You are here
Development and implementation of integrated acoustic and oceanographic numerical modeling in coastal regions
- Date Issued:
- 2002
- Summary:
- An integrated coastal ocean and acoustic propagation model has been implemented to determine the effects of the ocean variations on the acoustic propagation field applied specifically to SFOMC. The ocean dynamics were modeled using the sigma coordinate, orthogonal curvilinear grid, Princeton Ocean Model. By using forcing conditions of tide, river runoff, wind and realistic bottom topography, the resulting time variant regional sound velocity outputs from the model were used as inputs to the range dependent, parabolic equation, acoustic propagation model, RAM. The results show that the fluctuations in the ocean result in scintillation in the acoustic propagation field, and for higher frequencies this variability is uniformly distributed and at times as much as +/-3 dB. High resolution in the POM grid and the range and depth sizes for RAM were important for obtaining reliable simulation results.
Title: | Development and implementation of integrated acoustic and oceanographic numerical modeling in coastal regions. |
![]() ![]() |
---|---|---|
Name(s): |
Walker, Natasha Maria. Florida Atlantic University, Degree grantor Glegg, Stewart A. L., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2002 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 94 p. | |
Language(s): | English | |
Summary: | An integrated coastal ocean and acoustic propagation model has been implemented to determine the effects of the ocean variations on the acoustic propagation field applied specifically to SFOMC. The ocean dynamics were modeled using the sigma coordinate, orthogonal curvilinear grid, Princeton Ocean Model. By using forcing conditions of tide, river runoff, wind and realistic bottom topography, the resulting time variant regional sound velocity outputs from the model were used as inputs to the range dependent, parabolic equation, acoustic propagation model, RAM. The results show that the fluctuations in the ocean result in scintillation in the acoustic propagation field, and for higher frequencies this variability is uniformly distributed and at times as much as +/-3 dB. High resolution in the POM grid and the range and depth sizes for RAM were important for obtaining reliable simulation results. | |
Identifier: | 9780493553665 (isbn), 12901 (digitool), FADT12901 (IID), fau:9775 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2002. |
|
Subject(s): |
Oceanography--Mathematical models Underwater acoustics--Mathematical models Coastal engineering |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12901 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |