You are here

AN ARTIFICIAL INTELLIGENCE DRIVEN FRAMEWORK FOR MEDICAL IMAGING

Download pdf | Full Screen View

Date Issued:
2023
Abstract/Description:
The major objective of this dissertation was to create a framework which is used for medical image diagnosis. In this diagnosis, we brought classification and diagnosing of diseases through an Artificial Intelligence based framework, including COVID, Pneumonia, and Melanoma cancer through medical images. The algorithm ran on multiple datasets. A model was developed which detected the medical images through changing hyper-parameters. The aim of this work was to apply the new transfer learning framework DenseNet-201 for the diagnosis of the diseases and compare the results with the other deep learning models. The novelty in the proposed work was modifying the Dense Net 201 Algorithm, changing hyper parameters (source weights, Batch Size, Epochs, Architecture (number of neurons in hidden layer), learning rate and optimizer) to quantify the results. The novelty also included the training of the model by quantifying weights and in order to get more accuracy. During the data selection process, the data were cleaned, removing all the outliers. Data augmentation was used for the novel architecture to overcome overfitting and hence not producing false absurd results the computational performance was also observed. The proposed model results were also compared with the existing deep learning models and the algorithm was also tested on multiple datasets.
Title: AN ARTIFICIAL INTELLIGENCE DRIVEN FRAMEWORK FOR MEDICAL IMAGING.
36 views
19 downloads
Name(s): Sanghvi, Harshal A. , author
Agarwal, Ankur , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2023
Date Issued: 2023
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 171 p.
Language(s): English
Abstract/Description: The major objective of this dissertation was to create a framework which is used for medical image diagnosis. In this diagnosis, we brought classification and diagnosing of diseases through an Artificial Intelligence based framework, including COVID, Pneumonia, and Melanoma cancer through medical images. The algorithm ran on multiple datasets. A model was developed which detected the medical images through changing hyper-parameters. The aim of this work was to apply the new transfer learning framework DenseNet-201 for the diagnosis of the diseases and compare the results with the other deep learning models. The novelty in the proposed work was modifying the Dense Net 201 Algorithm, changing hyper parameters (source weights, Batch Size, Epochs, Architecture (number of neurons in hidden layer), learning rate and optimizer) to quantify the results. The novelty also included the training of the model by quantifying weights and in order to get more accuracy. During the data selection process, the data were cleaned, removing all the outliers. Data augmentation was used for the novel architecture to overcome overfitting and hence not producing false absurd results the computational performance was also observed. The proposed model results were also compared with the existing deep learning models and the algorithm was also tested on multiple datasets.
Identifier: FA00014274 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2023.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Diagnostic imaging
Artificial intelligence
Deep learning (Machine learning)
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014274
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Host Institution: FAU