You are here
comparative study of attribute selection techniques for CBR-based software quality classification models
- Date Issued:
- 2002
- Summary:
- To achieve high reliability in software-based systems, software metrics-based quality classification models have been explored in the literature. However, the collection of software metrics may be a hard and long process, and some metrics may not be helpful or may be harmful to the classification models, deteriorating the models' accuracies. Hence, methodologies have been developed to select the most significant metrics in order to build accurate and efficient classification models. Case-Based Reasoning is the classification technique used in this thesis. Since it does not provide any metric selection mechanisms, some metric selection techniques were studied. In the context of CBR, this thesis presents a comparative evaluation of metric selection methodologies, for raw and discretized data. Three attribute selection techniques have been studied: Kolmogorov-Smirnov Two-Sample Test, Kruskal-Wallis Test, and Information Gain. These techniques resulted in classification models that are useful for software quality improvement.
Title: | A comparative study of attribute selection techniques for CBR-based software quality classification models. |
![]() ![]() |
---|---|---|
Name(s): |
Nguyen, Laurent Quoc Viet. Florida Atlantic University, Degree grantor Khoshgoftaar, Taghi M., Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2002 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 110 p. | |
Language(s): | English | |
Summary: | To achieve high reliability in software-based systems, software metrics-based quality classification models have been explored in the literature. However, the collection of software metrics may be a hard and long process, and some metrics may not be helpful or may be harmful to the classification models, deteriorating the models' accuracies. Hence, methodologies have been developed to select the most significant metrics in order to build accurate and efficient classification models. Case-Based Reasoning is the classification technique used in this thesis. Since it does not provide any metric selection mechanisms, some metric selection techniques were studied. In the context of CBR, this thesis presents a comparative evaluation of metric selection methodologies, for raw and discretized data. Three attribute selection techniques have been studied: Kolmogorov-Smirnov Two-Sample Test, Kruskal-Wallis Test, and Information Gain. These techniques resulted in classification models that are useful for software quality improvement. | |
Identifier: | 9780493912998 (isbn), 12944 (digitool), FADT12944 (IID), fau:9816 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2002. |
|
Subject(s): |
Case-based reasoning Software engineering Computer software--Quality control |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12944 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |