You are here

Statistical bounds on handoff probabilities under different fading channel models of mobile communication

Download pdf | Full Screen View

Date Issued:
2003
Summary:
The research envisaged and reported in this thesis refers to finding comprehensive algorithms to determine the handoff probabilities of new and handoff calls encountered in mobile communications. The traditional expressions for these probabilities that are reported in the literature, are deduced only on the basis of call arrival statistics applied to RF links between base station (BS) and the mobile unit (MU). However, such radio links inevitably suffer from fading. These channels are normally modeled by appropriate probability density functions (pdfs) of the faded signal envelope. Rayleigh, Rician and Nakagami-m distributions are popularly considered in depicting such fading channel characteristics. The traditional (queueing-theoretic) based estimation of handoff probabilities does not account for the hysteresis-specific handoff statistics in the relevant fading channels. This is in contrary to the reality, inasmuch as fading is an inherent part of RF channels in mobile communications. The present study offers a tractable method of combining queuing-theoretic (call arrival) statistics and the hysteresis-crossing statistics of a RSS metric so as to obtain proper expressions for new and handoff call handoff probabilities. The (upper and lower) bound specified spread of the handoff probabilities indicates that care should be exercised in resource allocation efforts with a margin. To the best of the knowledge of the author, this research exercise is new and has not been reported elsewhere in open literature.
Title: Statistical bounds on handoff probabilities under different fading channel models of mobile communication.
116 views
70 downloads
Name(s): Laupattarakasem, Pet.
Florida Atlantic University, Degree grantor
Neelakanta, Perambur S., Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2003
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 121 p.
Language(s): English
Summary: The research envisaged and reported in this thesis refers to finding comprehensive algorithms to determine the handoff probabilities of new and handoff calls encountered in mobile communications. The traditional expressions for these probabilities that are reported in the literature, are deduced only on the basis of call arrival statistics applied to RF links between base station (BS) and the mobile unit (MU). However, such radio links inevitably suffer from fading. These channels are normally modeled by appropriate probability density functions (pdfs) of the faded signal envelope. Rayleigh, Rician and Nakagami-m distributions are popularly considered in depicting such fading channel characteristics. The traditional (queueing-theoretic) based estimation of handoff probabilities does not account for the hysteresis-specific handoff statistics in the relevant fading channels. This is in contrary to the reality, inasmuch as fading is an inherent part of RF channels in mobile communications. The present study offers a tractable method of combining queuing-theoretic (call arrival) statistics and the hysteresis-crossing statistics of a RSS metric so as to obtain proper expressions for new and handoff call handoff probabilities. The (upper and lower) bound specified spread of the handoff probabilities indicates that care should be exercised in resource allocation efforts with a margin. To the best of the knowledge of the author, this research exercise is new and has not been reported elsewhere in open literature.
Identifier: 9780496181704 (isbn), 13006 (digitool), FADT13006 (IID), fau:9873 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2003.
Subject(s): Oceanographic submersibles
Tactile sensors
Robots--Control systems
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/13006
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.