You are here
Optimized Parameters Fitting of a Poro-Elastic Acoustic Model with Ultrasonic Measurements for the Monitoring of Corroding Rebar in Reinforced Concrete
- Date Issued:
- 2023
- Abstract/Description:
- Traditional techniques of observing cracking within reinforced structures can be invasive, leading to an increased risk of added corrosion to structures already undergoing corrosive processes. The research presented in this document improves upon a nondestructive method for detecting early crack formation in reinforced concrete. This method includes using acoustic signaling to add a layer of salt water between the sensor and analyzed sample. Following the collection of surface and rebar echo responses, an adapted version of the novel Biot-Stoll method is used to model sound propagation for poro-elastic mediums. Testing of model parameters and variables has improved the root mean square error (RMSE) by up to 63.7% when studying the full signal, and up to 62.6% for the rebar echo locations. These improvements signify better curve fitting between simulated and measured responses, which lead to increased accuracy in the model parameter outputs.
Title: | Optimized Parameters Fitting of a Poro-Elastic Acoustic Model with Ultrasonic Measurements for the Monitoring of Corroding Rebar in Reinforced Concrete. |
![]() ![]() |
---|---|---|
Name(s): |
Shaffer, Samuel , author Beaujean, Pierre-Philippe , Thesis advisor Florida Atlantic University, Degree grantor Department of Ocean and Mechanical Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2023 | |
Date Issued: | 2023 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 195 p. | |
Language(s): | English | |
Abstract/Description: | Traditional techniques of observing cracking within reinforced structures can be invasive, leading to an increased risk of added corrosion to structures already undergoing corrosive processes. The research presented in this document improves upon a nondestructive method for detecting early crack formation in reinforced concrete. This method includes using acoustic signaling to add a layer of salt water between the sensor and analyzed sample. Following the collection of surface and rebar echo responses, an adapted version of the novel Biot-Stoll method is used to model sound propagation for poro-elastic mediums. Testing of model parameters and variables has improved the root mean square error (RMSE) by up to 63.7% when studying the full signal, and up to 62.6% for the rebar echo locations. These improvements signify better curve fitting between simulated and measured responses, which lead to increased accuracy in the model parameter outputs. | |
Identifier: | FA00014265 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2023. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Reinforced concrete Reinforcing bars--Corrosion Ultrasonic testing |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014265 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU |