You are here
FIELD EXPERIMENTS ON ADAPTIVE CRUISE CONTROL (ACC) CAR FOLLOWING BEHAVIOR – IMPACT OF LANE CHANGES ON CAPACITY
- Date Issued:
- 2023
- Abstract/Description:
- Today’s mainstream vehicles are partially automated via an advanced driver assistance feature (ADAS) known as Adaptive Cruise Control (ACC). ACC uses data from on-board sensors to automatically adjust speed to maintain a safe following distance with the preceding vehicle. Contrary to expectations, ICE vehicles equipped with ACC may reduce capacity at bottlenecks because its delayed response and limited initial acceleration during queue discharge could increase the average headway. On the other hand, ACC equipped EVs can potentially mitigate this effect for having ready torque and quicker acceleration. However, this has not been investigated for cases when lane changers enter from the adjacent lane. ACC could respond differently under these conditions, and this car following behavior is often referred as receiving lane change car following. Carefully planned field experiments on lane change car following demonstrate that lane changes and the subsequent receiving lane change car following from ICE vehicles equipped with ACC increases the gap unless the lane changer and the target lane traffic have identical or similar speeds for internal combustion engine (ICE) vehicles and ACC in the EVs doesn’t increase the gap after lane change increasing capacity for merging compared to ICE vehicles. For ICE, this trend also correlates with the selected ACC gap, with larger gap selection resulting in longer gap following the lane change maneuver and the receiving lane change car following in response. Larger gap setting shows better results after lane change for EVs.
Title: | FIELD EXPERIMENTS ON ADAPTIVE CRUISE CONTROL (ACC) CAR FOLLOWING BEHAVIOR – IMPACT OF LANE CHANGES ON CAPACITY. |
29 views
15 downloads |
---|---|---|
Name(s): |
Khan, Md Mahede Hasan, author Kan, David, Thesis advisor Florida Atlantic University, Degree grantor Department of Civil, Environmental and Geomatics Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2023 | |
Date Issued: | 2023 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 72 p. | |
Language(s): | English | |
Abstract/Description: | Today’s mainstream vehicles are partially automated via an advanced driver assistance feature (ADAS) known as Adaptive Cruise Control (ACC). ACC uses data from on-board sensors to automatically adjust speed to maintain a safe following distance with the preceding vehicle. Contrary to expectations, ICE vehicles equipped with ACC may reduce capacity at bottlenecks because its delayed response and limited initial acceleration during queue discharge could increase the average headway. On the other hand, ACC equipped EVs can potentially mitigate this effect for having ready torque and quicker acceleration. However, this has not been investigated for cases when lane changers enter from the adjacent lane. ACC could respond differently under these conditions, and this car following behavior is often referred as receiving lane change car following. Carefully planned field experiments on lane change car following demonstrate that lane changes and the subsequent receiving lane change car following from ICE vehicles equipped with ACC increases the gap unless the lane changer and the target lane traffic have identical or similar speeds for internal combustion engine (ICE) vehicles and ACC in the EVs doesn’t increase the gap after lane change increasing capacity for merging compared to ICE vehicles. For ICE, this trend also correlates with the selected ACC gap, with larger gap selection resulting in longer gap following the lane change maneuver and the receiving lane change car following in response. Larger gap setting shows better results after lane change for EVs. | |
Identifier: | FA00014276 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2023. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Automated vehicles Automobile driving--Lane changing |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014276 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU |