You are here

MICROFLUIDIC ELECTRICAL IMPEDANCE TECHNOLOGY FOR POINT-OFCARE ASSESSMENT OF SICKLE CELL DISEASE

Download pdf | Full Screen View

Date Issued:
2023
Abstract/Description:
Sickle Cell Disease (SCD) is a genetic disease that affects approximately 100,000 people in the USA and millions worldwide. The disease is defined by a mutation in hemoglobin, the red blood cell’s oxygen carrying component. Under hypoxic (low oxygen) conditions, the mutated hemoglobin (known as HbS) polymerizes into rigid fibers that stretch the cell into a sickle shape. These rigid cells can occlude blood vessels and cause an individual immense pain. Currently, no point-of-care devices exist in the market for assisting those with SCD. Using microfluidics with custom designed portable impedance measuring hardware we can achieve label-free in vitro analyses of SCD rheology. This dissertation presents two impedance-based devices for finger-prick volume blood testing, including a microflow cytometer for SCD diagnostics and a vaso-occlusion tester for monitoring blood flow activities. First, the microflow cytometer is validated by measuring the electrical impedance of individual cells flowing through a narrow microfluidic channel. Cellular impedance is interpreted by changes in subcellular components due to oxygen association-dissociation of hemoglobin, using an equivalent circuit model and Multiphysics simulation. Impedance values of sickle cells exhibit remarkable deviations from normal blood cells. Such deviation is quantified by a conformity score, which allows for measurement of SCD heterogeneity, and potentially disease severity. Findings from this study demonstrate the potential for SCD screening via electrical impedance. Second, a vaso-occlusion tester is validated by measuring the impedance response of blood flow within a microfluidic mimic of capillary bed.
Title: MICROFLUIDIC ELECTRICAL IMPEDANCE TECHNOLOGY FOR POINT-OFCARE ASSESSMENT OF SICKLE CELL DISEASE.
52 views
28 downloads
Name(s): Dieujuste, Darryl , author
Du, Sarah, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Ocean and Mechanical Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2023
Date Issued: 2023
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 85 p.
Language(s): English
Abstract/Description: Sickle Cell Disease (SCD) is a genetic disease that affects approximately 100,000 people in the USA and millions worldwide. The disease is defined by a mutation in hemoglobin, the red blood cell’s oxygen carrying component. Under hypoxic (low oxygen) conditions, the mutated hemoglobin (known as HbS) polymerizes into rigid fibers that stretch the cell into a sickle shape. These rigid cells can occlude blood vessels and cause an individual immense pain. Currently, no point-of-care devices exist in the market for assisting those with SCD. Using microfluidics with custom designed portable impedance measuring hardware we can achieve label-free in vitro analyses of SCD rheology. This dissertation presents two impedance-based devices for finger-prick volume blood testing, including a microflow cytometer for SCD diagnostics and a vaso-occlusion tester for monitoring blood flow activities. First, the microflow cytometer is validated by measuring the electrical impedance of individual cells flowing through a narrow microfluidic channel. Cellular impedance is interpreted by changes in subcellular components due to oxygen association-dissociation of hemoglobin, using an equivalent circuit model and Multiphysics simulation. Impedance values of sickle cells exhibit remarkable deviations from normal blood cells. Such deviation is quantified by a conformity score, which allows for measurement of SCD heterogeneity, and potentially disease severity. Findings from this study demonstrate the potential for SCD screening via electrical impedance. Second, a vaso-occlusion tester is validated by measuring the impedance response of blood flow within a microfluidic mimic of capillary bed.
Identifier: FA00014243 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2023.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Sickle cell anemia
Microfluidics
Point-of-care testing
Electric Impedance
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014243
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Host Institution: FAU