You are here
Design of an adaptive nonlinear controller for an autonomous underwater vehicle equipped with a vectored thruster
- Date Issued:
- 2002
- Summary:
- The tasks Autonomous Underwater Vehicles (AUVs) are expected to perform are becoming more and more challenging. Thus, to be able to address such tasks, we implemented a high maneuverability propulsion system: a vectored thruster. The design of a vehicle equipped with such a propulsion system will be presented, from a mechanical, electronic and software point of view. The motion control of the resulting system is fairly complex, and no suitable controller is available in the literature. Accordingly, we will present the derivation of a novel tracking controller, whose adaptive properties will compensate for the lack of knowledge of the system's parameters. Computer simulations are provided and show the performance and robustness of the proposed control algorithm to external perturbations, unmodelled dynamics and dynamics variation. We finally illustrate the advantage of using an adaptive controller by comparing the presented controller to a Proportional Integral Derivative controller.
Title: | Design of an adaptive nonlinear controller for an autonomous underwater vehicle equipped with a vectored thruster. |
158 views
85 downloads |
---|---|---|
Name(s): |
Morel, Yannick. Florida Atlantic University, Degree grantor Leonessa, Alexander, Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2002 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 100 p. | |
Language(s): | English | |
Summary: | The tasks Autonomous Underwater Vehicles (AUVs) are expected to perform are becoming more and more challenging. Thus, to be able to address such tasks, we implemented a high maneuverability propulsion system: a vectored thruster. The design of a vehicle equipped with such a propulsion system will be presented, from a mechanical, electronic and software point of view. The motion control of the resulting system is fairly complex, and no suitable controller is available in the literature. Accordingly, we will present the derivation of a novel tracking controller, whose adaptive properties will compensate for the lack of knowledge of the system's parameters. Computer simulations are provided and show the performance and robustness of the proposed control algorithm to external perturbations, unmodelled dynamics and dynamics variation. We finally illustrate the advantage of using an adaptive controller by comparing the presented controller to a Proportional Integral Derivative controller. | |
Identifier: | 9780496179237 (isbn), 12986 (digitool), FADT12986 (IID), fau:9854 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2002. |
|
Subject(s): |
Hydrodynamics Nonlinear control theory Adaptive control systems Oceanographic submersibles |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12986 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |