradient Profile 
0 

-20 
I H _____ ;__ _________ __ 

0 

-20 . . 
-40 . . ,-------------y------------- -40 . ------,----------,---------- -

0 • . . 
'E -60 

. . 1-------------t------------- 'E -60 
. . 

-----~----------~---------- -
.c . . .c 
"5. "5. 
Q) Q) 

Cl Cl 

-80 ~-------------&----------. . -80 
. . 

-----J----------~---------- -. . . . . . .. ; --- . . . . . . . . . . 
-100 -100 

. . 
-----~----------~--------- -. . . . . :·~-

-120 -120 -----~--

-1 -0.5 0 -1 -0.5 0 
Temperature Gradient(degC/m) Conductivity Gradient(mS/cm/m) 

Figure 42: Temperature and Conductivity Vertical Gradient Profiles (December 16'h) 

(1): 26°3.7'N, 80°3.0'W, 14:30 UTC, (2): 26°3.7'N, 80°4.0'W, 15:00 UTC, 

(3): 26°7.3'N, 80°3.3'W, 22:00 UTC 

Figures 41 and 42 show a strong deep thermocline at around 1OOm depth, showing a 

temperature gradient of a few tenth of a degree per meter over a layer of 20 m thickness, 

with a maximum gradient as large as 1 °C/m. In the mixed layer above the thermocline, 

the vertical temperature gradient was less then 0.02°C/m. Unfortunately, there was no 

significant temperature profile variation in the main thermocline over the 1 OOOm 

horizontal extent of the mission. The small shallow thermocline noticeable on the 

temperature profile is weak, with a temperature gradients around 0.07°C/m, but the plot 

of the temperature gradients emphasizes the depth variation of that shallow thermocline 

between the two edges of the survey location. It seems that the deep thermocline is a few 

meters shallower on the last CTD cast. Nevertheless, it is impossible to tell whether this 

difference is due to a time-dependent variation, or is a spacial variation due to the fact 

that this last CTD cast was performed 3.5nm North of the two others. In such a case, this 

118 



would indicate that a more significant horizontal variation of the thermocline can be 

found along the North-South direction, rather than along the East-West one, as expected. 

Finally, these plots show that the conductivity decreases with the temperature, and that a 

layer of important variation in conductivity seems to exist below the top of the 

thermocline, but this is not sufficient to formally relate the two phenomenon in a way that 

can help locate the thermocline in a systematic manner. The primary conclusions are that: 

- So far, there isn't enough information to formally derive an obvious way to use the 

conductivity data to help locate the thermocline, 

- The shipboard CTD data from this mission does not seem to show a significant 

horizontal variability of the thermocline. A 20m thick main thermocline exists around 

lOOm depth, with vertical temperature gradient around 0.5-1 °C/m. 

IV.3.3. 1.2. AUV Mission Data 

In order to estimate how well the vehicle performed its mission, we looked at its 

trajectory, and compared it to what was intended. We first considered the vertical 

trajectory, obtained by projecting the 3D path in the vertical (East-Up) plane (Figure 43). 

119 



0~------~~----------~--------~ 

::: :_·::::::::::3·--·-- -------·--··---········ ·-····-····-·······::: 
i l ... 

:: :::::::::::::.\.,._...,.........,._.......,,......_......,_ ................. """"'?' 

E I ! -50 ............ , 

-60 -·-···· ·····"'t'"···::::::::::::::::::::I'I" ____ _ 
-70 ·--··········\ 

-80 •••.•••. ··,- • ... •• .... · ·~......-7----'-' .......................................... --f-............. ......__....Jl_ ----
-90 ··---···--.... 

-100o'-----------=s-=-=oo----------1-':oo=-o ----------::'1500 
East Coordinate (m) 

Figure 43: AUV Vertical Path from Dead-Reckoning Navigation and CTD Depth 

Overall, this pattern corresponds to what was expected. Nevertheless, the thickness of the 

plot shows a significant amount of fluctuation on the depth, which may be due either to 

vehicle motion or to noise in the measurements. Further analysis showed that the 

fluctuation was rather noise in the measurements, which in tum had an influence on the 

fins activity and the vehicle motion because the vehicle was under depth control. Since 

this noise exists even when the modem is not transmitting, it cannot be a modem-related 

noise. 

Figure 44 shows the horizontal trajectory in the horizontal (North-East) plane, as 

computed by the position estimator. 

120 



East Coordinate (m) 

I I I I I I 

5100 
I I I I I I 

•·····--•A---•••• -~·-•••••••·'··•••••••-~••••••••-£••••••••-~••••••••• 
I I I I I I 
I I I I I I 
I I I I I I 

Q) 

"lij 
c: 
'5 
0 
0 
u 
..c: 
t::: 
0 
z 

80 ---------+------- -i----------:----------~---------t---------i---------
1 I I I I I 

I I I I I I 

60 I I I I I I 
•••••••••T••••••• .,••••••••-•t••••••••••r•••••••••T•••••••••,••••••••• 

I I I I I I 
I I I I 

40 
. . 

20 

200 400 600 800 1000 1200 1400 
East Coordinate (m) 

Figure 44: AUV Horizontal Path from Dead-Reckoning Navigation 

(Two Representations: Equal Axis and Tight Axis) 

Although on the top figure, the horizontal path referenced to the water column seems to 

correspond to what was expected, the second plot, enlarging the scale of the North axis, 

shows that somehow the AUV sensed a drift and tried to correct it, as evidenced by the 

trajectory curved towards North in the middle of each leg. This needed to be modified for 

the next mission, in order to ensure that the vehicle remained in the same water slice 

throughout the whole mission. 

IV.3.3.1.3. AUV CTD Data 

The plot in Figure 45 shows the raw data for the depth and temperature versus time. 

121 



. . . . . . . . . 
~20 - --------- ~------------ ----------- -~--- .. ------- ~---------. . 

~ : : 
~ -40 -- --------~------------ ------------~---··-
£ : I 

"'- . 
~ -60 -- --------~------------ ---

0 

25 
G' 
g' 24 
~ 

~ 23 
"' o; 
Q; 22 
0.. 

E 
~ 21 

0 2000 4000 6000 8000 10000 
Time (s) 

Figure 45: Raw Depth and Temperature Data from AUV CTD Sensor 

The first plot confirms, as seen before, that the depth pattern performed by the AUV is as 

expected, but that the depth measurements are noisy. The same noise is more evident in 

the plot of the temperature. Even without considering the noise, the temperature seems 

wrong because the temperature profile it shows is not realistic and is moreover not what 

is shown by the shipboard CTD casts. Although is is possible that there is an important 

offset between the two sensors temperature probes, all shipboard CTD cast showed the 

same surface temperature. Therefore, even taking into account a possible offset, the AUV 

CTD should measure the same surface temperature at the beginning and end of the 

mission, which is not the case here. Moreover, the shipboard CTD data shows 

approximate! y a 1 °C difference between the temperature at 30m and 80m, and the A UV 

CTD does not show such a difference. 

The plot in Figure 46 shows the time derivative of the depth and temperature, and a 

tentative temperature profile from the AUV CTD data. 

122 



-10 

-20 ....... . ······.···· 

]-05 
t: -30 

~ -1 t.:..:..:..:.'-'-'-'l-=.:..:.'-'-'l..:.:=.:..:_~=-:_=.;_;_:..;L;j;_:_;-=.:J 
2000 4000 6000 BODO 1 DODO g -40 

~ 

~-05 
"' "'-
E 
~ 

Time (s) 

. . . . .. . .. . .... 
2000 4000 6000 

Time (s) 

.c: 

g. -50 
0 

-60 

-70 .. . ............ . 

-80 ...................... '. ' 

J 
23 24 

Temperature (deg C) 

Figure 46: CTD Data Noise and Vertical Temperature Profile 

25 

It appears clearly on all plots that the difference between readings is most of the time 

either 0.2 (em or °C), or 0.8 (em or °C), which rather looks like a quantization error. 

Indeed, later investigations showed a possible mistake in a data conversion which may 

have resulted in bits switching. Several method to correct that were tried, but without real 

success. Indeed, it seems that at least two bits were switched instead of two others, and 

since there is no possibility to tell which four bits were concerned, it is impossible to 

correctly post-process the data to fix the problem. An approximate correction was 

possible for the depth data, given that the error is around 1m on a full range of lOOm 

(1% ), and that the depth can be assumed approximately constant along each leg. The 

same kind of correction was not possible for the temperature readings, since in that case, 

the error represents approximately 20% of the data range. Considering that the 

temperature variations we are trying to analyze to characterize the thermocline are around 

a few tenths of a degree per meter, it is much less than the noise we have to deal with. 

Therefore, no conclusion can be drawn from the analysis of this data. 

123 



IV.3.3. 1.4. AUV DVUADCP Data 

A plot of the raw water current profile data is presented in Figure 47. 

Starboard Velocity Forward Velocity 

''j 111'·'1,· u II' ,)i 'I ·~1 
1,/11, ,, t\!,1 

5 5 ~ 
' ' ' ' ' 

Upward Velocity 

- : : : - : : : - : : g 10 -~----~---- ----:---- g 10 ~----~-----:--------- g 10 -~----~--
w I I W W 
U I I U U 

; : : ~ i 
,~ : : : .~ I : I ."! : I 

o 15 -:-----r---- ----r---- o 15 :------:-----r--------- o 15 -1----r---, 
' 
' ' ' ' 

20 -~----~---- ----~----
' ' ' ' 
' ' ' ' 

-0.4 ·0.2 0 0.2 
Velocit m/s 

20 ~----+----~---------
' ' ' ' ' ' 
' ' ' ' ' ' 

·1.5 ·1 -0.5 0 
Velocit m/s 

-0.4 -0.2 0 0.2 0.4 
Velocit m/s 

Figure 47: Raw Water Current Velocity in the Vehicle Body-Fixed Frame 

Only the three first bins are non-zero, which is not realistic at all. This rather looks like 

only the first three bins have been logged. We investigated the software and found the 

following explanation: The DVL Neuron node sends the data three bins at a time, along 

with an index that indicates which bin data is being transmitted. On the main computer 

side, the index was not correctly converted by LonDaemon, and was thus always read as 

0. Then, every piece of data coming from the network was successively written in the 

fields for bins 1 to 3. Because there is no way to post-process the data to determine which 

data corresponds to which bin, the ADCP data is totally unusable, unless to get a rough 

idea of the average current over the 16 bins. Since this is not the primary purpose of the 

experiment, it is not discussed here. 

124 



IV.3.3.2. December 18th Data 

Again, we analyzed first the shipboard CTD data, then that acquired from the AUV. 

Because of the problems discovered during the analysis of the data from the previous 

mission, no much detail is given here concerning the AUV data. 

IV.3.3.2.1. Shipboard CTD Data 

Again, a detailed analysis was performed on the shipboard CTD data, of which only the 

significant results are summarized here. Only the part of the data corresponding to the 

CTD going down was used, as explained in IV.3.3.1.1. All three variables (conductivity, 

temperature and depth) were sorted, then filtered using a Moving Average (MA) filter. 

The vertical profiles for temperature and conductivity are presented in Figure 48. 

Temperature Profile 

-1 
-2 

-20 - 3 --------~--------- -
' ' ' ' 

I ! I -40 -----~----------1·-------- ~-
' ' ' 
' ' ' ' ' ' 
' ' ' ' ' 

g -60 -----~----------1-------- t-
.c a 
Q) 

0 

' ' ' ' 
' ' ' ' ' ' 
' ' ' ' ' -80 -----:----------:----~~ --:-
: : (' : 
: :............ : 

... ..-// : 
-100 ~'---------~-

' ' ' ' ' ' ' ' ' ' 
-120 

15 20 25 
Temperature (degC) 

Conductivity Profile 

-40 -------------r-----------, 

g -60 ' 
-------------~----------- -~-

.c 
a 
Q) 

0 

' ' ' ' ' ' 
' ' ' ' 
' ' 

-80 ' ' 
-------------~---------- --~-

' ' 
' ' ' ' 
' 

-100 

' ' 
-120 ' ' -------------r--- ------ --~-

' ' ' ' ' 
' 

45 50 55 
Conductivity (mS/cm) 

Figure 48: Temperature and Conductivity Profiles (December 18'h) 

(1): 26°3.7'N, 80°3.0'W, 16:00 UTC, (2): 26°3.7'N, 80°4.0'W, 16:30 UTC, 

(3): 26°5.5'N, 80°3. 7'W, 22:00 UTC 

125 



Once the data were filtered, the derivatives of temperature and conductivity with respect 

to depth were taken (Figure 49). 

Temperature Gradient Profile Conductivity Gradient Profile 
0 

-20 

: : ' 
: : : 
' ' 

--~-------~------- !-
' ' ' ' ' 

Or-~--~----r---~ 

r=] i 1 

-20 ~--·t··--·-·i··----- -
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . 

-40 -{--------~-------~-------- -
' ' ' -40 ---~-------t-------~------ -
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . 

]:: -60 ' ' ' 
-!--------~-------~------- - ]:: -60 

' ' ' ' ' 
---L-------~-------~------- -' ' ' .c: 

15. 
Q) 

Cl 

' ' ' ' ' ' ' ' ' 
' ' 

' ' ' ' ' . ' ' . ' ' . 
' ' ' ' ' 

.c: 
15. 
Q) 

Cl 
-80 -80 ---~-------+-------~------ -

-100 100 

-120 120 

-0.6 -0.4 -0.2 0 -0.6 -0.4 -0.2 0 
Temperature Gradient (degC/m) Conductivity Gradient (mS/cm/m) 

Figure 49: Temperature and Conductivity Vertical Gradient Profiles (December 1 8'") 

(1): 26°3. 7'N, 80°3.0'W, 16:00 UTC, (2): 26°3. 7'N, 80°4.0'W, 16:30 UTC, 

(3): 26°5.5'N, 80°3.7'W, 22:00 UTC 

As in the case of the data of December 161
\ a deep thermocline exists around 1OOm. This 

one is a little thicker but less intense than on December 16th. The temperature gradient in 

the mixed layer is a little higher than during the previous mission. The interesting thing is 

the plot from the third CTD cast that shows a very smooth profile, with a little shallow 

thermocline, a layer of very small gradient, and then the main thermocline with a vertical 

temperature gradient varying smoothly. Again, there is no significant variation of the 

temperature profile over the horizontal distance, with only a few tenths of a degree or a 

few meters difference between each profile plot. 

As previously, there is a layer with important variation in the conductivity just below the 

thermocline. It seems that a significant conductivity variation occurs even with a weak 

126 



thermocline, as can be seen on the gradient profile from the third cast, around 10-15m. 

The conclusion that can be drawn from the analysis of this data set is the same as that 

observed with the data set from December 16th. More detailed conclusions are discussed 

later in this chapter. 

IV.3.3.2.2. AUV Mission Data 

Because the mission plan was exactly the same as the one used in the previous mission, 

except for the depth of each leg, the remarks concerning the navigation data are likely to 

be the same as that detailed in the previous mission analysis. Figure 50 shows the AUV 

trajectory in the vertical and horizontal planes. 

0 ) . . g200t I~· ! ; ~· 0 I Q) 1 1 1 1 I t I I 

-1o ----------- : : •· jg 100 : ........... L ......... L ......... l ......... : ......... i .......... : ......... : 

-20 .................. -+ ...................... ! ................ ].. 1 0 :~---+00 ........ + ..... --+ ... :L 
::: .::. ·::::::::-\ ••••. ) •••••.•••••••••••••• ...; •.••••••.•••••••• ::::: z "

100 

0 200 400 Ea~goordina~(m) 1000 1200 1400 

e : : 
;; -50 ••••• ••.•••••• ' ' ••• 

~ I 
::: .::::::.·:::: .. \ ..... 

···~---~---~.....JL .. -80 ...•.•••• ···l.~~~ ....... ---""'""'-""-'-l--'-M>-J-_,...,...,..,...,._"1"' 

-9o ··········"--'-~~__._ ____ __.._~....JC ... 

·100 '---------'------:-':-::--------:-:'_ 
0 ~ 1~ 10 

East Coordinate (m) 
600 800 1000 

East Coordinate (m) 

Figure 50: AUV Trajectory in both the Vertical and Horizontal Planes 

(from Dead-Reckoning Navigation and CTD Depth) 

As in the previous mission, the AUV correctly performed the pattern it had been 

programmed for, as far as its vertical path is concerned. The same kind of noise on the 

depth measurements is still evident. Again, it appears that the vehicle was somehow able 

to sense its drift and tried to correct it. As explained before, the way the mission plan is 

programmed using relative waypoints needs to be modified for the next mission. 

127 



IV.3.3.2.3. AUV CTD and DVUADCP Data 

Because of the problems of data conversion of the CTD and DVU ADCP measurements 

discussed in chapter IV.3.3.1.3 and IV.3.3.1.4 there is no use in detailing here the analysis 

performed on these pieces of data. As explained previously, we were unable to correct the 

errors in the temperature measurements, which was our main concern, and most of the 

ADCP data had not been logged. 

IV.3.4. Conclusions 

The conclusions and lessons learned from these two missions are that: 

- The vehicle performed the mission it had been programmed for well, although the 

depth control was probably not as efficient as possible, because of the noise in the 

depth measurement. 

- Unfortunately, because of many bugs in the data reading and logging, the data gathered 

by the AUV during these missions are of poor interest as far as the observation of the 

water slice properties is concerned. Moreover, as explained before, the thermal 

structure of the water slice was not as interesting as expected, because of the lack of 

significant variation in the thermocline. 

- Several things were found on the AUV that needed fixing, namely the problems that 

caused the CTD data to be so noisy, and the water current profile not to be logged 

correctly. 

- Ideally, the AUV software should be investigated to find the reason why the AUV 

altitude was reported as zero when the seafloor was out of range of the DVL. It would 

be better to set the altitude to the maximum range of the DVL in such a case. 

128 



- The tracking system really needs to be thoroughly tested, and either fixed or replaced, 

in order to obtain reliable tracking data on further missions. 

- The mission should be written in a different way so that the vehicle wouldn't try to 

correct the navigation for any current it may sense. Indeed, we do want the vehicle to 

remain in the same water column, only crossing it along the East-West direction and 

not performing some strange patterns while trying to correct for a sense of the current 

that cannot be but wrong. 

- We should also write the mission in a way that would make it easier to locate the AUV 

when it surfaces. 

- Finally, for vehicle safety matters, we have to make sure that any new device 

integrated in the vehicle is fully pressure tested, and if possible, that every pressure 

vessel is provided with a leak sensor. 

These conclusions were taken into account while preparing the next mission. 

IV.4. March 2003 Missions 

The March 2003 Mission was the same as the previous ones in terms of motivations and 

requirements. The goal was to successfully acquire the data we were unable to acquire 

satisfactorily previously. Moreover, this time, we also wanted to log the data provided by 

an upward looking ADCP and a second CTD that were to be integrated in the AUV 

payload. The upward looking ADCP was used to measure the current profile above the 

vehicle, in order to double the ADCP range. The second CTD was used because it was 

believed to be more accurate and to sample at a higher frequency than the AUV CTD, and 

also because no really conclusive test of the AUV CTD had been performed. As for the 

129 



previous missions, the AUV carried the Turbulence Package. Hereafter are described the 

preparation and execution of the mission, followed by the data analysis. 

IV .4.1. Preparing the Missions 

The preparation of the mission required firstly the problems discovered during the 

previous missions to be fixed, and an additional task: the integration of a SeaBird 

Electronics (SBE) CTD and an upward-looking ADCP. Both sensors had to be integrated 

with the AUV so that they take power from the vehicle batteries and communicate data to 

the main computer logger. The integration of these sensors is ,described hereafter, 

followed by a brief discussion of the pool test and vehicle trimming, the sensors 

calibration, and the writing of the mission. 

IV.4.1.1. Fixing the Problems Revealed by the Previous 
Missions 

The problems revealed during the previous mission had been fixed: The DVL data was 

then correctly read by the main computer since the NV conversion mistake was corrected. 

Similarly, the CTD data conversion problem was fixed and a few tests were performed. 

Unfortunately, since these tests had not been performed over the full depth range of the 

planned mission, we were not able to check in a conclusive manner that everything had 

been fixed. Finally, the tracking system was investigated and fixed, and the whole system 

was successfully tested. 

130 



IV.4.1.2. Sensor Payload Integration 

As explained previously, the only link between the AUV tail and the sensor payload is the 

48VDC power supply and LonTalk network. That is, the tail sees a load consuming some 

power, and some Neuron devices that demand and provide a number of network 

variables. The integration, in terms of electronics and software, of the new CTD and 

ADCP then required: 

- Conversion of power from the main bus to the ADCP and CTD, 

- Logical integration of the sensors in the distributed software, which can be further 

divided into: 

- Local control of the sensors by Neuron nodes, 

- Integration of the sensor nodes in terms of software. 

Both the physical connection and the logical integration tasks are described hereafter. 

IV.4. 1.2. 1. Phvsica/ Connection of the Sensors to the Pavload Bus 

The upward looking ADCP and the SBE CTD had to be connected to the payload bus 

through a device that transforms the power supply and data channels as required. Both 

sensors communicate through RS232C ports. The ADCP requires a 48VDC power 

supply, while the SBE CTD needs an input voltage of 12VDC. 

The upward looking ADCP had been previously used with the OEX-B which makes use 

of the same LonTalk network and power bus. Thus, there already existed a device that 

connects the ADCP to that bus. This device takes the 48VDC input, and powers the 

ADCP and a Serial to LonTalk Adapter (SLTA). This adapter bridges the LonTalk 

channel with the RS232C DVL data port. The device is housed in a pressure vessel that 

131 



has three bulkhead connectors. The third connector, previously unused, now connects the 

SBE CTD to the payload bus. The advantages are: 

- The use of one pressure vessel instead of two reduces the occupied space and the 

chance of water leak, 

- While we modified the electronics inside the pressure vessel, we could take this 

opportunity to add some health sensors, 

- The inside connection eliminates the need for an external splitter. 

The electronics inside that pressure vessel was rewired to include another SLTA for the 

SBE CTD. This SLTA is based on a High Performance Standard Node series 2 (HPSN2) 

developed by the Seatech's Electronics Laboratory. This part has been chosen because it 

is powered by 48VDC and communicates with LonTalk on one side, while on the other 

side, it offers, among others, the 12VDC regulated power supply and RS232C full duplex 

port we need. Moreover, the HPSN2 also includes temperature, pressure, humidity and 

leak sensors. The rewired circuitry, that physically links the sensors to the main bus of the 

vehicle, is presented in Figure 51. 

132 



---- - -- ~-:::;-1 

[ i ~---::_--==-ccc ,-Llk 
..£) ~:~~OND 

1 BAT-ONO 
28AT+ 

-1--- 3+5V 38AT-GNO 

- 1--- 4GNO 48AT+ 
58AT-ONO 

1 8AT-Gi'D ----+-- 68AT+ 

28AT+ ---- -~ -· --~-~--- 7 DAT,I,-A 
- -1PWR-

OEX-D 
3 BAT -GND ----.- - - 2PWR-Gi'D 

I 

8DATA-8 
4 BAT+ 

BUS 5 BAT -GND --+- - - 3 PV\fi+ FUSED 

68AT+ ------ 4DATA-A r 1 +12V 

7DATA-A ----- I 
SDATA-8 2 Al-l-1 

BDAT,I,-8 3 Al-l-0 
4ANO-O 

- - 1TX·2 500-1 

- - 2RX-2 61.()-0 

- - 3GND 7 EXTSV 

4GND 8RX·O 

5 TX-1 9 TX-0 - - 6RX-1 10RX-1 

- - 7 +12V ENABLE 11 TX-1 

- - 81"\MlENABLE 12 Gi'D 

DVL PSG10 CTD HPSN2 

1~-G('.()------.....__._ --
2PWR+ -------- --
3COM --.---·----

DVL 
4NC -----SNC -----6NC =:=- ___ j 
7 RX 
8 TX 

I 
1 GND I 
2RX 
3TX ------- ·-·-------

CTD 4P\I\fi+ ______....._~----·------------------ I Prevoos ComecU>ns I 5NC -----6NC --- - New Connections 

7 NC ---8NC ---
Figure 51: Upward Looking ADCP and SBE CTD Payload Interface Module 

IV.4.1.2.2. Logical Integration of the Sensor Nodes in the Software 

As previously described, the logical integration of the sensors required the 

implementation of the local logic in the sensor nodes, and the interfacing of each node 

with the main computer software. 

Since the upward looking ADCP had previously been used on an OEX-B, there already 

existed the node application software. It was necessary to interface that node with the 

main computer. This task has already been discussed in details and is not reported again 

here. To summarize, the vehicle can now carry two similar DVLs that can both be 

switched to ADCP mode. The only difference is that the tail DVL data is also used for 

navigation, while that coming from the upward looking ADCP is simply logged. 

133 



Then, as far as the SBE CTD was concerned, the node application had to be written, then 

interfaced with the other nodes in the vehicle. 

In the SBE CTD neuron node, the local logic application is responsible for: 

- The monitoring of the health sensor and the assignment of corresponding NVs, 

- The configuration of the sensor, 

- The parsing of the data from RS232C strings to NVs values, 

- The implementation of the VRS232. 

To implement these functionalities, it would have been an easy solution to simply modify 

the Neuron C code used with the AUV CTD, but this was impossible, mainly because of 

too many differences in the CTDs interfaces. It was then decided to completely rewrite a 

new application code. The application for the CTD node works as follows: 

When the node is reset, it turns on the power to the CTD, configures the serial port, and 

sends to the serial port the required command strings to configure the sensor. Then, 

whenever data is received on the serial port, it is either directly copied in the VRS232 NV 

if the VRS232 mode has been enabled, or parsed and copied in the CTD data NVs. Every 

second, the health sensors reading is triggered by a timer. The health sensors outputs are 

sampled, converted and copied in the corresponding NVs. Finally, some procedures are 

implemented to reset the CTD in case of communication problems. The node application 

is not described further here. 

Once the neuron application was written, it offered the NV interface presented in 

Table 12. 

134 



NV Writer(s) Reader(s) Purpose and comments 

PayldCTDData Payload CTD Host application CTD data 

PayldCTDHlth Payload CTD Host application CTD node health 

error Payload CTD0 l Host application CTD node error 

dropWtDrop Payload CTD<2l Dropweight Command to drop the 
weight in case of leak 

PayldCTDModeChg Host Application Payload CTD NV s used for the 

vrs232Chars0ut Payload CTD<3l Host application implementation of the 
VRS232 

vrs232Charsln Host Application Payload CTD<3l 

mainExecTime Payload CTD None Only used to debug the 

hlthExecTime PayloadCTD None timing, later removed 

Table 12: Payload CTD Network Interface 

( 1) This NV is also written by every node in which an error-checking procedure is implemented. 

(2) This NV is also written by every node in which a leak-detection procedure is implemented. 

(3) These NVs are read/written by every node in which the VRS232 is implemented. 

Once the neuron node was configured, we checked its timing and found that the parsing 

of the serial data was approximately taking 10 to 20 ms, while the health monitoring was 

taking 40ms, which is acceptable. 

The NV s were then interfaced with the other nodes using the method described in ill.2. 

Particularly, on the main computer side, the raw CTD data is processed by ProcessData 

which converts it into real values using the appropriate formulas. Once each field is 

converted, the depth is computed using the equation [52]: 

d(m)= p(dBar) X 1.019716 (Eq. 4.1) 

To check that the data reading was correct, we measured the temperature, and compared it 

against the content of the NVs, as browsed using LonMaker, and the converted value in 

shared memory as monitored by the AUV monitor server. We also monitored the health 

of the neuron node to ensure that the temperature inside the pressure vessel was not rising 

135 



too much, and that the pressure was not rising after the pressure vessel had been closed 

with half an atmosphere depression inside, which would indicate a leak. 

In the end, from the operator point of view, the sensor is configured to automatically 

output its data at 2Hz, averaging 8 of the samples taken at 16Hz. Only the conductivity, 

temperature and pressure are outputted. The sensor is configured to wait thirty seconds 

after a conductivity threshold has been reached before turning on an internal pump that 

creates a water flow around the probes to improve their accuracy. 

As everything seemed to be working, the CTD and the neuron node pressure vessel were 

mounted in the nose payload of the OEX, together with the upward looking ADCP, 

Turbulence Package, dropweight, light strobe, and a tracking beacon. 

IV.4.1.3. Sensor Calibration 

Since the vehicle had been modified by the addition of new sensors that are likely to 

create some magnetic perturbations, it was necessary to recalibrate the magnetic compass 

so as to achieve adequate navigation performance. This was done as described in 

IV.3.1.2. As far as the SBE CTD is concerned, it had been recently calibrated in factory, 

and had not been used since. No recalibration was therefore required. The calibration of 

the DVL and/or ADCP has been discussed in IV.3.1.2 

IV.4.1.4. Pool Test and Vehicle Trimming 

As before any mission, the vehicle was tested in the seawater pool at Seatech. After 

having checked the health of the AUV, we ran a short mission to check the logging of the 

two DVLs/ ADCPs and the two CTDs data. Because there was a lot of oil in the pool, we 

136 



did not remove the cap of the the pipe leading to the conductivity probe and the pump of 

the SBE CTD. A quick analysis of the data showed that both DVLs had been successfully 

switched to ADCP mode, and that the current profile had been logged. As far as the 

CTDs are concerned, the AUV CTD did not seem to show any problem of noise, and the 

SBE CTD gave some meaningful depth and temperature reading that were comparable to 

that of the AUV CTD. The SBE CTD node health was also examined to ensure that 

everything was fine. Then the vehicle was trimmed, as detailed in IV.3.1.3. 

IV.4.1.5. Writing the Mission 

Since this mission was very similar to the previous one, it was written based on what was 

done last time. Nevertheless, considering the conclusions of the previous mission, we 

changed the way the navigation was programmed so that the vehicle would not try to 

correct its trajectory for any current it may sense. The macro instruction used to run a set 

of legs of the survey was modified so as to use heading commands and duration criteria 

instead of waypoints. The purpose of that modification was to ensure that even if the 

vehicle sensed a current, it would not try to correct its trajectory, because it would not be 

trying to reach a waypoint but to keep a constant heading. Doing so, the vehicle would 

always remain in the same water column, drifting with it. 

As described in IV.3.1.4 for the previous mission, the mission plan consisted of the 

required command to switch both DVLs to ADCP mode, a GPS Fix, several calls to the 

"Vertical Leg" macro, and a final GPS Fix. We checked in the logger input file that every 

variable to be logged was listed, with the appropriate logging parameters. 

Because of the difficulties we encountered last time in locating the vehicle once it 

137 



surfaced, we modified the last GPS Fix macro used in the mission so that the vehicle 

keeps the antenna up and continues to update its estimated position with GPS fixes 

forever. A second mission was then written, the purpose of which was solely to lower the 

antenna. This mission would be started through the modem once the vehicle would be 

located. 

IV.4.2. Mission Execution 

The mission was run on March 191
\ 2003. We left the dock and proceeded to the eastern 

edge of the mission location (26°4.4'N, 80°3.0'), where we performed a first CTD cast to 

get the temperature profile of the water column. Then we went back to the western launch 

point (26°3.6'N, 80°4.0'W) and performed a second CTD cast. Both temperature profiles 

are presented in Figure 52. 

Temperature Profiles at Edges of Planned Path 

o~--------~0 --~----~--~----~--~--~-.--~ 
0 

! ' 0 
0 

-20 -~-------:-------~------
0 0 0 -------y-------r-------;---
o 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 

-40 
0 0 

-~-------~------~------- -------~-------~----1 I I I I 
_ .... ------ -·------- _,_-----

0 0 0 
I I I I I 0 0 0 
I I I I I 0 0 0 
I I I I I 0 0 0 
I I I I 
I I I I 
0 0 0 

0 0 0 
0 0 0 
0 0 0 E' 

?; -60 
E. 
Q) 

Cl 

- - --- -:- --- - - - -:- --- --- -:- -----
0 0 0 
0 0 0 
0 • 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 -.. ------ .... ------ -·------- ~------

I I I I 
-80 -~------ -:--------:------

0 0 0 I I I I 
0 0 0 I I I I 
0 0 0 I I I I 
0 0 0 I I I I 
0 0 0 I I I I 
0 0 • ' 0 

-100 -~-------~------~------- ----- -------r ----- --:- -------:---- -- --:- -----
0 0 0 I I I I 
0 0 0 I I I I 
0 0 0 I I I I 
0 0 0 I I I I 
0 0 0 

o -------:-------~------- -------!-------~-------: - Western Edge 
: : : : : : - Eastern Edge 

-120 

8 10 12 14 16 18 20 22 24 26 
Temperature (degC) 

Figure 52: CTD Casts at Edges of Mission Location before Launching the Vehicle 

138 



Unfortunately, during the first CTD cast, the current acting on the rope prevented the 

CTD from going all the way down to the bottom. For the second cast, some weight was 

added to the instrument so that it was less sensitive to the current. Based on the 

information provided by these casts, it was decided to run 10 equally spaced legs between 

100 and lOrn, plus two more legs at 5 and 2.5m. Then the vehicle was launched, and the 

mission started through acoustic modem. This time, the tracking system was working 

correctly, but unfortunately, the computer used for tracking crashed, and the data was lost. 

The mission went on without any other troubles, and the vehicle surfaced 3 hours later. A 

third CTD cast was then performed at the recovery point (26°7 .9'N, 80°2.1 'W). 

IV .4.3. Data Analysis and Results 

Every piece of data was analyzed separately first, then compared together where 

appropriate. First the data obtained from shipboard CTD cast was examined, then the data 

describing the AUV mission, the AUV CTD data, and finally the ADCPs current profile 

were considered. 

IV.4.3.1. Shipboard CTD Data 

Again, a detailed analysis was performed on the shipboard CTD data, of which only the 

significant results are summarized here. Only the part of the data corresponding to the 

CTD going down was used, as explained in IV.3.3.1.1. All three variables (conductivity, 

temperature and depth) were sorted, then filtered using a Moving Average (MA) filter. 

The vertical profiles for temperature and conductivity are presented in Figure 53. 

139 



Temperature Profile 
0 

-20 

Conductivity Profile 
Or-----.-----~--~~ 

1 i ( : 
0 t f" I 

-20 r -------:--- -~~ --r 
: : 
: 1 

-- -!--------:-
' ' ' ' ' ' ' ' : : . 

: ' 
-40 -40 --------,------- --------,-I o I I --,--------r------ ,--------,-

' ' ' ' ' . ' . ' . 
]: -60 
.c 
15.. 
"' 0 

-80 

-100 

-120 

' ' I I I I 

--~--------~---- --~--------·-' I I I 
I 0 0 I . ' ' ' . . 
1 I I I 

-- i-------+ 1 r--- i-------+ 
i J i i 

-- ~---- ~r-- -~ j------ ~------- -:-. ,. ·r , , 
: -J-----i : : 

~·r--/~---- -~-------1------- )_ 
: .. / : : : 

i -60 --------rv;r: '-~--------:-
-80 --------rt ----r--------r 

:) : : 
/i I : : 

-----~-~--7------~--------~-(/ v 1 1 
(': : : 

1--- -_:_::) ~--------- ~-------- ~-. . 

100 

120 

10 15 20 25 40 45 50 55 
Temperature (degC) Conductivity (mS/cm) 

Figure 53: Temperature and Conductivity Profiles (March 19'"} 

(/): 26°4.4'N, 80°3.0'W, 16:30 UTC, (2): 26°3.6'N, 80°4.0'W, 17:00 UTC, 

(3): 26°7.9'N, 80°2./'W, 22:00 UTC 

Once the data was filtered, the derivatives of temperature and conductivity with respect to 

depth were taken (Figure 54). 

g 
.c 
15.. 
Q) 

0 

0 

-20 

-40 

-60 

-80 

-100 

-120 

Temperature Gradient Profile 

: 
: 

-----r-----

______ T ______ ,______ -

: : ' <._ 

-0.8 -0.6 -0.4 -0.2 0 
Temperature Gradient (degC/m) 

Conductivity Gradient Profile 

-~ ~---L----

-1 -0.5 0 
Conductivity Gradient (mS/cm/m) 

Figure 54: Temperature and Conductivity Vertical Gradient Profiles (March 19'h) 

(/): 26°4.4'N, 80°3.0'W, 16:30 UTC, (2): 26°3.6'N, 80°4.0'W, 17:00 UTC, 

(3): 26°7.9'N, 80°2.1 'W, 22:00 UTC 

140 



Unfortunately, these profiles are not as interesting as expected. Here, the whole top of the 

water column is almost a thermocline. There is not, as that was the case during the 

experiments we performed in winter, a small shallow thermocline over a thick mixed 

layer and then a strong main thermocline. Here, there only is a very thin mixed layer, due 

to the action of the wind on the surface, and then the shallow thermocline extends down 

to 40m, and combines with the main thermocline around 50m. This is confirmed by the 

plot of the gradient profiles, which shows relatively regular profiles, with no localized 

region of higher gradient. In a same manner, the conductivity gradient profile does not 

show any particular pattern comparable to the ones observed on the previous data sets. 

Moreover, once again, there doesn't seem to be any significant variation in the 

temperature profile with the horizontal distance, as far as the top lOOm are concerned. 

The second cast seems to show a quite strong (0.8°C/m) thermocline around 110m, but 

this may be only due to the seafloor being close. The third plot rather shows a time

dependent variation, with the diurnal variations of the temperature in the first meters of 

the water column as it is warmed by the sun radiation. The profile around 110m differs 

significantly from that obtained from the second CTD cast, but again that may be 

explained by the seafloor being close to the bottom of the second cast. 

This profile is not as interesting as one showing a localized strong thermocline. Indeed, if 

we consider the tracking of the thermocline, it is impossible with such a profile to tell 

which part should be tracked. Overall, this profile shows some interesting things about 

the combination of different types of thermoclines, but unfortunately does not bring the 

kind of information we needed to improve our knowledge for thermocline tracking 

purpose. 

141 



IV.4.3.2. AUV Mission Data 

Again, in order to estimate how well the AUV performed the mission it had been 

programmed for, its recorded trajectory was analyzed, and compared to what was 

intended. First, we considered the vertical trajectory (Figure 55), obtained by projecting 

the 3D path computed by the position estimator into the East-Up plane. 

1---+--+---+--+---+--+---71'----.-----

,......;..-.;.-. ...... -:---:----i---' .,. ---- ., .. ---

£ : : 
"- 60 ~ ~ .,......;____;_....;____;_,_;_~_,J- --.----- -·- ----
,:3- -----i---- -i-"/ 

-70 -----~----- ... ~,...._-;-~-~~--:-: -,..-;-, -----·-----

' • i.: L.:.: _____ .i. ____ _ 
-80 ------i------f ' ' ' 
-90 ---- -~- --- --:'-: t--:---+----1--+---+-+-..,....,..--- -,-----

·100 ---··(··-~---·..._.._......,___,;._..;.,._--;._..;.-..~ .. , ...... , .... . 

·11 0 o'---,-1 o'-="o--=-2o'-="o--=-3o'-="o---,-4o'-="o--=-5o'-="o--=-so'-="o--=-7o'-="o--=-so'-="o--=-go'-="o----:-:1 o:':::oo~11 oo 
East Coordinate (m) 

Figure 55: AUV Vertical Path from Dead-Reckoning Navigation and CTD Depth 

This time again, the pattern corresponds to what was expected, and what's more, there 

doesn't appear to be any significant noise on the depth measurement. Indeed, closer 

analysis of the depth measurements showed a few smooth variations of the order of lOcm, 

which is totally acceptable. 

It is then interesting to look at the horizontal trajectory (Figure 56), as measured by the 

position estimator, with respect to a reference layer of water. 

142 



400 .-----.--.-----.--r------r-,--,--.,.---,-....,----, 

350 -----~------ -·--- ----- ------·--- - ---· -- -----

300 _____ ; ______ ----

1 00 200 300 400 500 600 700 BOO 900 1000 11 00 
East coordinate (m) 

Figure 56: AUV Horizontal Path from Dead-Reckoning Navigation 

The pattern shown here is much better than was obtained during the previous missions. 

Indeed, even if the vehicle still sensed a drift, the straight lines for each segment of the 

mission show that this drift was not taken into account for the navigation. The vehicle 

heading data shows that during each leg, the heading remained within half a degree of the 

commanded value. It is interesting to get an idea of the real path of the vehicle, taking 

into account the drift caused by the current. To do so, we assume that the current was 

approximately constant during the whole mission. Then the difference between the 

vehicle position estimated by dead-reckoning and its real position tells how much it has 

drifted since the beginning. The only point where both positions are available is when the 

vehicle surfaces. Just before it gets a GPS fix, the position is that obtained from dead-

reckoning, which is corrected when the fix is available. The displacement between the 

two successive points is obviously neglected, given the logging frequency of the vehicle 

position (8Hz). Then the difference between positions gives the distance drifted, which 

divided by the duration of the mission in turns yields the mean drift velocity. This drift 

velocity can then be used to correct each position. 

143 



This is summarized by the following equations: 

-+ -X (t= tGPSfz:J- X (t= (tGPSfzx- fl T )) V Drift- __ ___;~;,;__ ___ -=..;o.;;.;.----
fGPSfix 

(Eq. 4.2) 

XReal(t)=X(t)+t· VDrift 
(Eq. 4.3) 

Where is the drift velocity, X ( t) is the position at time t as computed by the 
V Drift 

position estimator, ( ) is the estimated real position at time t, corrected for the 
XReal t 

drift, .1 T is the logging period, and tGPSfix is the timestamp of the first GPS fix when 

the AUV surfaces. 

Once V is obtained, the mean current velocity and direction are known. 
Drift 

This gives the path presented in Figure 57. 

5000r--.---.--.----.-----.---.----. 

4500 

4000 

3500 
E' 
';;;' 3000 
"lii 
c: 

] 2500 
0 
u 
-:§ 2000 
0 
z 

1500 

1000 

500 

I I I I _ I 

: : : : :~: 
------- ~---- ---!------- ~------- ~----- -... : ... ----~-----

: : : : :__----- : 
: : : : ~ : 

------ -r- ----- -t------- ~---- --- -:- --- --:-- ---- -... :-------
I I I I 
I I I I I 
I I I I ___....... I 

------ -~---- --- f------- ~-- --- -~-~- -:------- -~------
I I I I I 

: : : -~- : : 
------- r------- t-------~ -- -~t;?~-- -l------- -r------

: : /.!---------- : : : 
------- ~-------.;.- ... --- K------ ~-·------ -:------- -t-------: : I:~------._ : : : 

.. : ..t. :::E:;.t::~:L:: t::: ::::t:::::: 
: /.' : _ ... ------"; : : : 
I 1 .... ---- I I I I 

-------~-A~:-:~-~-------~-------~------- ... : ... -------~------
}' -----~~ - Dead Recknoning 

· · · · · · ~ · · · ~- · · · · - Corrected for Current 

1 ~~~·~~i·_~I=~C~u~rr~en~t~:0~.5~3~m~/s~,~25~.7~d~e~g~ o'= 
0 500 1 000 1500 2000 2500 3000 3500 

East Coordinate (m) 

Figure 57: AUV Horizontal Path, Corrected for Current-Induced Drift 

144 



This plot indeed looks like what was seen on the tracking system computer before it 

crashed. Moreover, the mean current obtained by this method is really close to what was 

measured by the shipboard ADCP, from which a mean North component of the current 

around 0.5m/s was observed. 

IV .4.3.3. AUV CTD Data 

The plot in Figure 58 shows the raw data for the depth and temperature as functions of 

time. 

Dr-:.:-:.--:.--:.--:.--~.--~~~~~ 
I I I I I I 

-20 ••••• t.- --- -~------ -:------ -~- ----- t------ ~---
I I I I I 

:[ ·40 ' ' ' ' ' 

'E._ ·60 
"' 0 

·100 ._-_ _.___...____._--'---'----'----'------1'-----L---' 

0 1000 2000 3000 4000 5000 6000 7000 BODO 9000 10000 
Time (s) 

1000 2000 3000 4000 5000 6000 7000 BODO 9000 10000 
Time (s) 

Figure 58: Raw Depth and Temperature Data from AUV CTD Sensor 

Here the temperature data is much more reasonable than what was obtained during the 

previous missions, and is closer to what has been observed form the shipboard CTD 

casts. From this data it is then possible and meaningful to plot a temperature profile 

(Figure 59). 

145 



-10 

-20 

-30 ..... ·:· ..... : ..... ·:· ..... j" .... : ...... 
-40 

I 
..c -50 
"E.. 
~ -60 

-70 

-80 

-90 

-100 

14 16 18 

· · :· Ti.rrie~aiipehae·nt: 
# . : variation : 
:·····-:-·····:······.······:-····· 

. . . . . . . . ~ . . . . . . . . . . . . . -~ . . . . . . ~ . . . . . . ~ . . . . . . 

20 22 24 26 
Temperature (degC) 

Figure 59: Vertical Temperature Profile of the Water Column from AUV CTD Data 

This plot is interesting because it emphasizes the variation of the temperature with both 

horizontal distance and time. At each depth where a leg was run, a horizontal segment 

shows the temperature variation along the leg. Significant differences are noticeable on 

the segments joining the lOOm and 90m legs, and 80m and 70m legs. Because these legs 

were run less than an hour after the first diving, the variations can not be time-related. 

Moreover, the vehicle climbs between these legs on the East side of the water column, 

while it has dived on the West side. The segment separation then really shows the 

temperature difference between the edges of the water slice. On the other hand, on the 

upper part of the plot, the separation between the first profile when the vehicle dives to 

run the deepest legs, and the other part of the profile when the vehicle climbs up shows 

the temporal variation ,which is particularly obvious closer to the surface, since the time 

interval approaches 3 hours. 

146 



Now it is interesting to try to reconstruct a temperature map, using the vehicle position 

and the CTD temperature history. Creating a grid of position on an East-Up plane based 

on CTD depth measurements and horizontal coordinates from the position estimator, and 

interpolating the temperature measurements over that grid yields the temperature map of 

the water column in Figure 60. 

Interpolated Temperature Map 
(Cubic Interpolation, Resolution: x: 1m, d: 20cm) 

-10 

-20 

-30 

-40 
g 
..c. -50 
a 
Q) 

0 
-60 

-70 

-80 

-90 

-100 "------'--
200 400 600 800 

East Coordinate (m) 
1000 

Figure 60: Temperature Map from A UV CTD Data 

Temperature 
degC 

Although the side boundaries ofthe map are arguable, the middle of the plot shows small 

horizontal variations of the temperature, particularly above 20m and below 60m. This 

map shows a kind of compression of the temperature variation on the East side of the 

water column, where the cold water is shallower and the hot water deeper than on the 

West side. 

147 



Nevertheless, because no important variation was observable in that water column during 

that experiment, and because of the absence of a strong localized thermocline, the use of 

that map is limited. But this at least validates the method used for the mission and the 

processing technique. 

IV.4.3.4. AUV DVLIADCP Data 

This time the whole profiles over twice 16 bins has been correctly logged. This gives the 

current profile of a 32 bins water column that extends 24m above and below the vehicle. 

Figure 61 shows the total magnitude of the current, taking into account the raw 

magnitudes along three axis. 

-20 

-15 

~-10 g 
Q) 

u -5 
:c 
Q) 

~ 0 
0 
a; 

~ 5 
c. 
Q) 

0 10 

15 

20 

20 

Current Magnitude 

40 60 80 100 120 140 160 
Time (min) 

Figure 61: Raw ADCP Current Magnitude Profile as seen from the Vehicle 

The current velocity indicated in the above plot is relative to the vehicle. To obtain the 

absolute ground velocity, the platform velocity has to be subtracted. The magnitude of the 

platform motion is computed from the two components of the horizontal velocity 

148 



estimated as detailed in IV.4.3.2. The vertical component of the vehicle velocity is 

neglected since it is zero most of the time. 

Moreover, the dataset has to be filtered to remove wrong samples. This filtering is 

performed using the error information provided by the ADCPs. Based on that error 

indication, a simple binary filter is designed to remove the wrong samples, by comparison 

of the error with a chosen threshold, which produces the mask presented in Figure 62. 

-20 

-15 

~-10 ..s 
~ -5 
:E 
~ 
:.: 0 
0 
a; 

~ 5 
a ., 
Cl 10 

15 

20 

Velocity Error 

50 100 150 
Time (min) 

Data Validation Mask 
.---~----r--~--, - Valid 

c:J Invalid 

50 100 150 
Time (min) 

Figure 62.· ADCP Velocity Error and Corresponding Validation Mask 

The above figure shows that over most of the profile, the velocity error estimated by the 

ADCPs is relatively small and constant. Only the upper part of the profile presents a more 

significant error. On the right hand side of the plot, the error is due to the acoustic 

reflections of the side lobes on the nearby surface. Around 110 minutes, the surface is 

20m above the upward-looking ADCP, the range ofwhich is then decreased to 18m (12 

bins), then 9m (6 bins) when the vehicle is at lOrn from the surface (around 130 min), and 

almost zero after. On the other hand, there is no such explanation for the error in the 7 top 

149 



meters of the profile during the first 100 minutes. 

Now it is possible to plot the absolute magnitude of the current (Figure 63), of which only 

the correct samples are kept. 

-20 

-15 

~-10 
5 
Q) 

u -5 :.c: 
Q) 

~ 0 
0 

Qi 

~ 5 
15.. 
Q) 

0 10 

15 

20 

Current Magnitude 

E ~ ffi 00 100 1~ 1~ 100 
Time (min) 

Figure 63: Absolute Current Velocity Magnitude 

This figure shows a non-homogeneous current. The pattern showing a regular alternation 

between velocities around 0.3 and 0.5 m/s indicates that the platform motion has not 

correctly been removed. To achieve a better compensation of the vehicle motion, it would 

be necessary to have accurate information about the vehicle position. The correction 

performed here is only based on data from dead-reckoning, corrected for a drift assumed 

regular during the three hours of the mission. This method obviously does not provide an 

estimate of the vehicle velocity accurate within 20cm/s at every instant. This explains the 

0.2m/s discrepancy between each segment of the above profile. 

Nevertheless, this still gives an estimate of a mean current around 0.5 m/s, which 

150 



corresponds to what has been estimated from the vehicle drift in IV.4.3.2, and what was 

observed from the shipboard ADCP. Moreover, this does not show any significant current 

magnitude variation with the depth. But anyway, because as explained before there was 

no strong localized thermocline in that water column, no significant current variation 

possibly related to a thermocline was likely to be observed. 

IV.4.4. Multiple Datasets Comparison 

Once every piece of data had been analyzed separately, it was interesting to compare 

some of them together. First of all, the water slice temperature profile measured by the 

AUV was compared to that obtained from shipboard CTD cast (Figure 64), to verify the 

comments and interpretations discussed in IV.4.3.3. 

• AUV 
-10 -Ship 1 ·i············:·············:·············:·····~· ~~~ 

- Ship2 . . 
-20 - Ship 3 · ~- · · · · · · · .................. -:· ........ ,." --

-30 ..... : ............. : ............. : ............. : .. 

-40 

g -50 ····················:············:··· ·····:·············:············:············ .c 
"5. 
~ -60 ·········:·············:············<············ 

-70 ......... . ··········- ·····.··· .................. . 

-80 .. ' ........... . ..: .......... ··········.·· ········· 

-90 

-100 .......... , ............ · .................. ········.············ 

14 16 18 20 22 24 
Temperature (degC) 

Figure 64: Temperature Profiles Comparison 

(Profiles Measured by the AUV and the Shipboard CTD) 

26 

(1): 26°4.4'N, 80°3.0'W, 16:30 UTC, (2): 26°3.6'N, 80°4.0'W, 17:00 UTC, 

(3): 26°7.9'N, 80°2.1'W, 22:00 UTC 

151 



Overall, all the temperature profiles have the same shape. Particularly, between 80m and 

70m for instance, the above plot confirms that the AUV CTD has captured the 

temperature variation between the edges of the water slice, as discussed in IV.4.3.3. The 

profile measured by the vehicle when it dives at the western edge of the water slice 

matches that from the western CTD cast, whereas, when the vehicle climbs, at the eastern 

edge, the profile matches that from the eastern cast. In a same way, the time-dependent 

variation discussed in IV.4.3.3 is confirmed here because, when the vehicle dives, the 

profile approximately corresponds to the cast performed just before the vehicle was 

launched, and when it surfaces, the profile matches that form the cast performed when the 

vehicle was recovered. 

Nevertheless, some discrepancies appear, which may be explained by offsets in the 

temperature and pressure sensors of both CTDs. To be able to achieve a correct 

comparison between the data from both CTD, the sensors would probably have to be 

calibrated, particularly the AUV CTD, that has not been calibrated for years. 

We can also try to compare the reconstructed temperature map (Figure 65) with the 

profiles measured from shipboard CTD casts. 

152 



0 

-10 

-20 

-30 

-40 
I 
.<:: -50 
'5. 
Q) 

0 
-GO 

-70 

-80 

-90 

-100 
Cast 2 

0 

-10 

-20 

-30 

-40 

-50 

-GO 

-70 

-80 

-90 

-100 

0 

I 
-10 

;$ • - ~ 
• ~ "";, '.,. • j • -20 

-30 

-40 

-50 

-GO 

-70 

-80 

-90 

200 400 600 
East Coordinate (m) 

Figure 65: Temperature Maps Comparison 

(from A UV and Shipboard CTD Measurements) 

0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 

-80 

-90 

(1): 26°4.4'N, 80°3.0'W, 16:30 UTC, (2): 26°3.6'N, 80°4.0'W, 17:00 UTC, 

(3): 26°7.9'N, 80°2.1'W, 22:00 UTC 

Temp. 
(degC) 

20 

18 

16 

14 

Although it is not easy to make a formal comparison, some similarities are nevertheless 

noticeable. Particularly, the left hand side of the map, that mainly depends on the 

temperature sensed by the vehicle when it dives at the beginning of the mission, is really 

close to the profile shown by the second cast, performed at the launch point. In a same 

way, the top of the map, rather influenced by the temperature at the end of the mission is 

similar to the profile shown by the third cast, performed once the vehicle was recovered. 

In between, it is more difficult to compare the plots because both the spatial variations 

shown by the two first casts, and the temporal variations shown by the third cast appear 

on the map. 

153 



IV.4.5. Conclusions 

The conclusions that can be drawn from the March, 2003 mission are: 

- As during the previous missions, the vehicle performed the pattern it had been 

programmed for well. Moreover, because this time that pattern was defined differently, 

the vehicle didn't try to correct its drift, and then really remained in the same water 

column throughout the whole mission. 

- This time, all the required variables were correctly acquired by the AUV. The only 

piece of data that is missing is that from the tracking system. This information would 

have been useful to more accurately obtain the absolute path of the vehicle and 

compute its velocity. 

- The different temperature datasets all show a water column with an almost constant 

gradient profile throughout the first lOOm. There is no localized strong thermocline. 

- It has been possible to reconstruct a temperature ·profile and a temperature map from 

the data acquired from the AUV, and both are relatively similar to what was measured 

by shipboard CTD casts. 

- All temperature datasets show small horizontal variations of the temperature profile, 

but these variations are not as important as expected. 

- The water current profile didn't show any significant vertical variation of the current. 

Anyway, since no strong thermocline was present, important current variations related 

to the thermocline were unlikely to be found. 

- Overall, this mission proved that the method used for the experiment is valid, and 

allows the reconstruction of a temperature map, which was the primary goal. 

154 



To improve data acquisition and processing, it would be necessary to recalibrate the 

CTDs together, to allow a more accurate comparison. Again, it would also be desirable to 

have tracking system data to process. 

IV.5. Conclusions 

After these three missions, the overall method for the experiment and data analysis has 

now been validated. Different problems have been discovered and fixed so that now the 

experiment can be performed satisfactorily. 

These experiments mainly showed that: 

- In case there existed a strong localized thermocline, the temperature gradient within 

that layer was of the order of a few tenths of a degree per meter, with maximum 

gradient as large as 1 °C/m. The mixed layer showed some temperature gradients 

approximately 50 times smaller. Sometimes, a shallow thermocline with gradients 

around 0.1 °C was present, but this layer was very thin. 

- During the third experiment, the temperature variation in the upper lOOm of the water 

column was unfortunately homogeneous. There wasn't any strong localized 

thermocline. Thus, the temperature map obtained from that experiment cannot really 

be used as an input for a thermocline tracking controller simulation. Indeed, this kind 

of map could be used to test a tracking controller to analyze its behavior in the absence 

of thermocline to track, but cannot be used for the development of the controller. 

- As far as the observation of the conductivity profile of a water column is concerned, it 

was noticed that a layer of rapid variation of conductivity with the depth was often 

present below the top of a thermocline. Nevertheless, this was not always the case, and 

155 



the magnitude of these conductivity gradients vary a lot from one CTD cast to another. 

Therefore, no relation systematic enough to be used to help locate the thermocline has 

been found. 

- Finally, as far as the water current profile is concerned, we were interested in knowing 

if some important current variations related to a thermocline could be observed. 

Unfortunately, during the only mission when the current profile was acquired, no 

localized thermocline was present. 

From the observations performed during these experiments, it is possible to say that, to 

obtain significant information: 

- A mission plan similar to that of the third mission should be used, 

- The experiment should probably be run in Fall or early Winter, so that there exists a 

strong localized thermocline. Nevertheless, during Winter, the main thermocline is 

likely to be found deeper, which may be a drawback. 

It may be of interest to investigate the possibility of more significant horizontal variations 

of the thermocline at a different location. Particularly, running the mission throughout a 

water slice oriented towards the North-South direction may be considered. 

156 



V. Thermocline Tracking Simulation 

This chapter describes the simulation of the tracking of a thermocline with an AUV. The 

main requirement, in order to have an AUV track a thermocline, is a controller that 

maintains the vehicle within the thermocline layer. To facilitate the design and thorough 

testing of such a controller, a simulation platform is developed, on which various 

controllers can be tested. The test platform is then used to consider several controllers. 

Finally, based on the observations of various simulations, some guidelines for further 

improvements and subsequent implementation of an effective thermocline tracking 

controller on an AUV are discussed. 

V. 1. Description of the Problem 

The following section discusses the motivations for the simulation of thermocline 

tracking with an AUV, and more particularly for the design of a complete simulation tool. 

A typical thermocline tracking mission to be simulated is then described, from which the 

requirements for the simulation are derived. 

V .1.1. Motivations 

Once again, the goal is to design a controller that would make an AUV follow a 

thermocline layer in the ocean. For a controller to be sea-worthing, exhaustive tests are 

required. In order to facilitate both the design and testing of such a controller, significant 

157 



time was devoted to various simulations. 

Using a simulator, simple situations of thermocline tracking can be performed for the 

early stage of the design of the controller. Then, once a successful tracking algorithm has 

been developed, it can be tested on more complex thermocline patterns, so as to improve 

the efficiency of the controller. Finally, critical situations like the absence or the 

disappearance of the thermocline can be simulated to check the way the controller reacts

in such cases. 

To allow an easy design, test and modification of several controllers, it has been decided 

to create a general test platform. That platform provides a tool that includes all the 

components required so that a standalone controller can be tested. Although there already 

exists a complete Hardware In the Loop (HIL) simulator for the Ocean Explorer AUV, it 

is too complex for the early stage of the development of a controller. Moreover, to allow 

testing using the HIL simulator, the controller is required to be operational and integrated 

to the AUV software. Therefore, to satisfy the needs of the early stage of the controller 

design, it is considered sufficient to have a more basic simulator. Once an efficient 

control method is worked out, the controller can be integrated to the vehicle software. It 

will then be possible to use the HIL simulator to thoroughly test and fine-tune the 

controller before it can be validated for a first at-sea test. 

V.1.2. Typical Mission to Simulate 

The typical Thermocline Tracking Mission we consider would take place as follows: first, 

a region of interest as well as an horizontal direction for the tracking are decided. The 

vehicle is then programmed to run a straight line in the chosen direction. The thermocline 

158 



tracking controller only handles the vertical control of the AUV, acting either as a depth 

controller or a high-level fins controller, depending on the chosen method. 

Then the vehicle is launched. It first dives to the maximum predefined depth, while 

measuring the temperature profile of the water column. Once it reaches the maximum 

depth, the AUV decides at which depth it has crossed the part of the thermocline to track, 

based on the temperature profile it just acquired. Once that target depth is defined, the 

vehicle climbs to reach it. 

Then, when the target depth is reached and the vehicle is in the thermocline, the AUV has 

to travel straight ahead, while tracking the thermocline layer. To do so, given that a 

thermocline is defined considering the temperature above and below it, the vehicle has to 

somehow sense the temperature above and below the assumed depth of the thermocline. 

One way to enable the AUV to compare the temperature at different depths is to have it 

follow an oscillating pattern centered on the assumed depth of the thermocline to track. 

The mean depth of the oscillations then varies with the thermocline. 

From the above discussion, the whole thermocline tracking mission is broken down into 

three phases as shown in Figure 66: 

- First phase: The AUV dives to the maximum depth while measuring the temperature, 

and computes the target depth at which the thermocline is likely to be, 

- Second phase: The AUV climbs up and reaches that target depth, 

- Third phase: The AUV actually tracks the thermocline, oscillating around its mean 

depth. 

159 



Chosen Diredion for the Survey ~ 

Poth Followed by tho AUV 

Depth --~~----------------~ 
Phasel Phase2 Phase3 
Diving Reaching Tracking 

Figure 66: Sketch of a Typical Thermocline Tracking Mission 

V.1.3. Simulation Needs 

Based on the considerations described above, the simulation needs can be defined: 

- It is only necessary to consider a problem in two dimensions, forward and down. The 

third direction is assumed to be handled by a heading or steering controller. 

- To be able to simulate the tracking of a thermocline with an AUV, it is necessary to 

simulate a water column showing a thermocline, the AUV cruising within, and a CTD 

that makes the AUV sense the temperature. It is also necessary to simulate the 

thermocline tracking controller, which is considered separately. 

- To maximize the amount of information obtained from the simulation, it is necessary 

to store the time history of a number of variables, such as the trajectory of the AUV. 

- Finally, it is necessary to choose a platform and environment for the simulation. Here, 

a simulation is run with Matlab on a PC because it not only allows an implementation 

160 



as easy as with many other languages, but also it is a convenient environment for the 

pre-processing of the required input data, as well as the post-processing and display of 

the results. 

Figure 67 presents a basic overview of the structure of the simulator. 

Simlutation Tool 

Thermocline Tracking Controller Test Platform 

2·0 AUV Simulation 

2·0 Water Column 
Simulation 

(Temperature} 

Other Modules 

--

Results: Simulation Variables 
Time History 

11(-----)tiThermocline Tracking 
Controller to Test 

Figure 67: Simulator Structurt; Overview 

V.2. Simulator Design and Implementation 

To allow for an easy design, implementation and modification, the simulation tool 1s 

broken down into several modules, each handling a single independent task. The two 

main requirements are the simulation of the vehicle and that of a water column. The 

design of the modules that handle these two tasks is discussed hereafter. The other 

required modules are then listed, followed by a description of their interactions and a 

summary of their implementation. 

161 



V .2.1. Method 

The simulation to be designed is based on the simulation of AUV motion throughout a 

water column based on its temperature characteristics. Therefore, the core of the 

simulation is composed of an AUV motion simulation, and a water slice simulation. 

V.2.1.1. AUV Motion Simulation 

For the purpose of the work we intend to do here, it is not required to have an accurate 

motion simulation. A coarse, yet realistic model is sufficient for the early design of a 

controller that, once sufficiently efficient, can then be more accurately tested using the 

HIL simulator. For this reason, the AUV motion simulation is based on a simplified 

version of the classical Six Degrees Of Freedom (6-DOF) equations of motion 

summarized hereafter. Before discussing the equations of motion, a reminder on the 

frames of reference used is given. Then the 6-DOF equations of motion are discussed, 

followed by the method used to compute the AUV trajectory based on these equations. 

V.2. 1. 1. 1. Frames of Reference 

Consider two different frames: 

- The geographical or local-level frame, fixed to the Earth, is usually oriented along the 

North, East and Down directions, as shown in Figure 68. The North-East plane is 

parallel to the surface of the Earth, and the Down direction is normal to that surface. 

The frame can be centered anywhere, and the center is commonly chosen at the 

starting point of a mission. For application of the equations of motion to underwater 

vehicles, the effect of earth rotation can be neglected, and the earth can be assumed to 

162 



be flat [53]. This frame is therefore approximated as a Cartesian inertial frame. 

Top view 

X North 

~~ 

ZDown 

, 
YEast 

Figure 68: 3-D Geographical 

Frame 

- The body-fixed frame, shown in Figure 69, oriented along the forward, starboard and 

down axis of the vehicle, can be centered anywhere, but is usually placed either at the 

center of gravity or at the center of geometry of the vehicle. Although it is easier to 

write the equations in a frame whose origin is at the center of gravity, it is necessary to 

account for the fact that this center of gravity is displaced any time the vehicle is 

modified, for instance by addition of some weight or foam for trimming purpose. 

Z Down 

y 
Starboard 

Figure 69: Body-Fixed Frame 

In the case discussed here, the problem is 2-Dimensional. We can decide to perform a 

yaw rotation to use a local-level frame with the x andy-axis oriented towards the 

163 



alongtrack and crosstrack direction instead of the usual North and East. Doing so, the x 

and z axis of the body-fixed frame remain in the plane defined by the x and z axis of the 

local-level frame, and we can get rid of they axis of both frames, as appears in Figure 70. 

The center of that local-level frame remains at the starting point. 

XL Alongtrack 

X8 Forward 

ZL Vertical 

Figure 70: Local-Level (x4 ZL) and Body-Fixed (xB, ZB) Frames for 

Simulation 

This configuration shows a negative pitch B 

The body-fixed frame is obviously not inertial, since it is in translation and rotation with 

respect to the local-level frame defined above, which is assumed inertial for the needs of 

that study. 

V.2. 1. 1.2. Equations of Motion 

The vehicle motion simulation is based on solving the simplified, linearized and 

uncoupled Six Degrees Of Freedom (6-DOF) equations of motion, of which only the 

longitudinal part is considered. The whole mathematical derivation of the equations [53] 

is not detailed here. Rather, the method and assumptions used to derive and simplify these 

equations are summarized. 

164 



The derivation of the 6-DOF equations of motion is based on the use of Newton's second 

law of dynamics for translation and rotation in an inertial frame of reference. 

(Eq. 5.1) 

Where fa and Ta are the applied forces and torques, and X is the position and H the angular 

momentum in an inertial frame. 

Considering each particle of the vehicle, and writing the time derivatives of their position 

and angular momentum, the acceleration and rate of change of angular momentum are 

expressed as functions of the linear and angular velocities of the body-fixed frame. The 

expressions are then simplified assuming that the vehicle is a rigid body. Therefore, each 

particle is fixed in the body-fixed frame. Although this is true for the body of the vehicle 

itself, in case of a flooded vehicle such as the OEX, the water is moving inside the body. 

It is nevertheless possible to assume that the motion of the water inside the shell of the 

vehicle can be neglected. Further assuming no changed in the entrained water, the mass of 

each elementary particle can be considered invariant with time. Therefore, the mass and 

mass distribution of the vehicle is constant, which allows the simplification of the 

summation of the equations over the whole rigid body. 

These 6-DOF equations for a rigid body can be further simplified by choosing the center 

of the body-fixed frame at the center of gravity of the vehicle, and considering that the 

vehicle is symmetric with respect to its major axis. This requires that the body-fixed axes 

correspond with the axes of inertia. Although this is not always the case when the body-

fixed axes are centered at the center of gravity, this is usually considered a reasonable 

assumption, mainly because of the symmetric shape of the vehicle. These two 

165 



assumptions allow to write that the position of the center of gravity in the body-fixed 

frame is zero, and that the inertia tensor is diagonal. This moreover allows to uncouple 

the equations for longitudinal and lateral motions, considering only the forward and 

downward motion, the pitch and the action of the stemplanes for the longitudinal motion. 

This gives the simplified, uncoupled 6-DOF equations of motion, of which only the 

3-DOF part describing the longitudinal motion is further considered. 

These equations contain products of dependent variables, therefore they are generally 

non-linear. Two more assumptions are required to obtain linear equations: firstly, the 

motion of the vehicle is decomposed in a mean equilibrium motion, or operating point, 

and a perturbation that accounts for the small dynamic motion about the equilibrium. In 

the equilibrium condition, the mean velocities, angular rates and mean roll angle are 

assumed to be zero, except the forward velocity. Secondly, assuming that the velocities, 

angular rates and attitude angles perturbations are small enough so that their products, 

squares and higher order terms can be neglected compared to the perturbations 

themselves yields to the simplified uncoupled linearized equations of motion. 

Then it is necessary to estimate the forces and moments acting on the vehicle. These 

come from three origins: the hydrodynamic forces and moments, and the gravity and 

buoyancy. 

Hydrodynamic forces and moments are due to the action of the surrounding fluid on the 

vehicle body. In steady flight, they result from relative motion between the vehicle and 

the fluid mass, or from accelerated flow produced by the deflection of the control 

surfaces. The forces and moments are therefore functions of the relative velocity, 

acceleration, position and control surface deflection. Assuming that these forces and 

166 



moments are continuous functions of these different variables, each force and moment 

can be expanded in Taylor series about the equilibrium point. Because of the small 

perturbation assumptions, second and higher order terms can be neglected. Moreover, 

because of the symmetry assumptions that yielded an uncoupled model, the forces and 

moments influencing the longitudinal motion only depend on the longitudinal motion. 

This allows to simplify a lot the expressions for the hydrodynamic forces and moments. 

Then the gravity and buoyancy terms have to be considered. These are known in the 

local-level frame, it is just necessary to obtain their expression in the body-fixed frame 

using the appropriate transformation matrix, which here only depends on the vehicle 

pitch. 

Now that on one side the forces and moments, and on the other side the accelerations and 

rate of change of momentum have been derived and simplified, it is possible to equate 

both expressions according to equation 5.1. The equilibrium forces and moments cancel 

one another, and only those due to the small perturbations remain. 

This gives the complete simplified uncoupled linearized equations of motion for the small 

perturbations of longitudinal (also called symmetrical) motion. Finally, these equations 

can be rewritten in a single differential equation in a matrix form: 

M.X+D.X=C.8s 
(Eq. 5.2) 

where M is the mass matrix, D is the drag matrix, C is the control matrix, 

8s is the input stemplane angle, and X is the state (or unknown) vector. The 

expressions for M, D and C are not detailed here. 

167 



The state vector X is: 

u w (Eq. 5.3) 

where: 

u is the perturbation of the forward velocity in the body-fixed frame, 

w is the perturbation of the downward velocity in the body-fixed frame, 

q is the perturbation of the vehicle angular velocity about its y axis, 

f) is the perturbation of the vehicle pitch. 

The expressions of M, D and C depend on the characteristics of the vehicle, particularly 

its geometry and a set of non-dimensional hydrodynamic coefficients [54]. To use these 

coefficients in the equation, it is necessary to dimension them, using both the geometry of 

the vehicle and the equilibrium conditions, particularly the mean forward velocity UO. 

V.2. 1. 1.3. Solving the Equations of Motion 

The above equation can be solved using different methods. In our case, we transformed 

this differential equation into a difference equation as follows. Using the definition of the 

time derivative: 

. () . [X(t+6t)-X(t)] 
X t = hm -------

or->0 6t 
(Eq. 5.4) 

and defining a timestep T sufficiently small, the above can be approximated as: 

. ( ) [X ( ( n + 1) T)- X ( nT)] 
X nT ~~-------~ 

T 

or 

X(nT)~X((n-1)T)+T X((n-1)T) 

(Eq. 5.5a) 

(Eq 5.5b) 

168 



rewriting equation 5.2, assuming that the inverse of M exists, and using equation 5.5 

yields to the following two difference equations: 

X((n-l)T)=-M- 1.[D.X((n-l)T)+C.8 ((n-l)T)] 
s 

(Eq 5.6a) 

X ( nT) R:l X ( ( n- 1) T) + T X ( ( n- 1) T) (Eq. 5.6b) 

Then at each iteration, the previous derivative of the state vector is computed based on 

the previous state and input using equation 5.6a, then the actual state is computed based 

on the previous state and state derivative using equation 5.6b. We then have to define the 

initial conditions. Here, the initial state vector is set to 0. 

This allows the solving of the time history of the state vector X, which includes the 

forward and downward velocities we need. But these are the values of the perturbation 

about the equilibrium, in the body-fixed frame. Two more steps are then required to 

obtain the actual velocities in the local-level frame: 

U body (nT) = UO + u(nT) 

W body (nT) = w(nT) 

gives the total velocity in the body fixed frame, and 

(Eq. 5.7) 

[ ~] (nT)= C~(nT). [~body] (nT) (Eq. 5.8) 
body 

gives the velocity in the local-level frame. C~ ( nT) is the transformation matrix from 

body-fixed to local-level frame at time nT: 

[ 

cos ( e ) o sin ( e ) ] 
C~(nT)= 0 1 0 

--sin(e) 0 cos(e) !J=!J(nT) 

(Eq. 5.9) 

169 



Then, using the same approximation as between equations 5.4 and 5.5, we write 

[:J (nT)R; [:J ((n-1)T)+T [ ~ J ((n-l)T) 

and [:J (0)= [::] 

to compute the trajectory (x,z) of the vehicle in the local frame. 

(Eq. 5.10) 

(Eq. 5.11) 

Here, x0 is set to 0 since we decided to place the local level frame at the origin of the 

trajectory, but zo is chosen to be 10m so that, setting the surface at z=O, we don't have to 

consider the diving phase which may be critical, since in such a case the vehicle is at the 

interface between air and seawater. 

Providing the characteristics of the vehicle to simulate [54] and the initial conditions, we 

are then able to obtain the whole trajectory of the vehicle. 

V.2.1.2. Water Slice Simulation 

The second main requirement for the simulation is a temperature map of a water slice. 

This map can either be totally synthetic, and generated as desired for a specific simulation 

need, or be based on the interpolation of real data acquired at sea, for instance during a 

Thermocline Survey Experiment. Synthetic data are useful for the early stage of the 

design of a controller, or its coarse tuning, while real data are required for finer tuning 

and validation. As explained before, the simulation discussed here only considers a 

2-Dimensional problem. Therefore, a 2-D map of a water slice is necessary. The goal is to 

be able to obtain the temperature at a point identified by its horizontal and vertical 

coordinates. Two different things are then to be considered: the generation and storage of 

a map, and its use by a CTD simulator. 

170 



V.2. 1.2. 1. Generation of a Temperature Map 

A 2-D map of temperature is basically a plane scalar field. The easiest way to store such a 

field is to use a 2-D matrix of floating point numbers. A simple lookup in the matrix, 

using the coordinates of a point as the raw and column indices gives the temperature. But, 

using such storage method, no continuous map can be created. Rather than interpolating 

nearby measurements, it was decided to increase the resolution of the map, and round off 

the coordinates of a point to the nearby point for which a measurement is available. 

Particularly with real measurements, it is important to preserve the measurement noise in 

order to realistically simulate the water column. This requires to use a map resolution as 

high as possible, and no smoothing by interpolation or approximation. The drawback of 

this method is that using high resolution may create a huge map. A large map takes some 

time to be loaded, and uses a lot of memory, and the time spent switching memory pages 

reduces the processing speed. 

When large maps are used, the memory requirements can be reduced by not storing 

unnecessary data: the simulated vehicle is supposed to dive from the surface to the 

maximum depth and then follow the thermocline around the middle of the water column. 

If the simulation is successful, the vehicle then doesn't need to measure the temperature in 

the upper and lower part of the water column except at the beginning when it is diving. 

The required map therefore has a shape as shown in Figure 71. 

171 



,---------------------------------------------, 
Surface 

Max Depth 

Origin Max length 

Figure 71: Sparse Temperature Map 

A map with such a shape can be stored, considering that the temperature outside the 

relevant area is zero, in a sparse matrix. This can really reduce the memory requirements. 

The map is then implemented as a file containing a structure made of: 

- A 2-D matrix, possibly sparse, that represents the temperature map itself, 

- Two floating point numbers representing the resolution in both x and z direction so 

that the CTD simulator knows how to read the map. 

A particular case is defined when the resolution along the x direction is set to zero. This 

means that only a vertical profile is stored and that the map is homogeneous horizontally. 

This is useful to easily create small synthetic data sets for basic simulations in a water 

slice with no horizontal temperature variation. 

V.2. 1.2.2. Use of the Map bv the CTD Simulator 

For the CTD simulator to provide the temperature, it is then necessary to look up the 

temperature in the map based on the position of the AUV. Given the resolution dx and dz 

of the map, and the position x and z of the AUV, the temperature Tat that location on the 

172 



map is then given by: 

T = Map(round(xldx), round(zldz)) (Eq. 5.12) 

Where round(x) is x rounded to the closest integer value. 

The CTD Simulator also provides the measured depth Zmeasured which is first set to the real 

depth z: 

Z measured = Z (Eq. 5.13) 

Then, to accurately emulate a CTD, it may be desirable to add some errors in the 

measurements. For the needs of the simulation, it is considered that errors modeled by 

static offsets and random noise are sufficient. However, because the thermocline tracking 

problem is really based on the measurements of relative variations of depth and 

temperature, possible offsets do not affect the behavior of the system. Therefore, no offset 

is considered. The random noise is simply chosen to have a normal distribution, with zero 

mean, and a standard deviation defined by the operator as the noise level for temperature 

(noiseLevelr) and depth (noiseLeveld) measurements. The noise on each sample of the 

temperature (noiser) and depth (noised) are then computed as 

noiser = randn () * noiseLevelT 

noised = randn ( ) * noiseLevel d 

(Eq. 5.14) 

(Eq. 5.15) 

where randn() returns a number drawn in a random sequence with normal distribution, 

zero mean and unity standard deviation. 

Then the measurements computed in equations 5.12 and 5.13 are modified as: 

T =T + noiseT 

z measured = Z measured + noised 

173 

(Eq 5.16) 

(Eq. 5.17) 



Finally, taking into account the finite resolutions of the CTD, set to 1cm and I0-3°C, the 

final values returned for temperature and measured depth are computed as: 

T = round ( 1000 X T )11 000 (Eq. 5.18) 

zmeasured =round ( 100 X Zmeasured )1100 (Eq. 5.19) 

The final equations used to simulate the CTD are therefore: 

round{ 1000 X [Map(round(xldx), round(zldz)) + randn() X noiseLevelT]} T = ___________________________ ___;__ 

1000 

(Eq. 5.20a) 

round { 100 X [ z + randn () X noiseLevel d]} 
Z measured = 1 00 (Eq. 5.20b) 

V.2.1.3. Other Main Requirements 

The other important tasks are described hereafter. 

V.2. 1.3. 1. Logger 

For the simulation to be really useful, it is necessary to retain and output the time history 

of a number of variables. Given the number of variables, the duration and timestep of the 

simulation, storing this data in the memory would make the size of the used memory 

grow rapidly. Having the memory loaded that much reduces the processing speed a lot. 

Since there is no need for the simulator itself to retain the whole variable history, there is 

no need to have these variables saved in the directly accessible memory. Rather, it is a 

more efficient way to proceed to save the data in a file. To perform that task, a logger, 

that regularly writes the content of a certain number of variables to a file is required. The 

logger output is decided to be a text file, which although is larger than a binary file, 

174 



presents the advantage that it can be read by any application without specific processing. 

Particularly, the file can be opened with a text editor if we just want to have a quick look 

at the data. 

V.2. 1.3.2. Fins Controller 

The thermocline tracking controllers to be tested can either act as depth controllers or 

directly as fins controllers. In case it acts as a depth controller, the desired depth setpoint 

it outputs has to be translated into a stemplane position command. This task is handled by 

a fins controller simulator. For the needs of the simulation considered here, it is not really 

necessary to have a very fast, accurate and efficient controller. For that reason, a basic 

bang-bang controller is chosen. It is based on the following equation: 

8 = 8 · sign ( d - d ) s sMax desired measured (Eq. 5.21) 

where 8 s is the stem plane angle, 8 sMax is a predefined maximum value for that 

angle, which is here set to 20°, ddesired is the desired depth and dmeasured is the 

measured depth, which may differ from the actual depth. Indeed, this value comes from 

the CTD measurements, and thus has a smaller resolution than that kept for the motion 

simulation, and may moreover take into account a simulated measurement noise. 

In order to limit the overshoot, the controller equation (5.21) was modified as: 

8 
8 = ~ · si n ( d - d ) 

s 5 g desired measured if 2m> I d desired- d measured I > 0.2m (Eq. 5.22a) 

8 
8 = sMax • sign ( d - d ) :; 50 desired measured if o. 2m > I d desired - d measured I (Eq. 5.22b) 

8 = 8 · sign ( d - d ) s sMax desired measured otherwise (Eq. 5.22c) 

175 



Although such a controller is very simple and obviously not the most efficient, it is 

sufficient for the needs of the simulation, and is indeed able to control the vehicle to the 

desired depth in a relatively small amount of time, without significant overshoot or 

steady-state error. Later, if a more efficient controller is desired for the simulation, the 

fins controller can be modified so as to emulate that used in the OEX. 

V.2. 1.3.3. Scheduler 

Because the simulation considers a discrete time, the execution of each task has to be 

regularly scheduled. Moreover, the timestep required for each task is not necessarily the 

same. For instance, the AUV motion simulation requires a relatively small timestep, so 

that the differential equation 5.4 can be correctly approximated by the difference equation 

5.5, whereas it is not necessarily interesting to log the data at the same high rate. For that 

reason, each task has to be performed regularly at its own pace. Therefore, it is necessary 

to correctly schedule the execution of all tasks. Moreover, most of the tasks do not really 

consider the existence of an absolute time, but rather some iterations, separated by 

timesteps. Thus, the scheduler also has to maintain an equivalence between iteration 

number and simulated time. The role of that scheduler is to first initiate the simulation, 

then count the simulated time while supervising the execution of each task at the required 

pace, and finally terminate the simulation. Throughout the execution, it also monitors the 

indication of errors. In case an error occurs, it properly aborts and terminates the 

simulation. 

176 



V.2.2. Implementation 

Based on the theory and general considerations discussed above, the simulation tool is 

implemented as a set of Matlab functions and scripts as described hereafter. 

V.2.2.1. Required Modules 

Table 13 lists the modules implemented in the simulation tool, along with a summary of 

the purpose, input and output of each module. 

177 



Module Task Needs Produces 

Simulation Initializes the simulation All user-defined Indication of errors 
initialization parameters 

Simulation Terminates the simulation Identification of each Indication of errors 
termination open file 

Scheduler Schedules the execution of Scheduling parameters Indication of errors 
other modules, and stores 
the common variables 

Motion Simulates the motion of Previous motion history, Motion of the 
simulator the AUV and position of the AUV at the next 

stemplane instant 

CTD Simulates the AUV CTD The position of the AUV Temperature and 
simulator and a temperature map depth readings 

Logger Logs selected variables in The variables to log, and Output file 
a file an output file 

Safety Simulates the safety Variables to monitor, Indication of errors 
simulator procedures of the vehicle particularly the depth 

Fins Controls the stemplane, Desired and actual depth Stemplane position 
controller based on a depth 

command 

Thermocline Controls the AUV to track AUV depth, CTD Either a desired 
tracking the thermocline temperature and other depth or a desired 
controller<ll variables to define stemplane angle 

Summary Creates a summary of the Parameters, conclusions, Summary file 
generation simulation and an output file 

Display Displays the results of the Logger and CTD map Summary plot 
results simulation files 

Table 13: Simulation Modules Description 

( 1 ): Again, the thermocline tracking controller is not really considered a part of the simulation tool itself 

What is rather considered here is an interface for that module. 

178 



V.2.2.2. Module Interactions 

Figure 72 shows the different modules and their interactions. 

CTD 
Nap 
File 

,..." 
"" --- ~.,. .. 

/ ,. ---. 
( T hermoc~ne \ 

\ ~~~~:-:::::. 

Figure 72: Simulation Modules Interactions 

Summary 
Fae 

Logger 
File 

In Figure 72, the dashed links indicate an alternative choice: the fins controller can be 

optionally used, depending on the type of thermocline tracking controller implemented. 

V.2.2.3. Simulation Interface 

The interface of the simulator, from the operator point of view, includes the simulation 

parameters and the simulation output. 

179 



V.2.2.3. 1. Simulation Parameters 

The parameter of the simulation that are to be defined by the operator are listed in 

Table 14. 

Parameter Name Comments· 

Scheduler timestep Scheduler _dt Must be smaller than any other timestep 

Motion simulation timestep Motion_dt 

CTD simulation timestep CTD_dt 

Fins controller timestep Fins_dt 

Thermocline tracking Tracking_dt 
controller timestep 

Logger timestep Logger_dt 

Safety monitor timestep Safety_dt 

Simulation duration Sim_duration 

CTD map file CTD_File Includes the map and indications of its 
resolution 

Noise level on temperature NoiseLevelT Represents the standard variation of a 
measurements normal distribution 

Noise level on depth NoiseLevelD Represents the standard variation of a 
measurements normal distribution 

Maximum depth for Max_d_track 
thermocline tracking 

Minimum depth for Min_d_track 
thermocline tracking 

Maximum safety depth Max_d Should be deeper than Max_d_track 

AUV initial forward velocity uo 
Logger file name Logger _file 

Summary file name Summary _file 

Table 14: Simulation Parameters 

180 



V.2.2.3.2. Simulation Output 

The simulation output consists of four parts: 

- Messages displayed on the console that provide critical information and summarize the 

progression of the simulation once in a while, 

- A window showing a plot of the vehicle trajectory over the temperature map, 

- A summary file that lists a reminder of the parameters and a brief summary of the 

simulation. See Appendix for an example of summary file as generated by the 

simulation tool. 

- A logger file that contains the time history of as many variables as desired. 

V.2.2.4. Thermocline Tracking Interface 

Here we are considering the interface between the thermocline tracking controller and the 

whole simulation tool. The thermocline tracking controller is a separate module that is 

interfaced with the simulation tool. It can get access to any desired variable stored in the 

blackboard. In tum, the thermocline tracking controller outputs either a desired depth or a 

stemplanes setpoint, depending on the type of controller considered. Moreover, it is 

possible for the controller to output additional variables to be recorded by the logger. 

V.2.2.5. Implementation of Each Module 

In this part, the implementation of each module is summarized. 

V.2.2.5.1. Simulation Initialization 

The simulation initialization module checks all the parameters, creates the required 

output files, and loads the CTD map. In case of error, the simulation is aborted. Once 

181 



every parameter has been checked, a header is written in the summary file, listing all the 

parameters. Then, the execution returns to the scheduler to begin the computation. This 

module is implemented as the Matlab function summarized in Table 15. 

Function: Simlnit Variables Comments 

Input Variables The inputs of this function consist of all the 
user-defined input parameters of the 
simulation. These parameters are listed in 
Table 14 

Output Variables Error Simulation error 

f_Summary Handler to the summary file 
--

f_logger Handler to the logger file 

CTD_Map CTD map and resolution 

Table 15: Simulation Initialization Implementation Summary 

V.2.2.5.2. Simulation Termination 

This module writes a message indicating the end of the simulation in the summary file, 

closes all open files, and frees up some memory. It is implemented as the Matlab function 

summarized in Table 16. 

Function: SimFinish Variables Comments 

Input Variables Error Simulation error 

f_Summary Handler to the summary file 

f_logger Handler to the logger file 

Output Variable Error Simulation error 

Table 16: Simulation Termination Implementation Summary 

V.2.2.5.3. Scheduler 

This module is the core of the simulation tool. It initializes the simulation, then schedules 

the execution of each other module, and finally terminates the simulation. It moreover 

182 



creates the correspondence between iteration index and simulated time. Finally, 

throughout the simulation, the scheduler monitors the indication of errors reported by the 

other modules. In case of errors, it properly aborts and terminates the simulation. 

The scheduler is implemented as the Matlab function described in Table 17. 

Function: SimSchedule Variables Comments 

Input Variables The inputs of this function consist of all the 
user-defined input parameters of the 
simulation. These parameters are listed in 
Table 14 

Output Variable Error Simulation error 

Table 17: Scheduler Implementation Summary 

V.2.2.5.4. Vehicle Motion Simulation 

This module generates the instantaneous position, velocity and attitude of the vehicle, 

depending on its previous motion history, its dynamics, and the command applied to its 

control surfaces. It is based on the implementation of the equations 5.6 to 5.11 discussed 

in V.2.1.1.2. This module is implemented as the Matlab function summarized in 

Table 18. 

183 



Function: Sim VehicleMotion Variables Comments 

Input Variables ui_prev Previous alongtrack velocity 

wi_prev Previous vertical velocity 

ub_prev Previous forward velocity 

ubd_prev Previous forward acceleration 

wb_prev Previous downward velocity --
wbd_prev Previous downward acceleration 

q_prev Previous pitch rate 

qd_prev Previous pitch rate derivative 

pitch_prev Previous pitch 

x_prev Previous alongtrack position 

z_prev Previous depth 

SternAngle Stemplanes position 

uo Equilibrium forward velocity 
-

Motion_dt Motion simulation timestep 

Output Variables X New alongtrack position 

z New depth 

ui New alongtrack velocity 

wi New vertical velocity 
---

ub New forward velocity 

wb New downward velocity 
--
ubd New forward acceleration 

wbd New downward Acceleration 

q New pitch rate 

qd New pitch rate derivative 

pitch New pitch 

error Simulation error 

Table 18: Motion Simulation Implementation Summary 

Most of the variables used for each iteration, such as the velocities in the body-fixed 

frame, are implemented as inputs and outputs so that they are visible from outside the 

function in order to be recorded by the logger. This was used for testing of the motion 

184 



simulation. It also allows to monitor these variables during the development of a 

thermocline tracking controller. For instance, it is interesting to monitor the vehicle pitch, 

since it has been observed that the accuracy of the CTD, which is the main sensor on 

which the tracking algorithm relies, can be degraded by turbulences as soon as the vehicle 

pitches significantly. A simple modification would make possible to statically retain most 

of these variables within the motion simulation function so as to reduce the number of 

parameters exchanged between modules if it is considered that these variables do not 

need to be logged anymore. 

V.2.2.5.5. CTD Simulation 

The purpose of this module is to simulate the CTD, providing the simulated vehicle with 

measurements of the depth and temperature, according to equations 5.20a and 5.20b. A 

CTD capable of averaging several samples is implemented. If the CTD samples at a 

frequency /cTD, and averages Navg samples, its output varies at a frequency !output· 

f - f IN Output - CTD avg (Eq. 5.23) 

To implement this averaging, the module is called every CTD _dt. At each execution, it 

computes a new sample, and averages it with the previous ones. After Navg calls, the 

output takes the value of the average, and the averaged data is reseted. 

It is also interesting to compute the depth rate and the vertical temperature gradient since 

these values are likely to be necessary for a thermocline controller. It is reasonable to 

implement these computations in the CTD simulator, provided that the values are 

computed based on the simulated CTD measurements, possibly noisy. The measured 

depth rate Zrate and temperature gradient Tgradient are computed using: 

185 



_ Z measured - Z measured , previous 
zrate-

dtXN 
(Eq. 5.24) 

avg 

T-T . T = ----~pt:.:..re::..:.;Vl:.::.:OU::::..s __ 
gradient _ 

Z measured Z measured , previous 

(Eq. 5.25) 

The algorithm described by equations 5.20, 5.24 and 5.25 is implemented in the Matlab 

function summarized in Table 19. 

Function: SimCTD Variables Comments 

Input Variables X Horizontal position of the AUV 

z_real Real vertical position of the AUV 

CTD_dt CTD simulation timestep 

CTD_Map Temperature map and map resolution 

CTD_Navg Number of CTD samples to average 

NoiseLevelD Noise level on depth measurements 

NoiseLevelT Noise level on temperature measurements 

Output Variables z_measured Measured depth, rounded and possibly noisy 

Temperature Temperature, rounded and possibly noisy 

z_rate Depth rate as measured by the CTD 

Temp_grad Temperature gradient as measured by the CTD 

Table 19: CTD Simulation Implementation Summary 

V.2.2.5.6. Fins Controller Simulation 

The purpose of this module is to determine the position of the stemplane based on a 

desired depth setpoint and the actual measured depth, using equation 5.22, as discussed in 

V.2.1.3.2. The fins controller is implemented in the Matlab function summarized in 

Table 20. 

186 



-------

Function: SimFins Variables Comments 

Input Variables z_desired Desired depth to reach 

z_measured Actual depth, as measured by the CTD 

Output Variable SternAngle Stemplanes angle 

Table 20: Fins Controller Implementation Summary 

V.2.2.5. 7. Logger Simulation 

This module stores the history of selected variables in a file. The logger is a function 

called at a regular, user-defined, simulation timestep. All the data to be logged is passed 

to the function. The data is first written in a temporary string which is then written to the 

file, so that, for each iteration of the logger function, there is only one file access, instead 

of one for each variable, which may take more time. For the same reason, to increase the 

speed of that process, the logger file is not opened and closed each time, which would 

require the disk to be accessed very often. Rather, the file is written and let open. Doing 

so, we let the Operating System (OS) manage the disk buffer, instead of forcing a buffer 

flush each time we close the file. Therefore, a disk access is only necessary once the file 

buffer has reached the size defined by the OS. This algorithm is implemented in the 

Matlab function described in Table 21. 

Function: Logger.m Variables Comments 

Input Variables time Simulation time for timestamp 

Any variable to log 

Output Variable error Indication of file error 

Table 2I: Logger Implementation Summary 

Every time the logger is called, the following variables are logged with a timestamp: 

- AUV position, velocity, attitude, 

187 



- Desired depth, 

- Temperature and depth measured by the CTD, 

- Stemplane angle. 

Other variables can be logged with little rewriting: one just has to send the variable to the 

logger function, and specify how the variable should be written in the output file. 

V.2.2.5.8. Summary Generator 

The purpose of that module is to write a small summary file that is a reminder of the 

simulation that has been run. The summary consists of: 

- The date and time at which the simulation began, 

- A reminder of all the user-defined parameters used for that simulation, 

- A timestamped summary of the tasks performed during the simulation, 

- The conclusion of the simulation: success or abortion due to an error. In case of an 

error, a description of the error is given whenever possible. 

The summary is written in a text file so that it is easily open with any text editor, and the 

operator can add a few comments at the end of a file as a reminder of his conclusions on 

the simulation. As for the logger, the summary file is kept open during the simulation, so 

as not to force a buffer flush and not to have to reopen and close the file every time 

something is written. The goal is to minimize the time lost in hard drive access. 

The implementations is done in three parts: 

- At the beginning of the simulation, the function Simlnit described in V.2.2.5.1 writes 

the current date and time, and lists the value of all user-defined parameters used for the 

simulation, and writes a few messages during the simulation initialization phase. 

188 



- Once these tasks have been performed, the summary file remains open, and a function 

summarized in Table 22 can be used to write a few timestamped messages. This 

function receives the message to be written as parameter, gets the current time, and 

writes everything in a temporary text string, appended to the summary file. 

- Finally, once the simulation is terminated, a last message is written and the file is 

closed by the function SimFinish described in V.2.2.5.2. 

Function: WriteSummary Variables Comments 

Input Variables time For timestamp 

error Does that message indicate an error ? 

msg Message to write in the summary file 

Output Variable None 
-· 

Table 22: Message Writing Implementation Summary 

V.2.3. Graphical User Interface 

To simplify the use of the simulation tool, a user friendly front-end layer in the form of a 

Graphical User Interface (GUI) was developed, as summarized hereafter. 

V .2.3.1. Overview 

The purpose of this GUI is to provide the operator with a user-friendly way to configure 

and run the simulation, and look at some results. It should moreover implement a few 

systematic tests that check the parameters entered by the operator, to avoid basic 

mistakes. Finally, it should be designed in such a way that the operator is not required to 

have much knowledge about the implementation of the simulation tool itself. Doing so, 

the operator only needs to implement the thermocline tracking controller and configure 

the simulation tool. 

189 



V.2.3.2. Implementation 

The GUI is implemented as a main Matlab graphical window containing a number of text 

labels, text edition fields, buttons, and option checkboxes. Two other windows are 

temporarily used to display particular graphical data when necessary, as discussed after. 

The implementation of each part of the GUI is discussed in the following sections. 

V.2.3.2. 1. Main Window 

Launching the simulation creates the interface as a main graphical window, which waits 

for the operator to type in some text, click a checkbox or depress a button. When the 

window is opened, some of its properties, such as "resizable" and "numbering" are 

modified, the title is set to "Thermocline Tracking Simulation", and the window is 

brought to the front. Most of the parameters fields are filled in with some default values. 

A few other operations, not detailed here, are performed. 

V.2.3.2.2. Timing Parameters Edition 

A part of the GUI is dedicated to the input of the timing parameters for the simulation. 

These parameters consist of the timestep for each module - or task - as well as the 

simulation duration. As explained above, most of these parameters are filled in with some 

default values that the operator can change. A particular case is implemented for the field 

"Fins dt" that corresponds to the timestep for the execution of the fins controller module. 

The use of this module is optional, since it is required only for generating the fins 

position in case the thermocline tracking controller only outputs a desired depth 

command. For that reason, the "Fins dt" field is originally not active (not modifiable). 

190 



Checking a box labeled "Need fins controller" not only sets the corresponding variable to 

TRUE, but also activates the "Fins dt" parameter field for the operator to set it. 

For any of the timing parameters, anytime one of the fields is changed, the corresponding 

callback function checks that the value entered in the field is a numerical value, as 

expected. Figure 73 presents a detailed view of that section of the GUI. 

;:ilr~-"" 
· CTC!'d~ + !1"<J . 0,5 

. . . .. . S:~t~ly,~ .. ·:);.J ... 
!) •. :,..----..;....;.. .Jf 

Figure 73: Timing Parameters Section of the GUI 

V.2.3.2.3. Input and Output Files Specification 

A second part of the GUI is dedicated to the specification of the 110 files, namely the 

summary, logger and the CTD map files. For each file, a text field allows the operator to 

directly type in the path and name of the file. A more convenient "Browse" button is 

added to avoid typing and prevent mistakes. 

For each of the output files (summary and logger), an "Overwrite" checkbox is added to 

prevent undesired overwriting of previous results. If that box is not checked, the 

overwriting is not allowed, and the simulation will not run in case the file already exists. 

For the input file (CTD map), a "Preview" button is made active once a file is specified in 

the filename field. Pressing that button loads the specified file, and creates a second 

191 



window entitled "CTD Map Preview" that displays the temperature map. Meanwhile, the 

"Preview" button is changed to "Close Preview", and the browse button is made inactive. 

When either the close button of the figure or the "Close Preview" button of the GUI is 

depressed, the figure is closed, the GUI brought to the front, the "Close Preview" button 

changed back to "Preview", and the "Browse" button made active again. Figure 74 

presents a detailed view of that portion of the GUI, in one of its two possible states. 

Figure 74: 110 Parameters Section of the GUI 

V.2.3.2.4. Tracking Controller Specification 

A third part of the GUI is dedicated to specifying the name of the file containing the core 

of the thermocline tracking controller. In case the controller uses several files, only the 

name of the topmost function has to be specified, provided that the other files are in the 

same directory. This section is very similar to that related to the I/0 files described above. 

It includes both an edition field and a "Browse" button. Figure 75 presents a detailed 

view of that portion of the GUI. 

Brow~e J 
"···;;;,~. 

Figure 75: Tracking Controller Section of the GUI 

192 



V.2.3.2.5. CTD Simulation Configuration 

A fourth part of the GUI is dedicated to the configuration of the CTD simulator. Three 

checkboxes are implemented: "Depth Noise", "Temperature Noise" and "Averaging". 

Checking one the boxes enables the corresponding field where the value for the noise 

level or the number of samples to average is specified. Figure 76 presents a detailed view 

of that portion of the GUI. 

CTD 

r. Depth Noi*e: •·· 
·.(: ::J ~mperi(~;~ Noise · 1------r Averaging .. 

Figure 76: CTD Configuration Section of the GUI 

V.2.3.2.6. Mission Parameters 

A last parameter section, similar to that where the timing parameters are entered, is 

dedicated to the specification of other parameters related to the AUV mission simulation. 

These parameters are: the mean (equilibrium) vehicle forward velocity, the maximum and 

minimum depth for the tracking, and the maximum safety depth for the A UV. This 

section consists of four text fields, with default values that the operator can modify. 

Figure 77 presents a detailed view of that portion of the GUI. 

J~~~·~ti~[;~~h·. l ·~----
Mal!iri)i;i(ti:T·;acking Depth t-~

'.'.· ;,3:M!ll~im~rn$,.9feutDJ:!.Pth .• 
m:;, 

. .. m· 

Figure 77: Mission Configuration Section of the 

GUI 

193 



V.2.3.2. 7. Running the Simulation 

Whenever the "Go" button is depressed, the corresponding callback function retrieves all 

the required parameters from the other fields of the GUI, performs a few verifications on 

these parameters, and calls the main simulation module (scheduler). When the button is 

depressed, it freezes to indicate that the computation is running, until the computation is 

completed. At that point, the "Go" button is set back to its normal active state, and a 

message box is created in the forefront to indicate the end of the simulation. Depending 

on the conclusion of the simulation, this message box is either an error or success 

message box. 

V.2.3.2.8. Displaying Results 

When simulation results are available, a "View Results" button is activated. When this 

button is depressed, a new window, entitled "Simulation Results" is opened. The AUV 

trajectory, as recorded in the logger file, is plotted over the temperature map retrieved 

from the CTD map file. As long as simulation results are not available, the 

"View Results" button is inactive. 

V.2.3.2.9. Terminating the Simulation 

When the "Close Simulation" button is depressed, the corresponding callback function 

terminates all activities, closes the secondary windows (CTD Map preview and results 

display) if any, frees all the allocated resources, closes the simulation tool and the GUI 

itself, and finally returns to Matlab. 

194 



V.2.3.3. Graphical Layout 

An general overview of the whole GUI layout is presented in figure 78. 

Figure 78: Graphical Layout of the whole GUI 

V.2.4. Test of the Simulation Platform 

Once the whole simulation tool was implemented, a general test was performed to ensure 

that everything was working satisfactorily so that the problem of desjgning a tracking 

controller could be considered. This section describes the test performed and the results. 

195 



V.2.4.1. Description of the Test Simulation 

The goal of this simulation was to test all the functionalities of the simulation tool. 

Because only the simulator was considered here, and not the thermocline tracking 

controller, it was necessary to design a module that can command the AUV, in place of 

the tracking controller. A simple module successively generating various depth setpoints 

was written. The fins controller was then used to translate these depth commands into 

sternplane angle setpoints. In order to thoroughly test the CTD simulator, all its 

functionalities were used, particularly the averaging and noise generation. Because the 

simple depth command generator we used did not consider the temperature, a very simple 

map of the water column was used, just to ensure that it was correctly read. Finally, the 

last depth command was set beyond the maximum defined safety depth, in order to ensure 

that the safety module correctly aborts the simulation. 

V.2.4.2. Simulation Configuration 

The simulation parameters used for this test are listed in Table 23. 

196 



Parameter Name Value 

Scheduler timestep Scheduler _dt 20ms 

Motion simulation timestep Motion_dt 20ms 

CTD simulation timestep CTD_dt O.ls (5 samples averaging, output 
frequency 2Hz) 

Fins controller timestep Fins_dt 0.2s 

Thermocline tracking controller Tracking_dt 0.2s 
timestep 

Logger timestep Logger_dt O.ls 

Safety monitor timestep Safety_dt 0.5s 

Simulation duration Sim_duration 700s 

CTD map file CTD_File . ./ctd/simple_test.mat 

Noise level on temperature NoiseLevelT 2.10-3°C 
measurements 

Noise level on depth NoiseLevelD 2cm 
measurements 

Maximum depth for thermocline Max_d_track 40m 
tracking 

Minimum depth for thermocline Min_d_track 10m 
tracking 

Maximum safety depth Max_d 60m 

AUV initial forward velocity uo 1.5rnls 

Logger file path and filename Logger _file ./Logger.txt 

Summary file path and filename Summary _file ./Summary.txt 

Table 23: Input Parameters for Test Simulation 

The CTD map used was a simple profile, with only a vertical variation, which is shown in 

Figure 79. The horizontal map resolution was therefore set to 0. The vertical one was 

15cm. The depth command was the pattern shown in Figure 79. 

197 



-10 -------:------- ------- ------

-20 ------+------ ------- ------
-g ' ' 
E -30 ----·---:--------~------- ------

I-3o -------~------
""' ' g. 

~ : : 
u : : 
E. -40 ---- .. --~-------~-------, ------- ------

0 
-40 --- --~------ ------ ------

~ : : : 
~ -50 -------~-------~-------~-------~------- ------
~ ' 

-50 --- ---!------- ------ ------ 0 

-60 ----·--:--------:--------:--------:-------- ------

-60 --- ---:------- ------- ------ ·70 -------~-------~-- --- --~------ -~- --- -··: 

20 21 22 23 24 25 26 0 1 00 200 300 400 500 600 
Temperature (degC) Time (s) 

Figure 79: Test Simulation Inputs: Temperature Profile and Depth Command 

Pattern 

V.2.4.3. Results 

The simulation was run, and as expected, aborted near the end because the safety 

simulation module fired a "Too Deep" error. A look at the generated summary showed, 

after a reminder of the parameters used, that after 89s of simulation (simulated time 

589s), the safety module reported a "Too Deep" error, and that in turn, the scheduler also 

reported the error and aborted the simulation. Then, the data recorded in the logger output 

file was post-processed. First the path of the vehicle is presented in Figure 80. 

198 



0 
~Surfac~ 

-10 ' -.. --- .. --- ~------ -·-- .... --- .. -- .... --- .. --- ----·- --- --- .. --- ---

-20 

I ' ' ' 
;; -30 I I I I I I I I 

------ .. , .. - - ----, -- - - --- r- --- -- -,--- - - -- 1 - --- - r--- -- - -,- -- - -- - 1-- --- -

0.. 
Q) 

0 
-40 

-50 

-60 

0 

I I I I 

' 
I I I I I 

-- - --- -,- -- .... - .. i ...... ---- i ........... - -.------- i----

100 

' ' ' 
' ' 

200 300 400 500 
Distance (m) 

600 

Figure 80: Trajectory of the Vehicle 

700 BOO 900 

Then, it is interesting to compare the actual, measured and desired depth, in Figure 81. 

I I I I 

0 ----------:----------+----------:----------~- - Desired 
' ' ' r---,..----L' , : : - Measured 

-10 l(--------1\------j---------+----------!- = ~~~~i~um 
-20 ---------I----\---11-------\\------ ~---- ----- -f---------

I -3o ---------1-------- -+------- -- ---\--- ~-- -------- t·--------
.c. 
li 
~ -40 

-50 

-70 

0 

' 
--------- ~--------- .. ~--------- -~- .. - .. -- .. -- ...... - .... --- --- +-------

' ' ' 

100 200 300 
Time (s) 

400 500 600 

Figure 81: Depth Comparison (Desired, Measured, Actual and 

Maximum) 

Figure 82, showing the difference between real and measured depth, emphasizes the 

simulated noise on the CTD depth measurements. 

199 



0.05,---.----;:===::==-=====-=:::::;-J 
- Actual Depth-Measured Depth 

Min=-2.1cm 0.04 

I om 
.c 
15. 
~ 0.02 
"0 

~ 
~ 0.01 
"' Q) 

:::!!: 
<i; 0 
:J 
tl 
<( -0.01 

60 

Max=2.4cm 
Mean=4mm 
Std=1cm 

70 80 90 100 
Time (s) 

Figure 82: Simulated Noise on Depth Measurements 

Figure 83, comparing the temperature profile sensed by the vehicle to the temperature 

profile used as an input, shows the simulated noise on the temperature measurements. 

g 

Whole Profile 

Measurements 
-Map 

I I I I 

-10 --;-----~------~-----f-----. . . . . . . . . 
-20 --~-----~-----+-----;-----

' I I I 
I I I I . . . . . . . . . 

~ -30 

"' 0 

-40 -t ----- i·-- -- -~----- t----- i 
I I I I I 

-50 -t------:------:------t------: 
I I I I I 
I I I I I 

I I I I 

I I I I I 

-60 -t-----~------~-----t-----.J 

21 22 23 24 25 
Temperature (degC) 

Zoom 

-21 • Measurements 
-Map 

-21.5 . . ---·------------ .. -----------

-22 ---:---········-~---······· . . . . . . . . . . ___ , ____________ J __________ -. . -22.5 . . . . . . g 
.c 
0.. -23 

___ , ____________ , ________ ......... . . 
Q) 

0 

-23.5 

-24 

-24.5 

. . . . . . . . 

24.95 
Temperature (degC) 

25 

Figure 83: Simulated Noise on Temperature Measurements 

Finally, Figure 84 compares the stemplane angle and the depth error. 

200 



~40~--::----:---::r====c=~=c==~ 
~ - Measured Depth Error 

~ 30 --------- ----------:---------- - Sternplane Angle "' . ~ . 
o<( : 

., 
~ 0 -
E' 

f::::::i::::i· _____ j::i::::l 
"'0 I 0 I I 

~ -30 ~--------~----------[---------t------··---:---------- - -------
00 I I I I 
(0 I I I I 

~ -40 : : : : 
0 100 200 300 400 500 600 

Time (s) 

Figure 84: Measured Depth Error and Sternplane Angle 

V.2.4.4. Conclusion 

The test summarized above, as well as others not reported here, show that overall, the 

simulation tool is working, and is now ready to be used to test some thermocline tracking 

controllers. 

V.3. Thermocline Tracking Controller Simulation 

Now that a complete simulation platform is available, the design of a thermocline 

tracking controller is considered. 

V.3.1. Method 

The goal is to design a module that controls the vertical motion of an AUV based on 

temperature measurements. Because of the definition of a thermocline, which is a layer of 

more intensive vertical temperature gradient than that found in the layers above and 

below it, the control algorithm cannot be simply based on the temperature. Rather, it 

201 



should be based on a local comparison of the temperature variation found at different 

depths. To determine the vertical temperature gradient, two different methods can be 

considered. The AUV can either travel horizontally, while two sensors, one above and the 

other below the vehicle, measure the temperature, acting as a differential sensor. In such a 

case, the goal is to control the AUV in order to maximize the measured difference. The 

other method relies on the use of a single temperature sensor. It consists of having the 

AUV change its depth to measure the temperature at different depths. From the 

measurements at different depths, the temperature gradient can be computed, and the 

AUV motion is then controlled to maximize this gradient. 

The advantage of the first method is that the control algorithm is probably simpler. The 

drawback is that it requires an accurate differential sensor. This requires the use of two 

similar sensors, calibrated one against the other to eliminate differential mode errors 

(common mode errors are not critical). Moreover, because the order of magnitude of the 

vertical temperature gradient is around 0.1 °C/m, the sensors have to be mounted at least 

one meter apart, which may not be convenient. This approach is not considered further 

here. The second method is simpler in terms of sensing. Only one temperature and depth 

sensor is required, and the calibration is less critical. In tum, the control algorithm is more 

complicated. Because it is not feasible to have an AUV measure vertical temperature 

profiles, the AUV is required to change depth while traveling. The required trajectory is 

therefore in the shape of an oscillating pattern. Assuming that the depth variation is on the 

same order of magnitude as the horizontal displacement, and moreover considering that 

the horizontal variation of temperature is much less than the vertical one (Figure 79), the 

AUV can measure a local vertical gradient along an oscillation. 

202 



Figure 85: Local Temperature Gradient Measurement 

Therefore, the problem is to control the vehicle to perform an oscillating pattern and 

measure the vertical temperature gradients, while the mean depth of the oscillation 

remains around the depth of maximal gradient. This constant oscillation requires the 

AUV to be somehow unstable. If the vehicle depth converges towards a steady value, we 

cannot ensure any longer that the thermocline is tracked, because no comparison with the 

temperature above or below is performed. 

Two methods can be used to have the AUV oscillate around the depth of the thermocline. 

The trajectory can be partially modeled: the depth or sternplane command can be 

generated according to a mathematical model describing an oscillating pattern designed to 

suit the dynamics of the AUV. The mean depth of the oscillations is then computed based 

on the analysis of the acquired data. The other method is to bypass the phase of reasoning 

and modeling, using a more reactive controller. As discussed in ll.2, modeling and 

reasoning are usually complex, time-consuming and of limited robustness. It is believed 

that more basic reflex-like behaviors are likely to provide better results, although they are 

more difficult to globally analyze, and it is more difficult to assess their theoretical 

performance and robustness. 

203 



Finally, two more distinctions can be made between control methods. The thermocline 

tracking controller can either control only the depth of the vehicle, generating a desired 

depth command, or control the stemplane of the vehicle, directly generating the fin 

position command. More complex algorithms can also involve pitch or vertical velocity 

control. 

The work summarized here considers two different cases of control of an oscillating AUV 

based on measurements from a single CTD sensor: first, a depth controller based on the 

modeling of an oscillating pattern, then a reactive stemplane controller based on the 

implementations of simple reflexes are considered. 

V.3.2. Thermocline Tracking Depth Controller 

This section describes the design, implementation and testing of a thermocline tracking 

depth controller that makes the AUV oscillate around the mean depth of the thermocline. 

V .3.2.1. Approach 

The idea used here is to have the vehicle perform some oscillations, the mean depth of 

which is updated based on temperature and depth measurements so as to remain around 

the thermocline to track. Several approaches are possible to ensure that the AUV is 

oscillating, one of them being to generate an oscillating command without taking into 

account the trajectory really followed by the vehicle. The advantage of this method is that 

it is much simpler to implement. The drawback is that the efficiency is not certain. 

Two ways are possible to generate an oscillating trajectory, considering a depth command 

that is an oscillating function of either horizontal position or time. This doesn't really 

204 



make much difference if we consider a constant mean forward velocity. Here, we chose to 

generate a time-dependent oscillation along a sinusoidal pattern. The depth command is 

then computed adding this oscillation to a mean depth obtained from processing of the 

depth and temperature measurements that computes the depth of the maximum vertical 

temperature gradient. 

V.3.2.2. Design 

Since the tracking mission can be divided into three phases as described in V.l.2, each 

phase is considered separately for the design of the controller. The generation of the depth 

command during the first phase is the simplest one. The desired depth is set to the 

maximum tracking depth. Meanwhile, the target depth for the second phase has to be 

computed. To do so, each new temperature and depth measurement obtained from the 

CTD is stored in a stack. Then the content of the whole stack is filtered using a mobile 

average filter, to reduce the measurement noise. Based on the filtered depth and 

temperature, the vertical temperature gradient is computed, and the depth of the 

maximum gradient is kept as the target depth. Doing so, when the vehicle reaches the 

maximum depth, an estimate of the depth of maximum temperature gradient is available 

as a goal for the second phase. 

During the second phase, the target depth previously computed is simply set as the 

desired depth. While the AUV is climbing up, the target depth keeps on being updated, so 

as to possibly improve the estimation of the depth of maximum gradient. 

Once the target depth is reached, the third phase begins. The mean depth is first set to the 

previous target depth, and the desired depth is computed by adding the mean depth to the 

205 



oscillating command computed as a sine function of the time. During a whole oscillation, 

the temperature and depth measurements are logged, filtered and derived as previously to 

obtain the mean depth of the next oscillation. Once the oscillation is completed, the mean 

depth is updated as the previously computed target depth, and so on. In order for the old 

measurements not to influence the computation of the new target depth, which would 

prevent the AUV from reacting fast enough to variations of the depth of the thermocline, 

the measurements history has to be somehow reseted. Indeed, if for instance a maximum 

gradient of 1 °C/m is found at 60m during one hour of mission, and then the maximum 

gradient drops to 0.6 °Cim and dives to 80m, the determination of the depth of maximum 

gradient based on the whole measurement history would yield a target depth of 60m, and 

the AUV would miss the thermocline. 

The parameters of that control algorithm are: 

- The maximum depth for the first phase (diving), 

- The characteristics of the filter used to remove the noise on the measurements, 

- The size and management/reset method for the measurements buffer stack, 

- The magnitude and frequency of the oscillations. 

The maximum depth is a user-defined parameter for the simulation, and doesn't really 

change the behavior of the vehicle. The filter used to remove the measurement noise is 

decided to be a simple moving average filter in the shape of a Blackman window. Its 

width is a parameter that can be modified. As far as the buffer stack for the storage of the 

measurement is concerned, two approaches are possible. The size of the stack can be 

either limited and the stack used as First In First Out (FIFO) buffer, the oldest 

measurement being removed every time a new measurement is added, or the size can be 

206 



variable, but with a reset forced once in a while, for instance after a certain number of 

oscillations. Both methods have been implemented, and yielded similar results, except 

that a finite length buffer slows a little bit the reactions of the vehicle, while the reset 

method reduces the smoothness of the depth command. Finally, the magnitude and 

frequency of the oscillation have to be decided. To get an idea of the order of magnitude 

of the frequency that can be used, we first considered the dynamics of the vehicle. Based 

on the equations of motion discussed in V.2.1.1.2, we used the diving model to obtain the 

pitching frequency. Considering a zero downward velocity and velocity derivative, and 

assuming that the hydrodynamic forces and moments are dominated by the linear terms, 

the equation of the longitudinal motion can be rewritten to obtain the diving model in the 

form of a transfer function between pitch (output) and stemplane angle (input). This 

transfer function corresponds to the general form of a second order low-pass filter of 

which the natural frequency can be computed. In the case of the OEX, the numerical 

computation yields a frequency around O.llHz, corresponding to a period of 9s. This is 

the natural pitching frequency of the vehicle. This can be interpreted as that any 

stemplane command consisting of frequencies higher than O.lHz will have little effect on 

the vehicle pitch. The natural period also gives an idea the order of magnitude of the 

response time between a stemplane command and the corresponding pitch response. This 

leads us to consider only oscillations frequencies much smaller than the natural pitching 

frequency. It was decided that oscillations periods under 30 seconds were not realistic 

especially if the pitch is to remain limited. Moreover the choice of an oscillation period is 

related to the desired magnitude of the oscillations: larger oscillations require a longer 

period. Otherwise the AUV would be unable to achieve the correct oscillation magnitude. 

207 



V.3.2.3. Implementation 

Several controllers were implemented as Matlab functions and simulated. The differences 

among them were mainly related to the way the measurements buffer is managed. The 

controllers were implemented as three Matlab functions: 

- SimTracking is the core of the controller. It distinguishes the three parts of the 

mission, and accordingly performs the required tasks. It returns the desired depth, set 

as the maximum tracking depth for phase 1, as the computed target depth of maximum 

gradient for phase 2, and as the value returned by the function "Oscillate" described 

hereafter for phase 3. 

- Get_Target_Depth adds new CTD measurements to a buffer, filters its content, then, 

based on the filtered content, computes the depth of maximum gradient, and returns it 

as the target depth. 

- Oscillate is the function generating a depth command based on the addition of an 

oscillation to the target depth computed by the previous function. 

The functions SimTracking and Oscillate remained approximately the same for each 

controller implemented. Only the period and amplitude of the oscillations, that are some 

parameters of the function Oscillate, were modified to get an insight into their influence 

on the tracking efficiency. On the other hand, different Get_Target_Depth functions were 

implemented. The two main versions are summarized hereafter: 

- One version included a large buffer, the content of which was stacked so that every 

new sample added makes the oldest disappear. 

- One version included a smaller buffer, which can be reseted to only the last received 

measurements, based on the value of a "Reset" parameter. 

208 



In both cases, the length of the buffer as well as that of the Blackman window used as a 

mobile averaging filter to process the content of the buffer were some parameters of the 

function. 

The implemented functions are summarized in Tables 24, 25 and 26: 

Function: SimTracking Variable Comments 

Input Variables Time Simulation time, used to generate an 
oscillation 

z_measured CTD measurements, sent to 

Temperature Get_Target_Depth for processing 
aimed at estimating the depth of . 
maximum temperature gradient 

Output Variables z_desired Desired depth for the A UV 

mean_ depth Mean depth of each oscillation, to be 
logged 

error Simulation error 

Table 24: Tracking Controller Main Module Implementation Summary 

Function: Variable Comments 
Get_Target_Depth 

Input Variables z_measured CTD measurements, for processing 

Temperature aimed at estimating the depth of 
maximum temperature gradient 

Phase Information used for the management 

Reset of the measurement storage buffer, 
depending on the version implemented 

Output Variables Target_Depth Depth of maximum temperature 
gradient 

error Simulation error 

Table 25: Measurements Processing Implementation Summary 

209 



Function: Oscillate Variable Comments 

Input Variables z_measured CTD measurements, sent to 

Temperature Get_Target_Depth for processing 
aimed at estimating the depth of 
maximum temperature gradient 

Time Simulation time, used to generate an 
oscillation 

Output Variables Desired_Depth Depth of maximum temperature 
gradient 

error Simulation error 

Table 26: Oscillations Generation Implementation Summary 

V.3.2.4. Testing 

The controllers implemented as described previously were tested by simulation, using 

different parameters, so as to: 

- Ensure that the control algorithm was valid, 

- Get an insight into the influence of each parameter, 

- Derive some conclusions about the efficiency of the controller. 

First, several tests were performed using a simple temperature profile, without horizontal 

variation, as presented in Figure 86. 

210 



-10 

-20 

-30 

-40 

-5 -50 
0.. 
(]) 

0 
-60 

-70 

-80 

-90 

-100 

Temperature 
(degC) 

1 00 200 300 400 500 600 700 800 900 1000 
Horizontal Distance (m) 

Figure 86: Simple Temperature Map 

24 

22 

20 

18 

16 

14 

12 

Using this map, any reasonable combination of parameters showed a vehicle able to 

locate the thermocline and oscillate around its mean depth. That was particularly efficient 

with the "Get_ Target_ Depth" module using a long buffer. Obviously, because the 

thermocline is not varying, a long measurement history is more likely to provide the same 

target depth. But again, that may be a drawback in the case of a varying thermocline. 

More thorough tests were then performed using a temperature map showing a 

thermocline whose depth is not constant, as shown in Figure 87. 

211 



-10 

-20 

-30 

-40 
]: 
£ -50 
o._ 

"' 0 
-60 

-70 

-80 

-90 

-100 

Temperature 
(degC) 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Horizontal Distance (m) 

Figure 87: Complex Temperature Map showing a Diving Thermocline 

One particular example of the results obtained is detailed hereafter. The parameters used 

for the tracking controller are summarized in Table 27. 

Parameter Value Comment 

Update target depth NO The target depth to begin the tracking is 
estimation during phase computed based only on measurements acquired 
2 (climbing) during phase 1, when the vehicle is diving. 

Oscillations period 60s 

Oscillations magnitude 8m Peak to peak, ± 4m. 

Change mean depth Every period The target depth is updated constantly, but the 
mean depth for the oscillation is set to that 
target depth for each period. 

Reset target depth Every period 
estimation buffer 

Table 27: Controller Parameters for Test Simulation 

The parameters used for the simulation tool are summarized in Table 28. 

212 



Parameter Name Value 

Scheduler timestep Scheduler _dt 20ms 

Motion simulation timestep Motion_dt 20ms 

CTD simulation timestep CTD_dt 0.5s, No averaging 

Fins controller timestep Fins_dt 0.2s 

Thermocline tracking controller timestep Tracking_dt 0.5s 
--

Logger timestep Logger_dt 0.5s 

Safety monitor timestep Safety_dt 0.5s 

Simulation duration Sim_duration 3200s 

CTD map file CTD_File . ./ctd/diving_ctd_50_01.mat 
(temperature map shown in 
Figure 87) 

Noise level on temperature measurements NoiseLevelT 0 

Noise level on depth measurements NoiseLevelD 0 

Maximum depth for thermocline tracking Max_d_track 10m 

Minimum depth for thermocline tracking Min_d_track 10m 

Maximum safety depth Max_d lOOm 

AUV initial forward velocity uo 1.5m/s 

Logger file path and filename Logger _file ./Logger. txt 

Summary file path and filename Summary _file ./Summary.txt 

Table 28: Simulation Parameters for Controller Test 

The result of the simulation is presented in Figure 88, showing the vehicle trajectory over 

the temperature map. 

213 



-10 

-20 

-30 

-40 
I 
..c. -50 a. 
(I) 

0 
-60 

-70 

-80 

-90 

-100 
1000 2000 3000 4000 

Horizontal Distance (m) 

Temperature 
(degC) 

24 

22 

20 

18 

16 

14 

12 

5000 

Figure 88: Simulation Results: Vehicle Trajectory over the Temperature Map 

Indeed, the vehicle is able to locate the thermocline, and remain within the layer of 

maximum vertical temperature gradient. Even when the depth of the thermocline is 

changing, the vehicle remains within it, and tracks the variation with almost no delay. 

Although the oscillations seem to be very sharp because of the scale used for the plot, a 

closer look would confirm that the magnitude of each oscillation is much smaller than its 

wavelength. Figure 89 confirms that with such choice of oscillation magnitude and 

period, the vehicle is able to keep up with the depth command, with only a slight delay. 

Occasionally, when the difference between the mean depth of two successive oscillations 

is significant, the vehicle is unable to reach the magnitude of the first half of the 

following oscillation, but the second half is fine, providing correct measurements for the 

control algorithm. 

214 



0 

-10 

-20 

..-...-30 
§. 
..c 
a 
Q) -40 

0 

-50 

-60 

-70 
0 

Desired 0 Measured 0 Real and Mean Depth 

-- Desired Depth 

--------- ---------f---------~--
-- Measured Depth 
-- Real Depth 0 0 

0 0 
0 0 
0 0 - Oscillation Mean Depth 
0 0 

-- -- -- -- - -- -- -- -- -f-- -- -- - -- ~ -- --- ---- -:- - -- -- --- -:--- - -- - -- -:---

~ : : : : : 
\-------- ---------!---------~---------~---------~----------~--

1 I I I I 
I I I I I 

I I I I I 
I I I I I 

- ------- ------- -f---------i---------~----------~---------~--

500 

0 0 0 
0 0 0 

0 

1000 1500 
Time (s) 

2000 2500 3000 

Figure 89: Depth Variables (Desired, Measured, Real and Mean) 

Finally, the temperature profile measured by the vehicle is shown in Figure 90, where the 

different phases are evident. The profile measured by the vehicle when it dives during the 

first phase, and when it climbs up to the target depth during the second phase appears 

clearly. Then the upper oblique cluster corresponds to the vehicle tracking the 

thermocline during the first half of phase 3, and the lower cluster corresponds to the 

second half. The sparse cluster between the two previous corresponds to what the AUV 

senses when it dives to follow the thermocline variation. 

215 



0.-.----.----.----.----.-----.----.----.----, 

-10 · · ·; · · · ·rrain~· Maa·sl)ed · · · · · · ·: · · · · · · · · ·: · · · · · · · · ·; · · · · · · · · · ·:· · · · 
: durin~ Phase :1 and 2 : ~ : : 

-20 ····:···-(DIVIn~.&.R.ea~htng) .... 
1 
......... :-··· ~-

-30 .... : ......... [ ......... : .Tril.G~it)~ ......... : .......... : .......... [ ... . 
· ; (first half of phas!l 3) : 

. . . . g 
£-40 ... ~ . . . ..... ! ......... ~ .......... :. 
c.. 
Q) 

0 

-50 

divi~g 

-60 ...... ; ...... Therroo.cli 

-70 
.J.....~: ~ 'i. : . 
........................ :····················:·····················:········ 

: : Tracking: : 
: : : econd half of ph~se 3) : 

-80~~--~----~--~----~----~--~----~--~ 
12 14 16 18 20 22 24 26 28 

Temperature (degC) 

Figure 90: Temperature Profile Measured by the Vehicle 

The same controller was then tested in the case of noisy measurements, through two 

simulations using the parameters summarized in Table 29 and 30. 

Parameter Name Value 
--
CTD simulation timestep CTD_dt O.ls, 10 samples averaged, 

output rate: 1Hz 

Noise level on temperature measurements NoiseLevelT l.I0-3°C 
--
Noise level on depth measurements NoiseLevelD lcm 

--
All other parameters Same as the previous 

simulation (see Table 28) 

Table 29: Simulation Parameters for Controller Test in Low Noise Environment 

Parameter Name Value 

Noise level on temperature measurements NoiseLevelT 5.I0-3oc 
--

Noise level on depth measurements NoiseLevelD 5cm 

All other parameters Same as the previous 
simulation (see Table 29) 

Table 30: Simulation Parameters for Controller Test in High Noise Environment 

216 



The result are presented in Figure 91 showing the trajectory of the vehicle over the 

temperature map for both simulations. 

-10 

-20 

-30 

-40 
:[ 
a -5o 
"' 0 

-60 

-70 

-80 

-90 

-100 
1000 2000 3000 4000 

Horizontal Distance (m) 

Temperature 
(degC) 

24 
-10 

22 -20 

-30 
20 

-40 
:[ 

1s a -50 

"' 0 
-60 

16 

-70 

14 -80 

12 
-90 

5000 -100 

Horizontal Distance (m) 

Figure 91: Simulations Results for Noisy CTD Measurements (Low and High Noise) 

Figure 91 shows that the tracking remains fine in case of noisy measurements. On the left 

plot, corresponding to a small noise, the result is not significantly different from what was 

obtained without noise. The trajectory is only a little less smooth, and the vehicle takes a 

little more time to sense the diving of the thermocline. The right hand plot however 

shows an interesting thing: because of the noise that has probably (randomly) made the 

vehicle sense a smaller gradient when it crossed the thermocline, and a larger one when it 

was below, the target depth for tracking was initialized around 68m. The interesting thing 

is that the tracking algorithm sensed that the vehicle was below the thermocline, and 

eventually made the depth command converge towards the thermocline. 

Finally, Figure 92 shows the temperature profile measured by the vehicle during the last 

simulation, with high-noise. The vertical thickness of the clusters shows the influence of 

the measurement noise on the temperature profile sensed (compare to Figure 90). 

217 



0.-~--~--~----~---.---~----~--~ 

-10 ............. ··········.·········· ........ . 

-20 . . . . ................ "'"........ . ................ . 

-30 ........... . 

..c: -40 c.. 
Q) 

0 
-50 

-70 ····:-·········: 

-80 '----'------'-------'-----.l.---...,-L------::-'::---.l.----' 
12 14 16 18 20 22 24 26 

Temperature (degC) 

Figure 92: Temperature Profile Measured in Case of High Noise 

The thermocline tracking controller was then tested using real data instead of a synthetic 

temperature map. The only real temperature map available was that obtained from the 

Thermocline Survey Experiment conducted on March 19th, 2003. Unfortunately, as 

explained in IV.4.3, the temperature profile measured during this experiment doesn't 

show any strong localized thermocline. For that reason, it was necessary to reconstruct a 

temperature map using other temperature data gathered at sea. As discussed IV.3.3.2, the 

shipboard CTD casts performed during the experiment conducted on December 18th, 

2002, showed a relatively strong thermocline, with a vertical temperature gradient as 

large as 0.6°C/m, about 20m thick, at around lOOm depth. Even if no temperature map is 

available for that day, it is possible to build one using the data from one of the CTD casts. 

Simply assuming no horizontal variation of the temperature profile, a single temperature 

profile measured by the CTD cast can be used as a map with zero resolution along the 

horizontal direction, as discussed in V.2.1.2. The temperature profile used for that test is 

218 



presented, along with the corresponding temperature gradient profile, in Figure 93. 

Temperature Profile 
0.-------.----.--~ 

-20 -------------~----- ------
' ' 
' ' ' 

-40 -------------~----- ------

I -6o 
..c 
0.. 
~ -80 

-100 

-120 

' ' 

' -------------r----- ------
' 
' 
' ' 

Temperature Gradient Profile 
0.--------.-------~ 

-20 ---------·---~-·---------
' ' 
' 

-40 -------------~------------

I -6o 
..c 
0.. 
~ -80 

-100 

-120 

' ' 

-------------r-----------
' 
' ' ' ' 

-140 LL-.---'--------' -140 '-------'----...___ _ ___, 
10 20 30 -0.4 -0.2 0 

Temperature (degC) Temperature Gradient(degC/m) 

Figure 93: Real Temperature and Temperature Gradient Profiles used 

for Simulation 

A simulation was run using this temperature map and the simulation and controller 

parameters listed in table 31 and 32 respectively. 

Parameter Name Value 

CTD simulation timestep CTD_dt lOms, 10 samples averaging, 
output rate 1Hz 

CTD map file CTD_File . ./ctd/profile_20021218.mat 

Noise level on temperature measurements NoiseLevelT 0 

Noise level on depth measurements NoiseLevelD 0 

Maximum depth for tracking Max_d_track 120m 

Minimum depth for tracking Min_d_track 10m 

Maximum depth for tracking Max_d 135m 

Other parameters As in table 28 

Table 31: Simulation Parameters for Controller Test with Real Temperature Data 

219 



Parameter Value Comment 

Oscillation period 120s 

Oscillation magnitude 8m Peak to peak,± 4m 

Other parameters As in table 27 

Table 32: Controller Parameters for Controller Test with Real Temperature Data 

The result of the simulation are summarized in Figure 94 showing the AUV trajectory 

over the temperature map. 

Vehicle Trajectory Temperature (degC) 

-20 

-40 

:[ -60 
..c:. 
c.. 
Q) -80 0 

-100 

-120 

-140 
0 1000 2000 3000 4000 

Horizontal Distance (m) 

Figure 94: Simulation Results: Vehicle Trajectory over the Temperature Map 

Figure 94 shows that the controller is able to locate the thermocline and make the vehicle 

oscillate around its mean depth. Once again, because of the noise, the vehicle fails to 

locate the thermocline during the first (diving) phase, but successfully reaches and tracks 

it during the third (tracking) phase. This is a conclusive test since, this time, it is not run 

with a synthetic temperature profile that suits our needs, but with a real temperature 

profile as was indeed measured during one of our at-sea experiments. 

220 



V.3.2.5. Conclusions 

The tests described above as well as some others not detailed here show that the control 

algorithm is valid. A controller issuing a depth command oscillating around the depth of 

maximum measured temperature gradient is able to make the AUV acquire and track the 

thermocline. Among the other conclusions drawn from several tests, it was evidenced that 

this method is efficient even with noisy measurements. The selection of parameters, 

mainly oscillation magnitude and measurements buffer management method mainly 

depends on the kind of efficiency desired. A compromise has to be made between 

smoothness of the trajectory and response time to a change of depth of the thermocline. 

The smoother the trajectory, the longer it takes for the vehicle to reacquire the 

thermocline after its depth has changed. In case of very noisy measurements, it may be 

desirable to increase the magnitude of the oscillations as well as the size of the 

measurements buffer so that the algorithm can use a larger amount of data to estimate the 

mean depth of the thermocline during each oscillation. 

V.3.3. Thermocline Tracking Sternplane Controller 

This section describes the design, implementation and testing of a thermocline tracking 

sternplane controller that makes the AUV react to sensor measurements in order to 

remain around the mean depth of the thermocline. 

V .3.3.1. Approach 

The approach considered for the design of that controller was to bypass the phase of 

modeling of an oscillating trajectory and the reasoning aimed at determining the mean 

221 



depth of the thermocline based on measurements acquired from a local profile. Instead, 

we tried to implement a reflex for the vehicle. The idea was to command the vehicle to 

the middle of the thermocline, and have it react by inverting its motion as soon as it 

senses that it is leaving the region of interest. The emphasis was put on a link, as direct as 

possible, between sensing and action. To that end, the vehicle doesn't really consider the 

concepts of depth and thermal structure. Rather, the acquired measurements are used to 

derive an indication of how appropriate the current motion is. Based on this quantity, a 

simple decision is made to either continue with the same motion, slow down the motion 

to confirm what has been sensed, or completely reverse the motion. 

The decision algorithm, in a simplified approach, can be thought as: 

- When the vertical temperature gradient increases, continue in the same (vertical) 

direction, 

- When the vertical temperature gradient decreases, reverse the (vertical) direction. 

V.3.3.2. Design 

One of the easiest ways to design a controller based on the above decision algorithm was 

thought to use a Fuzzy Inference System (FIS). Indeed, it is, as already discussed in 11.2, 

one of the most powerful tools to handle imprecise information and goals, as well as 

human reasoning mimicry. A controller with a fuzzy-logic core was then designed. It was 

decided to base the decision-making on the variation of the temperature gradient and the 

depth rate of the vehicle. Based on the consideration of these inputs, a stemplane angle 

output is generated. As a reminder, a positive stemplane angle makes the vehicle pitch 

negatively and go down, and vice versa. 

222 



The underlying reasoning is based on four different cases (Figure 95): 

( 1 )If the vehicle is going up and the temperature gradient decreases, it is leaving the top 

of the region to track. It should therefore go down, and the stemplane angle command 

is positive, 

(2)If the vehicle is going up and the temperature gradient increases, it is approaching the 

region to track from below. It should therefore keep going up, and the stemplane angle 

command is negative, 

(3)1f the vehicle is going down and the temperature gradient decreases, it is leaving the 

bottom of the region to track. It should therefore go up, and the stemplane angle 

command is negative, 

(4)1f the vehicle is going down and the temperature gradient increases, it is approaching 

the region to track from above. It should therefore keep going down, and the stemplane 

angle command is negative. 

Temperature 

Hot 

Cold 

Figure 95: Simplified Reasoning: Four Cases 

223 



The fuzzy part handles how much the temperature gradient variation, depth rate and 

stemplane angle are positive or negative. Several fuzzy engines were considered. Only the 

common characteristics are discussed here. The characteristics specific to the 

implementation of a particular engine are reported in V.3.3.3. 

Let us first consider the inputs fuzzification and output defuzzification. The inputs are the 

gradient variation between the two last measurements, and the depth rate, as measured by 

the CTD. The depth rate mainly depends on the characteristics of the vehicle and the 

command applied to its control surface. Therefore, it always remains within the same 

range. This is not the case for the temperature gradient variation, which depends on the 

vehicle motion and the characteristics of the water column. To eliminate that dependence, 

the gradient variation input is normalized. As far as the output range is concerned, it is 

limited by the maximum authorized stemplane angle, which is set to 20°. Then we 

defined the range of each input and output as follows: 

- Input normalized temperature gradient variation: [-1.5;1.5] ( (°C/m)/(iteration) ). 

- Input depth rate: [-1;1] (m/s). Possible values outside this range are considered ±1m/s. 

- Output stemplane angle: [-20;20] (0
). 

All membership functions for the fuzzifier and defuzzifier were chosen trapezoidal or 

triangular. The chosen methods for fuzzification and defuzzification are listed in 

Table 33. 

224 



Operator Method 
1---

Intersection/Logical AND Min 

Union/Logical OR Max 

Implication<1> Min 

Defuzzification Centroid (center of gravity) 

Table 33: Characteristics of the Fuzzy Engine 

( 1) The implication method is listed here although it is not strictly a property of the fuzzifier or defuzzifier, 

but rather of the fuzzy inference engine. 

For the work considered here, a Mamdani-type FIS was used in a first time, mainly 

because, although less computationally efficient, its design is more intuitive than Takagi-

Sugeno-Kang fuzzy inference systems[ 55]. 

This FIS is the core of the controller used for tracking. It only has to be surrounded by a 

module that creates the formated input. Successive CTD measurements are logged in a 

two-measurement buffer, from which instantaneous temperature gradient and depth rate 

are computed. Using the temperature gradient of the previous iteration, the temperature 

gradient variation is computed and normalized. Then the input are fed to the FIS which, 

after evaluation, outputs a desired stemplane angle which is returned as a command to the 

simulation tool. 

This fuzzy controller is only used for the tracking phase. Indeed, to efficiently react to the 

thermocline, the vehicle has to already be within that layer. There is no need to use a 

fuzzy controller to get the vehicle to within the thermocline. Rather, simple controllers 

are used during the two first phases of the mission. For these phases, the control 

algorithm is very similar to what was described in V.3.2. A desired depth command is set 

to the maximum tracking depth during the first phase, so that the vehicle can sample the 

whole water column. This desired depth command is translated to a stemplane position 

225 



using the stemplane controller available from the simulation tool. During that phase, the 

CTD measurements are logged and processed as described in V.3.2, in order to compute 

the target depth for the second phase. In a same way, during the second phase, the desired 

depth is set equal to the target depth, and the stemplane controller is used to translate that 

desired depth into a stemplane position. 

V.3.3.3. Implementations 

Several similar controllers were implemented, all of them using the three following 

functions: 

- SimTracking is the core of the controller. It distinguishes the three phases of the 

mission, and accordingly performs the required tasks. 

- Get_Target_Depth adds new CTD measurements to a buffer, filters its content, then, 

based on the filtered content, computes and returns the depth of maximum gradient. 

This function is very similar to that described in V.3.2.3. 

- React is the function that implements the reflex based on the use of the FIS described 

above for the third phase (tracking). 

During the first phase, the function SimTracking sends each new CTD measurement to 

the function Get_Target_Depth so that it can compute the depth of maximum gradient 

where the tracking phase is to begin. Meanwhile, it uses the stemplane controller 

available from the simulation tool to control the vehicle to its maximum search depth. 

Once the vehicle has switched to phase 2, SimTrack keeps on sending CTD updates to 

Get_Target_Depth, and again, uses the available stemplane controller to command the 

vehicle to the target depth. Then, the vehicle switches to phase 3, and SimTracking calls 

226 



the React module, providing it with every CTD measurement and getting from it the 

desired sternplane angle command that is returned to the simulator. Meanwhile, the React 

function processes the inputs, evaluates the FIS and returns its output as the desired 

sternplane angle, as described in V.3.3.2. 

Only a particular case of controller implemented is described further here, because, 

although simple, this controller provides promising results. It is based on a very 

simplified fuzzy engine. The fuzzy sets have been simplified to contain only two sets for 

each variable, either positive (P) or negative (N). The corresponding membership 

functions are all trapezoidal or triangular, as illustrated in Figure 96. 

Membership function plots plot points: J181 

1 ._! _N_""" 

Membership function plots plot points: r-;ar 
ns ps 

0 OE 15 

~bershlp function plots plot point.: 

N 

outll<!l variable "SternAngle" 

05 
Input vori~ble "depthR81e' 

Figure 96: Simple Membership Functions 

Then the decision-making is based on the fuzzy rules described in Table 34. 

227 



Depth 
Rate 

Temp N p 

Gradient 
Variation 

N p N 

p N p 

Table 34: Inference Rules 

Figure 96 and Table 34 show that in this particular simplified case, the controller is no 

longer fuzzy. Indeed, looking only at the rules in Table 34, writing T the temperature 

gradient variation, D the depth rate and S the stemplane angle, and considering P as true 

and N as false, the control logic can be rewritten as: 

S=PifT=D (Eq. 5.26) 

or S =(T=D) (Eq. 5.27) 

which can then be expanded as: 

S = (T.D) + (T .D) (Eq. 5.28) 

Where . is the logical AND, + is the logical (inclusive) OR, and - is the logical NOT. 

Using twice De Morgan's law, the above equation 5.28 can be rewritten as: 

S =NOT(T.D+D. T)=T NXORD (Eq. 5.29) 

where NXOR is the Not eXclusive OR logical operator. 

Then, because of the chosen membership functions and defuzzification method, the 

output is always, ±0.5 · 8s, Max , half the maximum stemplane angle, and the sign only 

228 



depends on whether Sis PorN, and is obtained from equation 5.29. 

The control law can then be rewritten as: 

8 
8s= slMax X[sign(T)Xsign(D)] (Eq. 5.30) 

This is verified with the plot of the control surface shown in Figure 97. 

Figure 97: Control Surface 

V.3.3.4. Testing 

The reactive controller described above has been tested by simulation using the controller 

parameters summarized in Table 35. 

229 



Parameter Value Comment 

Buffer length for Infinite Because that module is only used 
Get_Target_Depth module during the first two phases, there is no 

need to reset the buffer or implement 
it as a finite length stack. 

Filter for Get_Target_Depth 10 points 
module buffer Blackman window 

Fuzzy engine As described 
above 

Table 35: Controller Parameter for Test Simulation 

Then the simulation was set up with the parameters summarized in Table 36 and run. 

Parameter Name Value 

Scheduler timestep Scheduler _dt 20ms 

Motion simulation timestep Motion_dt 20ms 

CTD simulation timestep CTD_dt O.ls, 20 samples averaging, 
output rate 0.5Hz 

Fins controller timestep Fins_dt 0.5s 

Thermocline tracking controller timestep Tracking_dt 0.5s 

Logger timestep Logger_dt 0.2s 

Safety monitor timestep Safety_dt 0.5s 

Simulation duration Sim_duration 3200s 

CTD map file CTD_File . ./ctd/ di ving_ctd_50 _ 0 l.mat 
(temperature map shown in 
Figure 87) 

Noise level on temperature measurements NoiseLevelT 0 

Noise level on depth measurements NoiseLevelD 0 

Maximum depth for thermocline tracking Max_d_track 80m 

Minimum depth for thermocline tracking Min_d_track 10m 

Maximum safety depth Max_d lOOm 

AUV initial forward velocity uo 1.5m/s 

Logger file path and filename Logger _file .!Logger.txt 

Summary file path and filename Summary _file ./Summary.txt 

Table 36: Simulation Parameters for Controller Test 

230 



The results are summarized in Figure 98, that shows the vehicle trajectory over the 

temperature map. 

-10 

-20 

-30 

-40 ,......, 
E 

'"-" 
.c -50 -0.. 
Q) 

0 
-60 

-70 

-80 

-90 

-100 
1000 2000 3000 

Horizontal Distance (m) 
4000 

Temperature 
(degC) 

5000 

Figure 98: Simulation Results: Vehicle Trajectory over the Temperature Map 

Figure 98 shows that, in the case simulated here, this controller is really efficient. The 

vehicle is able to accurately locate the thermocline and remain less than 2m around the 

depth of maximum gradient. Moreover, the reaction of the vehicle when the thermocline 

dives is very fast. At worst, in the middle of the thermocline diving phase, the vehicle is 

only 4m too shallow, and it immediately dives to return in the middle of the thermocline. 

The oscillations, although less regular than that obtained with the controller described in 

V.3.2, are much smaller, due to a faster reaction, as expected. Again, although the 

oscillations seem to be sharp because of the scale used for the plot, a closer look would 

231 



confirm that the magnitude of each oscillation is much smaller than its wavelength. 

Figure 99 shows the time history of several simulation variables. 

Target, Measured and Real Depth 
Orr---~~--~,---~~--~--~~~~~ 

: : : : - Target 

-20 ........ ! ....... --. L. -------- -~ ---- ....... ! ... -- ... - Measured 
l l l 1 -Real 

' ' 

500 1000 

Vehicel Pitch 

1500 
Time (s) 

2000 2500 3000 

Sternplane Angle 
20~--~--~~--~ ~~--~--~~--~ 

15 

10 

' ' ' ' ' ' ' ' ' ------4--------- .. -------- -4• 

' ' ' ' ' ' 
' ' ' 

15 

'@ 10 
Q) 

~ 

' --- ___ ..,._- ------- .,. ___ ---- ..... 
' ' ' ' ' ' 
' ' ' ' ' ' 

'@ 5 Q) 5 
e:. Q) 

~ 
..c: 0 
<J 

ii: -5 

-10 

-15 -----~----- ----~--------~-
' ' ' ' ' ' ' ' ' -~ '-----'------''-----'--' 

0 1000 2000 3000 
Time (s) 

c: 
oc( 0 
Q) 

c: 

~ -5 
E 

OJ -10 

-15 ----~----·----~--------~-
' ' ' ' ' ' -20 L...U---'---'---.......... 

0 1 000 2000 3000 
Time (s) 

Figure 99: Depth, Pitch and Sternplane Angle vs. Time 

The upper plot in Figure 99 shows the setting of the target depth during phase 1, just 

above the middle of the thermocline, and the depth of the vehicle reaching that target and 

tracking the depth of the thermocline. The lower left plot shows that the vehicle pitch 

remains limited, usually a few degrees, and always less than± 8°, during the tracking 

phase. This pitch is approximately half of what was obtained with the controller described 

in V.3.2.4. This is an advantage since the AUV CTD is expected to obtain more accurate 

measurements when the vehicle pitch is limited. Finally, the lower right plot shows that, 

as expected, the simplified fuzzy engine described in V.3.3.2 and used for the third phase 

232 



always outputs a stemplane angle command of ± 0.5 · 6 s. Max= ± lOo . 

Finally, as for the previous simulation, it is interesting to look at the temperature profile 

measured by the vehicle, in Figure 100. 

0.-.----.-----.----.----.----.-----.-;-~ 

-10 · · · · ·:· · · · · Ph·as~ 1' Diving·:····· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·: · · · · · · · · · · : · · · · · 

-20 · · j· · · · · · · · · · ·~ · · · · · · · · ·P~as·e '3. · · ·: ·· · · · · · · · · ·:· · · · · ·· · · · · j· · · · · · · · · 

i: r r •• ,,;\ . 

. . 
-50 

-70 

-80 ,._......._ __ --I ____ _,_ ____ ...__ ___ __._ ____ ...L-__ ____.jl.__ __ __J 

12 14 16 18 20 22 24 26 
Temperature (degC) 

Figure 100: Temperature Profile Measured by the Vehicle 

Again, in Figure 100 above, the different phases of the mission are evident. The profile 

measured by the vehicle when it dives during the first phase, and when it climbs up to the 

target depth during the second phase appears clearly. The upper oblique cluster 

corresponds to the vehicle tracking the thermocline during the first half of the third phase, 

and the lower cluster corresponds to the second half. The sparse cluster between the two 

previous corresponds to what the AUV senses when it dives to follow the thermocline 

variation. The comparison of Figure 90 (or 92) and 100 shows that the reactive controller 

discussed here is more efficient as far as keeping the vehicle in the middle of the 

thermocline is concerned, as evidenced by the length of the oblique clusters. A shorter 

233 



cluster indicates that the vehicle more often remained in the same region of the profile. 

Moreover, a closer look at Figure 100 confirms that the part of the profile the AUV 

sampled is indeed that where the temperature gradient is maximum. 

V.3.3.5. Conclusions 

The above test, as well as some other not described here, confirm that this control method 

is an interesting alternative to that described in V.3.2. Among the advantages are an 

intuitive design and tuning, and a better efficiency in terms of tracking accuracy, response 

time to a depth variation in the thermocline and limited vehicle motion. Moreover this 

method also has the advantage to be more model-free than the previous one. No 

assumption regarding the trajectory that the vehicle is able to achieve is necessary. On the 

contrary, the vehicle may perform any arbitrary motion, determine the appropriateness of 

that motion, and then decide either to continue with or reverse the motion. Unfortunately, 

the simple controller detailed above is not as efficient in case of significant measurement 

noise. More complex fuzzy engines are currently under investigation to improve the noise 

immunity. Nevertheless the main drawback of that method is that once the AUV has 

completely lost the thermocline, it is unlikely to be able to reacquire it by simply 

evaluating the appropriateness of its motion. Indeed, once the vehicle arrives in the mixed 

layer or in the isothermal layer, the measured temperature gradients are not significant 

enough for the vehicle to determine a preferred direction of travel. Some tests performed 

with a controller poorly tuned showed that the mean depth of the vehicle doesn't 

necessary converge towards that of the thermocline. In such cases, we are not facing poor 

performances but really a failure to achieve the mission goal. 

234 



V.4. Comparison of both Methods and Conclusions 

Overall, two control methods have been considered, and corresponding controllers have 

been successfully implemented and tested by simulation. The results confirmed that both 

methods are valid, and provided some insight into the advantages and limitations of each 

method, as well as some guidelines for further improvements. 

A comparison of both methods was performed, which led to the following conclusions: 

The first method consisting of a trajectory in the form of some oscillations whose mean 

depth is derived from an analysis of the measurements provides a systematic tracking 

method. Nevertheless, the performances are limited by the choice of the predefined 

oscillation magnitude and period, as well as the measurements buffer management 

method. In cases the parameters are not optimally set, the response to a varying 

thermocline is slowed down, which reduces the overall tracking efficiency. Moreover, the 

accuracy of the tracking, measured by how close the vehicle remains to the middle of the 

thermocline is directly influenced by the magnitude of the oscillations. The main 

advantage is that even with non-optimal parameters, the tracking remains efficient. 

Moreover, in case of high noise, the tracking is still made possible by the choice of larger 

oscillations and a longer measurements buffer. As far as the reactive controller is 

concerned, its efficiency is much better than that of the previous controller, when the 

vehicle is in the thermocline. Indeed, the AUV remains closer to the middle of the 

thermocline and is able to track depth variations in the thermocline faster than the 

previous controller. Nevertheless, the disadvantage of that method is that an incorrect 

choice of parameters, particularly update rate, either for the controller itself or for the 

235 



CTD measurements, usually leads to a vehicle simply oscillating around a constant depth, 

unable to track any change in the depth of the thermocline. These parameters are 

somehow tricky to fine-tune. Moreover, the simple controller implemented as detailed 

above has a limited efficiency in presence of significant noise. Finally, with that 

controller, high noise does not slow down the tracking by increasing the time it takes for 

the vehicle to reacquire the thermocline once it has lost it, but rather makes the vehicle 

totally unable to reacquire the thermocline. In such cases, the vehicle either continues 

around a slowly varying depth, or the mission is aborted by the safety monitor when the 

vehicle surfaces or hits the maximum safety depth. 

The main conclusion is that a controller based on the algorithm generating an oscillating 

trajectory can be used on the AUV to provide some preliminary results without too much 

work. It is only necessary to derive a more systematic way to fine-tune the various 

parameters. On the other hand, a controller based on the implementation of a reflex is not 

yet robust enough for use on an AUV. More work is required to improve the robustness 

and noise immunity. 

Finally, the idea of designing a controller using a differential CTD sensor, as discussed in 

V.3.1, is currently under investigation. It is believed that such a method can provide 

interesting results in case a differential sensor can be mounted on the vehicle. Simulations 

will be used to assess the efficiency of such a control method, and evaluate the 

performances required for the differential sensor. 

236 



VI. Conclusions and Future Work 

In this chapter, we summarize the thesis work and present the main conclusions and 

guidelines for future work. 

V/.1. Summary of the Thesis Work 

As part of the work described in this thesis, three separate tasks have been achieved: 

• One of FAU's Ocean Explorer AUV has been successfully upgraded to a new OEX-D 

version. A new main computer has been installed, and its operating system and 

software, consistent with the other AUVs of the department of Ocean Engineering, 

have been integrated. The OEX-D now offers a convenient programming and 

operating software interface. Several tests and at-sea missions have confirmed that the 

vehicle is now fully operational. From these tests, a few weaknesses or possible ways 

of improvements have been identified, and significant problems encountered have 

been fixed. 

• Once operational, this new vehicle was used in three Thermocline Survey 

Experiments, intended to gather certain data relevant to the characterization of the 

thermocline. After encountering several problems, which were identified and resolved, 

these missions provided plenty of data to work with. Particularly, a temperature map of 

a vertical water slice has been computed from the temperature and position data of the 

237 



AUV. This validates the mission planning design and data processing method that can 

be used to gather further data during similar Thermocline Survey Experiments. 

Moreover, the data acquired during these experiments, and particularly the 

reconstructed temperature map, provides interesting background input to simulations 

aimed at designing some feature-relative navigation controllers based on temperature 

sensing. 

• Finally, a simulation tool has been designed, whose primary purpose was to investigate 

the design of a thermocline tracking controller for the AUV. This tool provides a 

simple, yet useful, 3 degrees of freedom longitudinal vehicle motion simulation, as 

well as all the functionalities required to emulate a CTD sensor measuring the AUV 

depth and reading the temperature. The temperature readings come from a lookup map 

either based on real or synthetic data. This tool has then be used to evaluate the 

performances of several Thermocline Tracking Controllers. Mainly, two kind of 

controllers have been designed: one is a depth controller based on a model of an 

oscillating trajectory, whose mean depth is computed from the analysis of temperature 

and depth measurement history that provides the depth of maximum temperature 

gradient. The other is a more reactive stemplane controller that makes the AUV 

evaluate the appropriateness of its motion as far as the tracking of a thermocline is 

concerned, and, based on that evaluation, decides either to continue with the same 

motion or reverse it. Both methods have proven to be valid, and several simulations 

allowed the identifications of the strengths and weaknesses of each method. 

Particularly, the control method based on a model of an oscillating trajectory has 

proven to be robust, although its efficiency, in terms of accuracy of the tracking, is 

238 



limited. On the other hand, the reactive controller has shown some promising results as 

far as the accuracy and reactivity are concerned, but its robustness and noise immunity 

need to be further improved. Some possible ways of improvement are currently under 

investigation. Finally, a third control method, based on the use of a differential 

temperature sensor- or gradiometer- is currently considered. 

V/.2. Main Conclusions and Future Work 

Overall, as far as the goal of the thesis - addressing the problem of thermocline tracking 

with an autonomous underwater vehicle- is concerned, an AUV is now operational, and 

different methods to control it for thermocline tracking purposes have been developed. 

The main conclusions drawn from the thesis work can be discussed separately for each of 

the three tasks considered: upgrade of one of the Ocean Explorer AUVs, its use in 

experiments aimed at gathering oceanographic data relevant to the thermocline, and 

design of a control algorithm for the tracking of a thermocline. 

Although a few improvements remain to be implemented on the Ocean Explorer D, it is 

now ready to be used in oceanographic missions. Particularly, the background 

requirements for the consideration of a thermocline tracking have been met, and the 

implementation of a tracking controller is now possible. Meanwhile, an efficient method 

for programming Thermocline Survey Experiments and processing the acquired data has 

been validated, and their use successfully provided a temperature map of a water column. 

Finally, two control methods are now available for tracking a thermocline, one requiring 

very little work to be ready to be implemented in the AUV software. The other method is 

promising, but not yet ready for implementation. Particularly, the most significant 

239 



requirements for a successful thermocline tracking, aside from an efficient controller, 

have been identified, of which the most important are probably related to the CTD data. It 

has been shown that not only accuracy but also high throughput of the CTD 

measurements were the main requirements for the enhancement of the ability of the 

control algorithm to successfully locate and follow the thermocline. 

Finally, some guidelines for future work have been drawn. First a few problems remain to 

be fixed with the OEX-D, including the speed controller failure discussed above. 

Moreover, one of the problems not previously mentioned, but considered important, is 

that of logger failure. It has been seen from time to time that the AUV, although able to 

correctly perform a mission, was unfortunately unable to record data because no logger 

output file was created. Since more often than not the main purpose of a mission is to 

record data, the absence of a logger leads to a failure to meet the goal of an experiment. 

For that reason, an important improvement is required, and can be brought by the addition 

of a software procedure that simply checks that the logger output file is correctly created, 

and aborts the mission if not. Obviously, a better solution would be to find the reason for 

which the logger creation sometimes fails. Then, a few other Thermocline Survey 

Experiments should be run to provide a variety of temperature maps with which thorough 

tests of thermocline tracking controllers could be performed. Indeed, as of now the 

temperature structure of the water column for which a map has been acquired does not 

really show a profile useful for thermocline tracking controller tests. It is believed that 

running the same experiments later in the year, probably in fall or early winter, will 

provide more usable results. Finally, the thermocline tracking algorithms have to be 

improved, as already discussed. Then, once satisfactory results are achieved with the 

240 



simulation tool designed as part of the work described in this thesis, the controller should 

be implemented as part of the AUV software, so that it could undergo extensive tests with 

the Hardware In The Loop simulator. Once fully tested, and particularly once the failure 

behaviors have been verified to ensure that the vehicle safety is preserved, real at-sea tests 

could be planned. At-sea missions will probably provide some more information for the 

improvement of the controller. 

Finally, when the controller is fully operational, the vehicle can be used in thermocline 

tracking mission, that will enable an accurate localization and characterization of the 

thermocline, as well as the measurement of various parameters relevant to oceanographic 

studies along that layer interface. This would undoubtedly improve the knowledge and 

understanding of several oceanographic phenomenon, as well as acoustic and biological 

properties of layered oceans, to name a few. 

241 



Appendix 

Summary File Generated by the Simulation Tool 

Hereafter is an example of a summary file generated by the thermocline tracking 

simulation tool for a simple test run. 

_____________ File: Summary.txt ___________ _ 

Simulation started 19-May-2003 16:39:24. 

Parameters list follows (all units are SI): 

Scheduler_dt: 0.050000 

Motion_dt: 0.050000 

CTD_dt: 0.100000 

Fins_dt: 0.200000 

Tracking_dt: 0.500000 

Logger_dt: 0.500000 

Safety_dt: 0.500000 

Sim_duration: 3200.000000 

CTD_File: .. / ctd/ diving_ctd_dx50_dz01.mat 

NoiseLevelT: 0.050000 

NoiseLevelD: 0.005000 

Summary_flle: ./Summary.txt 

242 



Logger_ftle: . /Logger. txt 

Initial forward velocity (UO): 1.500000 

Min depth for tracking (Min_d_track): 20.000000 

Max depth for tracking (Max_d_track): 80.000000 

Max safety depth (Max_d): 100.000000 

No other parameters. 

- 16:39:24.38: Checking parameters ... 

- 16:39:24.38: Parameters checked successfully. 

- 16:39:24.38: Logger output file Logger. txt created successfully 

- 16:39:24.41 : CTD map ftle . ./ ctd/ diving_ctd_dx50_dz01.mat loaded successfully 

- 16:39:24.43: Simulation begins now. 

- 16:39:24.51 : SimTracking reports: Switching to phase 1. 

- 16:39:37.78: SimTracking reports: Switching to phase 2. Target depth: 70.0119 

- 16:39:37.81 : SimTracking reports: Switching to phase 3. 

- 16:42:35.39 :Simulation finished. No error. 

243 



Bibliography 

[1] Rhodes W. Fairbridge, "The Encyclopedia of Oceanography", a new Reinhold 

Encyclopedia of Earth Sciences, Reinhold Publishing Corporation, 1966. 

[2] Georges L. Pickard and William J. Emery, "Descriptive Physical Oceanography, an 

Introduction", Butterworth-Heinemann Publishers Ltd. , 5th edition, 1990. 

[3] Robert J. Urick, "Principles of Underwater Sound", McGraw-Hill Professional 

Publishing, 3'd edition, April 1983. 

[4] Robert. J. Urick, "Sound Propagation in the Sea", Peninsula Publishing, December 

1982. 

[5] Littoral Ocean Observing and Predictive System (LOOPS) Home Page: 

www. opl. ucsb.edulloops.hml 

[6] Stephen Pond and George L. Pickard, "Introductory Dynamical Oceanography", 

Butterworth-Heinemann Publishers Ltd., 2nd edition, 1983. 

[7] Gerhard Neuman and Willard J. Pierson Jr., "Principles of Physical Oceanography", 

Prentice-Hall Inc. , 1966. 

[8] Alyn C. Duxbury and Alyson B. Duxbury, "An Introduction to the World's Ocean", 

McGraw-Hill Professional Publishing, 4th edition, 1993. 

[9] Geoffrey K. Vallis, "Thermocline Theories and WOCE: A Mutual Challenge", 

International WOCE Newsletter, no. 39, August 2000. 

244 



[10] A. A. Bennett and J. J. Leonard, "A Behavior-Based Approach to Adaptive Feature 

Detection and Following with Autonomous Underwater Vehicles", IEEE Journal of 

Ocean Engineering, Vol. 25, no. 2, pages 213-226, April2000. 

[11] E. Burian, D. Yoerger, A. Bradley and H. Singh, "Gradient Search with Autonomous 

Underwater Vehicles using Scalar Measurements", Proceedings of the 1996 

Symposium on Autonomous Underwater Vehicle Technology AUV'96, pages 86-98, 

1996. 

[12] Y. LePage, K. Holappa, M. Dhanak, "Active Turbulence Following using an AUV: 

Direct In-Situ Measurement of Ambient Turbulence and Self-Propelled Vehicle 

Wake with Intelligent Control of the Measurement Platform", Department of Ocean 

Engineering, Florida Atlantic University, September 2000. 

[13] Robert A. Regan, "Autonomous Minehunting and Mapping Technologies Program

Autonomous Maneuvering Capabilities", Proceedings of the 1996 MTSIIEEE 

OCEANS'96 Conference, Prospects for the 21st Century, vol. 2, pages 807-812, 1996. 

[14] P.R. Bonasso, D. R. Yoerger and K. W. Stewart, "Semi-Autonomous Vehicles for 

Shallow Water Mine-Clearing", Proceedings of the 1992 Symposium on 

Autonomous Underwater Vehicle Technology AUV'92, pages 22-28, June 1992. 

[15] A. Balasuriya and T. Ura, "Autonomous Target Tracking by Twin-Burger 2", 

Proceedings of the 2000 IEEE/RJS International Conference on Intelligent Robots 

and Systems IROS'2000, vol. 2, pages 849-854, 2000. 

[16] T. Curtin, J.G. Bellingham, J. Catipovic and D. Webb, "Autonomous Ocean 

Sampling Networks", Oceanography, vol. 6, no. 3, pages 86-94, 1993. 

[17] P. Lagstad and P. G. Auran, "Real Time Sensor Fusion for Autonomous Underwater 

Imaging in 3D", Proceedings of the 1996 MTSIIEEE OCEANS'96 Conference, 

Prospects for the 2P1 Century, vol. 3, pages 1330-1335, September 1996. 

[18] J. R. Deschamps, P. Charles and A. Kusterbeck, "Chemical Sensing in the Marine 

245 



Environment: Practical Aspects of Sensor Performance and Plume Dynamics". 

[19] J. S. Willcox, Y. Zhang, J. G. Bellingham and J. Marshall," AUV Survey Designed 

Applied to Oceanic Deep Convection", Proceedings of the 1996 MTSIIEEE 

OCEANS'96 Conference, Prospects for the 21 51 Century, vol.2, pages 959-954, 1996. 

[20] J.G. Bellingham and J. S. Willcox, "Optimizing AUV Oceanographic Surveys", 

Proceedings of the 1996 Symposium on Underwater Vehicle Technology AUV'96, 

pages 391-398, 1996. 

[21] H. Kezhong, S. Hainhang, G. Muhe and W. Hong, "Research of Intelligent Mobile 

Robot Key Techniques", Proceedings of the 1996 IEEE International Conference on 

Industrial Technology ICIT'96, pages 503-507, 1996. 

[22] T. S. Chen and R. C. Luo, "Multilevel Multi-Agent Based Team Decision Fusion for 

Mobile Robots Behavior Control", Proceedings of the 3rd World Congress on 

Intelligent Control and Automation, vol. 1, pages 489-494, June 2000. 

[23] R. A. Brooks, "Real-Time Vision through Sensor Fission", Preprints of Japan 

Artificial Intelligence AI'87, pages 443-446, October 1987. 

[24] A. Zilouchian and M. Jamshidi, "Intelligent Control Systems using Soft Computing 

Methodologies", CRC Press, March 2001. 

[25] K. Ganesan, S.M. Smith, K. White and T. Flanigan, "A Pragmatic Software 

Architecture for UUVs", Proceedings of the 1996 Symposium on Autonomous 

Underwater Vehicle Technology AUV'96, pages 209-215, 1996. 

[26] M. N. Desai, M. B. Milton and J. Irza, "Information Augmentation of Passive 

Tracking for Autonomous Underwater Vehicles", Proceedings of the 1990 

Symposium on Autonomous Underwater Vehicle Technology AUV'90, pages 238-

247, June 1990. 

246 



[27] R. C. Luo and T. M. Chen, "Target Tracking by Grey Prediction Theory and Look

Ahead Fuzzy Logic Control", Proceedings of the 1999 IEEE International Conference 

on Robotics and Automation, vol. 2, pages 1176-1181, 1999. 

[28] D. Iijima, W. Yu, H. Yokoi andY. Kakazu, "Obstacle Avoidance for a Multi-Agent 

Linked Robot in the Real World", Proceedings of the 2001 IEEE International 

Conference on Robotics and Automation, vol. 1, pages 523-528, May 2001. 

[29] G. Grenon, "Enhancement of the Inertial Navigation System for the Florida Atlantic 

University Autonomous Underwater Vehicles", College of Engineering, Florida 

Atlantic University, August 2000. 

[30] Advanced Marine Systems (AMS) Laboratory Home Page: 

www .oe .fau.edu/research/ ams.html. 

[31] Advanced Marine Systems (AMS) Laboratory Autonomous Underwater Vehicles 

(AUV) Home Page: www.oe.fau.edu/AMS/auv.html. 

[32] S.M. Smith, S. E. Dunn, T. L. Hopkins, K. Heeb and T. Pantelakis, "The application 

of a Modular AUV to Coastal Oceanography: Case Study on the Ocean Explorer", 

Proceedings of the 1995 MTS/IEEE OCEANS'95 Conference, Challenges of Our 

Changing Global Environment, vol. 3, pages 1423-1432, 1995. 

[33] M. Dhanak, E. An, K. Holappa and S. Smith, "Using Small AUV for Oceanographic 

Measurements", OCEANS'99 MTS/IEEE, Riding the Crest into the 21 51 Century, vol. 

3, pages 1410-1417, 1999. 

[34] S.M. Smith, P. E. An, K. Holappa, J. Whitney, A. Bums, K. Nelson, E. Hatzig, 0. 

Kempfe, D. Kronen, T. Pantelakis, E. Henderson, G. Font, R. Dunn, S. E. Dunn, 

"The Morpheus Ultramodular Autonomous Underwater Vehicle", IEEE Journal of 

Ocean Engineering, vol. 26, no. 4, October 2001. 

[35] Ocean Explorer Payload Interface Specification, 

www.oe.fau.edu/AMS/auv payload interface spec.html. 

247 



[36] An Introduction to VME, www.lecroy.com/lrs/appnotes/introvme/introvme.htm. 

[37] Ocean Explorer Electronics Schematics, Electronics Laboratory, Department of 

Ocean Engineering, Florida Atlantic University. 

[38] Windriver Operating Systems Home Page: 

www.windriver.com/products/family/os.html. 

[39] PC104 History, www.pc104.org/history.html. 

[40] QNX Operating System- System Architecture, For QNX 4.24, QNX Software 

Systems Ltd., 2nd edition, October 1997. 

[41] OEX-C Software Manual v2.6, Department of Ocean Engineering, Florida Atlantic 

University. 

[42] Lon Works Technology Overview- A Lon Works Overview, Echelon Corporation, 

1995. 

[43] Introduction to the Lonworks System, vl.O, Echelon Corporation, 1992. 

[44] S.M. Smith, "An Approach to Intelligent Distributed Control for Autonomous 

Underwater Vehicles", Proceedings of the 1994 Symposium on Autonomous 

Underwater Vehicle Technology AUV'94, pages 105-111, July 1994. 

[45] NodeBuilder User's Guide, Revision 3, Echelon Corporation, 1995. 

[ 46] Neuron C Programmer's Guide, Revision 2, Echelon Corporation, 1992. 

[47] Echelon's Lon Works Products Catalog, Fall2001- Spring 2002, Version A, Echelon 

Corporation. 

[48] Lon Works Microprocessor Interface Program (MIP) User's Guide, Echelon 

Corporation, Revision 3, 1995. 

[ 49] IEC Intelligent Technologies Products: PC/104 Adapter, 

www .ieclon.com/Products/PC 1 04.html. 

248 



[50] LonMaker for Windows User's Guide, Echelon Corporation, Version 1.0, 1998. 

[51] G. Grenon, P. E. An, S.M. Smith and A. J. Healey, "Enhancement of the Inertial 

Navigation System for the Morpheus Autonomous Underwater Vehicle", IEEE 

Journal of Oceanic Engineering, vol. 26, no. 4, pages 548-560, October 2001. 

[52] "SBE 49 FastCAT Configuration and Calibration Manual", Sea-Bird Electronics 

Inc., October 2002. 

[53] D. E. Humphreys, "Development of the Equations of Motion and Transfer Functions 

for Underwater Vehicles", Naval Coastal Systems Laboratory, July 1976. 

[54] F. Song, "AUV Simulation Manual", Advanced Marine Systems Laboratory, 

Department of Ocean Engineering, Florida Atlantic University, July 2001. 

[55] Matlab "Fuzzy Logic Toolbox User's Guide", The Math Works Inc. September 2002. 

249 




