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ABSTRACT

Author: Mingyan Hu

Title: Wind Speed Analysis for Lake Okeechobee
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Thesis Advisor: Dr. Lianfen Qian

Degree: Master of Science

Year: 2002

In this thesis, we analyze wind speeds collected by South Florida Water
Management District at stations L001, L005, L0O06 and LZ40 in Lake Okeechobee
from January 1995 to December 2000. There are many missing values and out-
liers in this data. To impute the missing values, three different methods are used:
Nearby window average imputation, Jones imputation using Kalman filter, and EM
algorithm imputation. To detect outliers and remove impacts, we use ARIMA niod-
els of time series. Innovational and additive outliers are considered. It turns out
that EM algorithm imputation is the best method for our wind speed data set.
After imputing missing values, detecting outliers and removing the impacts, we
obtain the best models for all four stations. They are all in the form of seasonal

ARIMA(2,0,0) x (1,0,0)24 for the hourly wind speed data.
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Chapter 1

INTRODUCTION

Lake Okeechobee (Figure 1.1) is a natural lake in South Central Florida. Its
name comes from two Indian words and means “big water”. It is the second largest
natural lake in the United States of America and is located at 27 N Latitude and 80
W Longitude. Its surface area is approximately 1730km?. It is very shallow, with
mean and maximum depths of 2.7m and 5.5m, respectively. A flood control dike
built between 1930 and 1960 encircled the natural lake [12]. Currently, the lake has a
storage capacity of about 40 billion cubic meters of water. Water levels are regulated
according to a schedule developed by the U.S. Army Corps of Engineers. In addition
to providing regional flood control, primary uses of the lake include agricultural
water supply, drinking water for lakeside cities and towns and a backup water supply
for the communities of the lower east coast of Florida. Other uses are commercial
and recreational fishing, navigation and wildlife habitat. Lake Okeechobee is also
a major component of the Kissimmee-Okeechobee-Everglades hydrologic system,
receiving drainage from the Kissimmee River and discharging to the Everglades

Agricultural Area [17].
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Figure 1.1: Lake Okeechobee and Data Collection Sites

Lake Okeechobee wind speed data are routinely collected by sensors and tran-
scribed from field /laboratory forms to an electronic format. The data set analyzed
in this thesis is the wind speeds (miles per hour) collected at stations L001, L005,
L006 and LZ40 (corresponding sample sites 16, 38, 39 and 35, respectively in Figure
1.1) from January 1995 to December 2000. From the exploratory data analysis in
Chapter 2, we observed that the monthly means of wind speeds are around 8mph

in summer, while they are greater than 10mph in all other seasons. The patterns of



wind speeds for all four stations are similar. But the monthly means of wind speeds
at station L001 is substantially different from those of the other stations in Septem-
ber 1995 and February 1998, and there are more missing values at station L001 than
at other stations. In 1995, the monthly means at station L001 are obviously less
than those of other stations. This little difference at station L001 may be caused by
various reasons, such as location of the station, device failures or bird interruptions.
The wind speeds of the four stations are correlated positively. In an attempt to
explain the distribution of the data in a three-parameter Weibull distribution, the
goodness of fit tests in Table 2.7 show that the distribution does not fit well. A
possible improvement may be to use a lognormal, beta or mixed distribution.

Since there are lots of missing values in this data set, we have to impute the
missing values before we detect outliers. In this thesis, we use three imputation
methods: Nearby window average imputation, Jones imputation using Kalman fil-
ter [13] and EM algorithm imputation [19]. In Chapter 3, we introduce the three
methods.

The effects of extraneous objects, measuring device failures and human errors
may distort the field data. Usually qualified engineers, scientists or technicians
identify abnormalities after inspecting the data manually. This manual process is
slow, costly and sometimes inconsistent among inspectors [12]. Various methods,
such as artificial intelligence [8], neural network [12] and outlier detection in time

series models, have been used for detecting abnormal data. In Chapter 3, we also use
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Figure 1.2: Flow Chart of Modeling Process

time series analysis to detect and remove the abnormal data. A common approach
to deal with outliers in a time series is to identify the locations, , and the types
of outliers and then remove the impacts by using intervention models. Four types
of outliers are usually considered: Innovational outlier (I0), additive outlier (AO),
level shift (LS) and temporary change (TC) [20]. For the wind speed data, the
outliers could be either IO or AO. Hence, only IO and AO are considered in this
thesis. We also studied the power of three imputation methods by using a small
portion of time series from station LOO1. Based on the results, we use EM algorithm
to impute missing values for the data set used in this thesis.

To get the best model for the wind speed data, the idea is shown in Figure



1.2. After imputing the missing values and removing the impacts of outliers, we can
get the best model. This is presented in Chapter 4. Due to the computing problem,
the data set used in Chapter 4 is the hourly wind speeds of all four stations from May
to August in 2000 only. The best models are seasonal ARINA(2,0,0) x (1,0,0)q
for all four stations. The term (2,0, 0) gives the order of the nonseasonal part of the
ARIMA model; the term (1,0,0)q4 gives the order of the seasonal part. The form

of this model is given by
(1-¢11B - O1.232)(1 - 9’52,1324)13 =Mut+e t=1-,m,

where n is the number of observations in the time series; B is the backshift operator
such that Bz = @y 1; (1 — ¢11B — ¢12B?)(1 — ¢9,1B*!) is a polynomial of B with
all roots outside the unit circle; {¢;} is uncorrelated and identically distributed with
mean zero and variance o?; The value 24 reflects a daily circle in the hourly wind
speed data. Thus, it shows that the wind speed in all stations under study behaves
similarly. This suggests that it is not necessary to collect data from all the stations
under study.

In an appendix, we include the Matlab codes and SAS programs used for this

thesis.



Chapter 2

DATA EXPLORATION

Lake Okeechobee wind speed data are routinely collected by sensors and tran-
scribed from field /laboratory forms to an electronic format. Field data were collected
every 15 minutes by the South Florida Water Management District (SFWMD) at
a permanent data collection site (Figure 1.1, [11]). Wind speeds (miles per hour)
were measured with a Skyvane Wind Sensor Model 2100. Occasionally the effects of
extraneous factors such as birds, measuring device failures and human errors, may
distort field data [12]. The data set analyzed in this thesis consists of the wind
speeds collected at stations L001, L005, L006 and LZ40 (corresponding sample sites

16, 38, 39 and 35, respectively in Figure 1.1) from January 1995 to December 2000.

Table 2.1: Descriptive Statistics for All Stations

Station N N Miss Mean Std Dev Min Max
LO01 189408 21024 10.214 5.549 0 724
L005 206703 849 10.479 5.404 0 56.26
L006 204162 6270 11.056 5.702 0 49.95
LZ40 203414 7018 11.041 5.722 0 55.68




Table 2.2: Descriptive Statistics for L001

Month Obs Miss Mean Min Max Month Obs Miss Mean Min Max
Jan-95 2976 0 8.03 0.44 30.69 Jan-98 2976 0 10.78  0.50 27.18
Feb-95 2688 0 8.16 0.44 30.35 Feb-98 562 2126 17.59 3.53 40.66
Mar-95 2976 0 944 044 27.21 || Mar-98 1613 1363 1231 0.8l  25.71
Apr-95 2880 0 948 044 3216 || Apr-98 2880 0 12.92 076  26.90
May-95 2976 0 7.81 044 3078 || May-98 2870 106  9.80 0.30  25.80
Jun-95 2839 41 898 044  31.00 || Jun-98 1741 1139 10.88 0.84  26.14
Jul-95 2976 0 7.53 0.44 2847 || Jul-98 1987 989 852 000 68.10
Aug-95 2660 316  9.18 0.44  34.39 || Aug-98 1419 1557  8.06 0.00 58.60
Sep-95 1578 1302  4.70 0.44  26.01 || Sep-98 2612 268  9.91 0.00  39.90
Oct-95 2887 89 10.34 0.44  29.86 || Oct-98 2976 0 864 000 72.40
Nov-95 2880 0 1066 0.44  26.31 || Nov-98 2879 1 804 0.00 37.45
Dec-95 2976 0 951 044 2558 || Dec-98 2885 91 951 040  31.09
Jan-96 2976 0 970 044 2864 || Jan-99 2976 0 9.61 0338 3080
Feb-96 2784 0 9.80 0.44 31.68 Feb-99 2688 0 10.35 0.00 27.45
Mar-96 2976 0 1234 0.44  32.28 || Mar-99 2976 0 1066 0.65  29.01
Apr-96 2880 0 11.09 044  26.74 || Apr-99 2880 0 1047 048  34.97
May-96 2915 61  10.55 0.45  31.12 || May-99 2976 0 1026 0.72  29.36
Jun-96 2880 0 9.61 0.46 33.02 Jun-99 2880 0 9.58 0.56 27.64
Jul-96 2976 0 10.14 0.45 30.87 Jul-99 2976 0 8.81 0.83 31.43
Aug-96 2976 0 9.07 0.44 3112 Aug-99 2974 2 9.40 0.52 28.81
Sep-96 2880 0 9.36  0.44 34.36 Sep-99 2880 0 10.28  0.52 34.00
Oct-96 2976 0 10.66  0.44 29.34 Oct-99 2976 0 12.39 055 55.13
Nov-96 2880 0 1221 044  27.16 || Nov-99 2880 0 11.74 052  28.65
Dec-96 1988 988  9.25 0.45  31.68 || Dec-99 2976 0 976 044  24.68
Jan-97 2976 0 9.89 050 35.67 || Jan-00 2976 0 990 042 32.69
Feb-97 2688 0 10.79  0.31 27.82 Feb-00 2784 0 9.78  0.42 34.35
Mar-97 2976 0 12.25 0.98 32.98 Mar-00 2976 0 11.57 0.88 29.36
Apr-97 2880 0 1372 1.08 63.59 || Apr-00 2879 1 1235 1.06 25.83
May-97 376 2600  9.67 0.81  24.70 || May-00 2975 1 1140 0.83  25.81
Jun-97 800 2080 1146 0.74 22.27 Jun-00 2880 0 10.49 0.75 35.24
Jul-97 0 2976 . : ; Jul-00 2976 0 10.11  0.70 34.89
Aug-97 1981 995 13.31  0.84 29.53 Aug-00 2976 0 9.68 0.66 31.13
Sep-97 1116 1764 8.93 0.40 21.40 Sep-00 2880 0 9.63 0.57 30.57
Oct-97 2973 3 10.48 0.51 33.95 Oct-00 2976 0 11.81  0.77 29.86
Nov-97 2715 165 10.25 0.64  30.42 || Nov-00 2880 0 10.86 049  26.55
Dec-97 2976 0 1060 0.44  31.91 || Dec-00 2976 0 1157 0.66 3509
“.” represents the missing value
2.1 Station L001
Station L001 is in the north of Lake Okeechobee (Figure 1.1). Table 2.2

and Figure 2.1 show that the monthly means are between 8mph and 13mph except

September 1995, July 1997 and February 1998. The monthly mean of wind speeds

in July 1997 is missing because the wind speeds are all missing. Table 2.2 shows that

there are 6 large values of maximum (bold) wind speed (wind speed that is 40mph or
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Figure 2.1: Plots of Monthly Mean Values for All Stations

above is considered as a large value). There are 21024 missing values at station L001
(Table 2.1). The number of missing values on September 1995 and February 1998
are 1302 and 2126 (Table 2.2) with missing rates 45.2% and 79%, respectively. It is
possible that the large number of missing values caused the unusual monthly means:
4.70mph and 17.59mph for September 1995 and February 1998, respectively. There

are more missing values in 1997 and 1998 than in the other years on this station.

2.2 Station L005

Station LO005 is in the west of Lake Okeechobee (Figure 1.1). Table 2.3 and
Figure 2.1 show that all the monthly means are between 8mph and 14mph. There
are 4 large values of maximum wind speeds which are greater than 40mph. There

are only 96 observed values on December 2000. The total number of missing values



Table 2.3: Descriptive Statistics for L0O05

Month Obs Miss Mean Min Max Month Obs Miss Mean Min Max
Jan-95 2976 0 9.17  0.44 29.55 Jan-98 2976 0 10.92 0.44 27.84
Feb-95 2688 0 9.37 0.44 35.39 Feb-98 2688 0 13.23 0.44 37.54
Mar-95 2976 0 11.08 0.44 25.87 Mar-98 2976 0 12.80 0.44 29.72
Apr-95 2880 0 11.96 044 27.75 Apr-98 2880 0 1285 0.44 26.54
May-95 2976 0 10.23 045 34.33 May-98 2976 0 9.45 0.44 32.58
Jun-95 2880 0 10.53 0.44 30.96 Jun-98 2880 0 9.56 0.44 33.98
Jul-95 2976 0 9.61 0.44 3537 Jul-98 2976 0 8.29 0.44 32.16
Aug-95 2938 38 10.33 0.44 33.08 Aug-98 2976 0 8.64 0.44 34.11
Sep-95 2880 0 792 0.44 27.10 Sep-98 2880 0 11.91 0.44 33.22
Oct-95 2908 68 11.47 0.44 29.00 Oct-98 2976 0 10.92 0.44 25.81
Nov-95 2839 41 9.92 0.44 23.66 Nov-98 2833 47 8.68 0.44 35.93
Dec-95 2929 47 9.35 0.44 26.72 Dec-98 2836 140 10.09 0.00 29.14
Jan-96 2976 0 10.24 0.44 31.88 Jan-99 2976 0 10.07 0.00 25.98
Feb-96 2784 0 10.19 0.44 33.71 Feb-99 2688 0 10.33 0.00 27.04
Mar-96 2976 0 13.21 0.44 31.06 Mar-99 2976 0 11.11 0.00 31.44
Apr-96 2413 467 12.31 0.44 26.09 Apr-99 2880 0 10.10 0.01 32.62
May-96 2976 0 11.24 0.44 31.38 May-99 2976 0 10.16 0.04 35.94
Jun-96 2880 0 9.25 0.44 30.27 Jun-99 2880 0 9.40  0.00 33.78
Jul-96 2976 0 9.92 0.44 32.81 Jul-99 2976 0 8.82 0.01 26.81
Aug-96 2976 0 9.38 0.44 28.30 Aug-99 2976 0 8.94 0.00 32.31
Sep-96 2880 0 9.17  0.44 25.58 Sep-99 2880 0 10.43 0.00 34.62
Oct-96 2976 0 TLTL 0.44 28.82 Oct-99 2976 0 13.30 0.00 45.91
Nov-96 2880 0 12.56  0.44 29.07 Nov-99 2880 0 11.91 0.00 2151
Dec-96 2976 0 9.33 0.44 27.30 Dec-99 2976 0 9.79  0.00 22.82
Jan-97 2976 0 9.52 0.44 33.18 Jan-00 2976 0 9.96 0.00 31.62
Feb-97 2688 0 10.93 0.44 25.02 Feb-00 2784 0 10.20 0.00 23.79
Mar-97 2976 0 11.72 044 30.76 Mar-00 2976 0 12.02 0.00 28.35
Apr-97 2880 0 13.31 044 34.61 Apr-00 2880 0 12.75 0.03 26.73
May-97 2976 0 1062 0.44 45.39 May-00 2975 1 11.65 0.00 25.23
Jun-97 2880 0 9.62 0.44 27.66 Jun-00 2880 0 10.44 0.00 32.79
Jul-97 2976 0 7.44 0.44 31.79 Jul-00 2976 0 9.25 0.00 34.80
Aug-97 2976 0 7.69 0.44 29.21 Aug-00 2976 0 10.13 0.00 26.11
Sep-97 2880 0 9.73 0.44 27.11 Sep-00 2880 0 10.55 0.67 34.90
Oct-97 2976 0 11.17 044 27.56 Oct-00 2976 0 1251 0.00 52.13
Nov-97 2880 0 10.09 0.44 24.60 Nov-00 2880 0 11.49 0.00 56.26
Dec-97 2976 0 10.57 0.44 30.81 Dec-00 96 0 10.80 3.21 17.09

is 849 (Table 2.1). There are many more missing values (467) on April 1996 than

on any other months.

2.3 Station L006
Station L006 is in the south of Lake Okeechobee (Figure 1.1). Table 2.4
shows that the monthly means are between 8mph and 14mph. Figure 2.1 shows

that there is no extreme monthly mean value. Table 2.4 shows that four values of



Table 2.4: Descriptive Statistics for L006

Month Obs Miss Mean Min Max Month Obs Miss Mean Min Max
Jan-95 2976 0 11.62 0.44 31.74 Jan-98 2976 0 12.03 0.44 31.98
Feb-95 2466 222 11.44 0.44 36.61 Feb-98 2688 0 14.22 0.44 37.89
Mar-95 2760 216 12.93 0.45 32.07 Mar-98 2976 0 13.84 0.44 33.61
Apr-95 2741 139 1228 0.44 34.59 Apr-98 2880 0 13.42  0.44 29.78
May-95 2976 0 10.27 044 30.37 May-98 2976 0 9.97 0.44 36.04
Jun-95 2878 2  11.20 0.44 33.78 Jun-98 2880 0 9.40 0.44 33.12
Jul-95 2976 0 9.94 0.44 32172 Jul-98 2976 0 8.49 0.44 34.22
Aug-95 2976 0 10.66 0.44 34.83 Aug-98 2976 0 844 044 34.98
Sep-95 2880 0 8.49 0.44 28.63 Sep-98 2880 0 11.27  0.44 28.13
Oct-95 2976 0 12.37 0.44 27.45 Oct-98 2976 0 11.42 0.44 31.28
Nov-95 2843 37 12.43 0.44 29.15 Nov-98 1782 1098 10.03 0.00 40.89
Dec-95 2976 0 10.92 0.44 29.03 Dec-98 906 2070 11.24 0.00 32,72
Jan-96 2976 0 10.70 0.44 35.49 Jan-99 2574 402 10.09 0.00 30.38
Feb-96 2784 0 10.84 0.44 39.36 Feb-99 2688 0 11.03 0.00 31.66
Mar-96 2976 0 14.08 0.44 37.99 Mar-99 2976 0 11.91 0.00 29.24
Apr-96 2880 0 11.66 0.44 27.93 Apr-99 2880 0 10.56 0.00 35.93
May-96 2976 0 11.18 0.45 36.88 May-99 2976 0 10.39 0.00 40.29
Jun-96 2880 0 9.83 0.44 36.27 Jun-99 2880 0 9.38  0.00 31.72
Jul-96 2976 0 10.21 0.44 38.34 Jul-99 2976 0 8.27 0.00 30.35
Aug-96 2976 0 8.97 0.44 29.32 Aug-99 2976 0 9.08 0.00 31.51
Sep-96 2880 0 9.72 0.44 25.47 Sep-99 2880 0 10.61 0.00 39.56
Oct-96 2976 0 12.03 0.44 33.43 Oct-99 2976 0 13.50 0.00 49.95
Nov-96 2880 0 13.65 0.44 31.67 Nov-99 2880 0 13.31 0.00 32.22
Dec-96 2976 0 10.85 0.44 31.31 Dec-99 2976 0 10.87 0.00 29.79
Jan-97 2976 0 10.28 0.44 31.64 Jan-00 2976 0 11.12  0.00 32.19
Feb-97 2688 0 11.27 0.44 31.76 Feb-00 2784 0 10.79 0.00 24.79
Mar-97 2976 0 12.00 0.44 31.39 Mar-00 2976 0 1211 0.00 26.40
Apr-97 2880 0 13.53 0.44 30.88 Apr-00 2880 0 12.79  0.00 3177
May-97 2976 0 10.85 0.44 26.19 May-00 2973 3 10.96 0.00 25.32
Jun-97 2880 0 9.54 044 41.34 Jun-00 2880 0 10.48 0.00 36.53

Jul-97 2976 0 7.34 0.44 29.60 Jul-00 2652 324 9.61 0.00 31.78
Aug-97 2976 0 8.21 0.44 33.95 Aug-00 1219 1757 11.00 0.00 42.00
Sep-97 2880 0 10.05 0.44 28.04 Sep-00 2880 0 9.81 047 30.09
Oct-97 2976 0 11.82 0.44 26.02 Oct-00 2976 0 13.65 0.00 36.12
Nov-97 2880 0 11.21 0.44 32.94 Nov-00 2880 0 1214 0.32 34.93
Dec-97 2976 0 11.68 0.44 36.34 Dec-00 2976 0 12.86 0.60 36.42

maximum wind speed are over 40mph. There are 6270 missing values at this station
(Table 2.1). The number of missing values on November 1998, December 1998 and

August 2000 is more than 1000 (Table 2.4).

2.4 Station LZ40
Station LZ40 is in the middle of Lake Okeechobee (Figure 1.1). Table 2.5

shows that the monthly means are between 8mph and 14mph. Figure 2.1 shows
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Table 2.5: Descriptive Statistics for LZ40

Month Obs Miss Mean Min Max Month Obs Miss Mean Min Max
Jan-95 2976 0 11.50 0.44 33.86 Jan-98 2976 0 11.67 0.50 30.80
Feb-95 2688 0 11.03 0.44 34.67 Feb-98 2688 0 13.88 0.46 37.67
Mar-95 2699 277  12.68 0.44 31.33 Mar-98 2976 0 1338 0.50 33.64
Apr-95 1815 1065 11.90 0.45 24.87 Apr-98 2880 0 13.43  0.44 29.65
May-95 2976 0 10.40 0.46 25.64 May-98 2976 0 9.90 0.44 38.95
Jun-95 2880 0 1132 045 34.91 Jun-98 2880 0 9.66 0.45 32.36

Jul-95 2976 0 10.17 0.49 33.14 Jul-98 2976 0 8.82 0.45 31.35
Aug-95 2976 0 10.98 0.44 36.67 Aug-98 2976 0 8.75 0.46 33.99
Sep-95 2880 0 8.71 0.46 30.04 Sep-98 2880 0 11.59 0.44 29.58
Oct-95 1730 1246 12.95 0.45 26.60 Oct-98 2530 446 11.75 0.45 30.73
Nov-95 2403 477 12.55 0.44 27.92 Nov-98 2268 612 9.2 0.00 40.59
Dec-95 2939 37 10.97 0.44 27.97 Dec-98 2976 0 10.65 0.41 31.39
Jan-96 2976 0 10.56 0.44 32.46 Jan-99 2976 0 10.12  0.00 28.86
Feb-96 2784 0 1041 0.44 36.86 Feb-99 2688 0 10.89  0.00 30.91
Mar-96 2976 0 13.55 0.45 37.54 Mar-99 2976 0 11.42 0.01 29.33
Apr-96 2880 0 11.62 0.44 27.44 Apr-99 2880 0 10.37  0.03 35.60
May-96 2976 0 11.36 0.45 37.80 May-99 2976 0 10.35 0.10 35.00
Jun-96 2880 0 9.96 0.49 30.74 Jun-99 2880 0 9.64 0.01 29.53
Jul-96 2976 0 10.41 0.45 40.75 Jul-99 2976 0 8.53 0.01 29.44
Aug-96 1786 1190 9.21 044 30.20 Aug-99 2976 0 9.34  0.01 28.84
Sep-96 2263 617 10.30 0.44 30.08 Sep-99 2880 0 10.76  0.01 37.79
Oct-96 2976 0 11.98 047 34.28 Oct-99 2976 0 13.50 0.22 55.68
Nov-96 2880 0 1355 044 31.47 Nov-99 2880 0 13.10 0.42 31.54
Dec-96 2121 855 12.19 0.44 30.95 Dec-99 2927 49 10.84 0.00 29.02
Jan-97 2831 145 10.07 0.44 31.90 Jan-00 2976 0 1091 0.01 32.78
Feb-97 2688 0 10.84 044 27.59 Feb-00 2784 0 10.48 0.00 25.05
Mar-97 2976 0 12.06 0.59 31.44 Mar-00 2976 0 12.09 0.03 30.26
Apr-97 2880 0 13.56 0.44 32.61 Apr-00 2880 0 12.78 0.13 30.14
May-97 2976 0 10.86 045 41.42 May-00 2975 1 11.23 0.02 25.66
Jun-97 2880 0 9.81 0.45 40.98 Jun-00 2880 0 10.65 0.12 36.52
Jul-97 2976 0 7.68 045 33.52 Jul-00 2976 0 10.00 0.02 32.41
Aug-97 2976 0 8.47 0.44 30.61 Aug-00 2976 0 9.89 0.26 30.02
Sep-97 2880 0 10.15 044 83.25 Sep-00 2880 0 9.80 0.00 29.56
Oct-97 2976 0 11.74 047 26.95 Oct-00 2976 0 1341 0.68 34.32
Nov-97 2880 0 11.00 0.44 25.95 Nov-00 2879 1 12.13 0.00 49.30
Dec-97 2976 0 11.56 0.44 36.59 Dec-00 2976 0 12.88 0.00 42.60

that there is no extreme monthly mean value. There are 7 values of maximum wind
speed which are over 40mph (Table 2.5). The total number of missing values is 7018
(Table 2.1). The number of missing values in April and October 1995, and August

1996 is more than 1000 (Table 2.5).
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2.5 Using a Weibull Distribution to Describe Wind Speed

The Weibull distribution is usually used to describe wind speeds and study
wind power. It is very practical for this application, because the distribution does
not allow for negative values and it is easy to appropriately consider the fact that
on most days there will be a bit of wind and on some days a lot.

The three-parameter Weibull distribution has probability density function
given by

~f -0
e )t exp(—(y—)c) fory>#6, ¢c>0, 0 >0,
o

{5
fly) = =

o 0
where 6 is the threshold parameter, o is the scale parameter and c is the shape

parameter [9]. The cumulative distribution function is given by

Fly)=1- exp(—(yT_a)C) for y > 6.

The mean and variance are given by
1
E(y) =0+ ol'(1+ E)

and

2 i
Var(y) = o® |T(1 + E) -1 + E) :

where I' is the gamma function. The mean wind speed is used to indicate how
windy the site is. The shape parameter tells how peaked the distribution is; i.e., if
the wind speeds always tend to be very close to a certain value, the distribution will

have a high shape parameter value and will be very peaked.
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Table 2.6: Exploratory Data Analysis

Station  Mean SD Skew Kurtosis Q1 Q2 Q3 max
L001 10.214 5.549 0.420 0.731 6.358 10.050 13.740 72.400
LO05 10.479 5.404 0.513 0.576 6.577 10.050 14.010 56.260
L0O06 11.056 5.702 0.611 0.543 6.960 10.540 14.570 49.950
LZ40 11.041 5.722 0.629 0.609 6.831 10.536 14.590 55.680

To check if a Weibull distribution fits a data set well, we use the Anderson-

Darling test [18]. The hypotheses of the test are:

Hy: the data follow Weibull distribution,

H,: the data do not follow Weibull distribution.

The test statistic is given by
A= —pn- 8,

where S = i(ln F(y;) +In(1 — F(yns1-4))), n is sample size, y, are ordered and F
i=1
is the cumulative distribution function.

The descriptive statistics for the 15-minute wind speed data for the four
stations are shown in Table 2.6. We can see that more than 75% of the wind
speed data are below 15mph. The means and standard deviations of Stations L006
and LZ40 are about the same and greater than those of Stations L0O01 and L005.
The histograms in Figure 2.2 show that the distributions are skewed to the right.

The maximum likelihood estimations of the parameters of the Weibull distribution

are reported in Table 2.7 for all four stations. The p-values of Anderson-Darling

13



Table 2.7: Weibull Distribution Parameters and Goodness-of-Fit Tests

Threshold  Scale Shape Anderson-Darling
Station (9) (o) (¢) Mean SD test statistic p-value
L001 -1.864 13.614  2.297 10.197 5.568 448.981 <0.001
L0O05 -0.889 12,822 2211 10.467 5.424 106.016  <0.001
LO06 -0.617 13.170  2.146 11.046 5.723 82.962 <0.001
LZ40 -0.241 12,727 2.061 11.033 5.737 54.885  <0.001

goodness-fit-test are all less than 0.001. This means that a three-paranieter Weibull
distribution does not fit our wind speed data well. A possible suggestion will be to

use a lognormal, beta or mixed distribution.

2.6 Conclusion

Comparing the number of missing values in Table 2.1, there are much more
missing values at station L001 than at any other station. Comparing plots of
monthly means of wind speeds for all four stations (Figure 2.1), we can see that
the patterns of the plots for station L005, LO06 and LZ40 are similar. Hence we fur-
ther check the correlations of wind speeds among these four stations. The Pearson

product moment correlation coefficient of two variables is given by

iz (2 — T)(yi — 7)
(m—1)848y

r =

where n is the number of observations, Z and 7 are sample means of two variables,
and s, and s, are sample standard deviations of two variables, respectively. Table
2.8 shows Pearson correlations of wind speeds among the stations in 2000. All

correlation coefficients are greater than 0.6, and the p-values for the hypothesis
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Table 2.8: Correlations among Four Stations

Station L001 L005 LO006
L005 0.668
(<0.001)

L.006 0.748 0.678
(<0.001) (<0.001)

LLZ40 0.758 0.697 0.897
(<0.001) (<0.001) (<0.001)

Note: values in parentheses are p-values

tests of the correlation coeflicients being zero are less than 0.001. Therefore, the
wind speeds of the four stations are correlated positively.

The monthly means of wind speeds at station L0O1 is substantially different
from those of any other stations on September 1995 and February 1998, and there are
more missing values at station L001 than at other stations. In 1995, the monthly
means at station LO01 are obviously less than at any other station. This little
difference at station L001 may be caused by various reasons such as location of the
station, measuring device failures or bird interruptions. Further detection is needed.
To check the large values of maximum wind speeds (i.e. gerater than 40mph) for all
stations, we compared the maximum wind speeds at all stations for the months that
have large values. Table 2.9 shows that there are large values on October 1999 at
all stations. There was a hurricane named Floyd on October 1999. At station LO001,
the maximum wind speeds on April 1997, July 1998, August 1998 and October 1998

are obviously much higher than those at the other stations. In Figure 2.3, one can
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Table 2.9: Large Values for All Stations

Time L001 LO005 LO06 LZ40
07/96 30.87 32.81 38.34  *40.75
04/97  *63.59 34.61 30.88 32.61
05/97 24.7  *45.39 26.19  *41.42
06/97 22.27 27.66  *41.34  *40.98
02/98  *40.66 37.54 37.89 37.67
07/98 *68.1 32.16 34.22 31.35
08/98 *58.6 34.11 34.98 33.99
10/98 *72.4 25.81 31.28 30.73
11/98 37.45 35.93  *40.89  *40.59

05/99 29.36 35.94  *40.29 35
10/99 *55.13 *45.91 *49.95 *55.68
08/00 31.13 26.11 *42 30.02

10/00 29.86 *52.13 36.12 34.32
11/00 26.55  *56.26 34.93 *49.3
12/00 35.09 17.09 36.42 *42.6

“*” represents that the value is unusually large

see that those four points (63.59, 68.1, 58.6 and 72.4) are outlier points, which might
be affected by local climate or extraneous factors.

Finaly, we conclude that there are outliers and many missing values in the
data sets. The patterns of wind speeds for all four stations are similar and the wind
speeds of these four stations are correlated positively. We also observed that for
the four stations the monthly means of wind speeds are around 8mph in summer
while they are greater than 10mph in all other seasons. The monthly means of wind
speeds at station LO01 are substantially different from those of the other stations
on September 1995, February 1998 and in 1995. There are more missing values at

station L001 than at other stations. A three-parameter Weibull distribution does
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Figure 2.3: Plots of Possible Outliers at Station L001

not fit this data well, as is seen by checking the goodness of fit tests in Table 2.7.

A possible improvement may be to use a lognormal, beta or mixed distribution.
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Chapter 3

MISSING VALUE IMPUTATION AND OUTLIER

DETECTION

As pointed out in Chapter 2, there are many missing values and ontliers
in the wind speed data. Let z; be the true time series, y; be the observed series
with missing values and outliers, and z; be the observed series with outliers after
imputation. Thus, we impute the missing values and then detect outliers. In this
thesis, three imputation methods are used: Nearby window average imputation,
Jones imputation using Kalman filter [13] and EM algorithm imputation [19]. Two
types of outliers are considered in this thesis: Innovational outlier (I0) and additive

outlier (AO) [20].

3.1 Missing Value Imputation
Nearby window average imputation, Jones imputation using Kalman filter
and EM algorithm imputation are used to impute missing values. The idea of the

Nearby window method is to use the average value of one value before the missing
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value begins and one value after the missing value ends to impute the missing values.

The other two methods are introduced in the following.

3.1.1 Imputation Using Kalman Filter
Richard H. Jones considered a state-space model using Kalman recursive
estimation for time series data with missing values in 1980. Here we only introduce

state-space model and Kalman filter (see [13] for details).

3.1.1.1 State-space Model and Kalman Recursive Estimation

A State-space model has two equations: the observation equation and the
state equation. Let y; be an observed time series. Then the observation equation is
given by

ye = HO, + 14, (3.1)

where H is a (1xm) vector, 6, is a (mx 1) state vector, and v, denotes the observation
error. The v,’s are assumed to be uncorrelated and identically distributed with mean
zero and variance R. Although the state vector 6, is unobservable, we can assuine

that it follows the state equation

Qt = G9541 + Wy, (32)

where G is assumed to be a known (m x m) matrix. The term w; denotes a vector of
deviates, which is white noise with zero mean vector and known variance-covariance

matrix @, and is assumed to be uncorrelated with v;.



Assuming that the best unbiased estimator for 6;_; is ét_l based on our
knowledge about the process prior to time ¢t — 1, the variance-covariance matrix of

éc—1 is P,_;. Let étitfl be the one-step ahead forecast of 6; from time ¢ — 1, i.e.
9{'(,1 — th_l. (33)
Then the estimation error is

€tlt-1 = gt*ét[pl
= @by +wy—Gh,

= Gl — ét.-l) + wy

and the associated error covariance matrix is

Py, = E [et;HeQ“_l] (3.4)
= GVar(6,_,)G' + Var(w,) (3.5)
= GPLC+0Q, (3.6)

where e;“_l is the transposition of e;;_;. If y; is available, then we may use the
observed y; to improve the estimate of 6;. Let ét be the updated estimate of 6,

satisfying the following equation:
B = ét[t—l + Kelth — [{étlt—l)a (3.7)

where K is called the Kalman gain [21]. The reason for constructing this 0, is to

minimize the variance of the prediction error e; = 6; — 6,. To derive K; we use the

-
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minimum mean-square error criterion [3]. From (3.1) and (3.7), the error covariance

matrix associated with the updated estimate is

P,

Elee)] = F {(ﬁt —6,)(8, — ét)l}

E [(th-l — Ky(Heyi—1 + 1)) (ege—1 — Ke(Hege—1 + Vt))l}
Elei1€y-1 — eqe-reyy 1 H' Ky — e K
~KtHetit_1e;‘,_1 + KtHem;le’t‘tle'Kt’ + K Hey 10, K]
—Kuwey o + Key, H'K; + Ky K

Py_1 — Py H'K! — K,HPy,_, + K;HPy_,H'K! + K,RK|

E [<9t — étif,.l — [\’t<H95 -+~ vy — Hétj£,1>)(6t — ét!tw—l = [X}(H@t -+ Yy — Hét t..]))/j|

Rewrite the error covariance matrix associated with the updated estimate in the

form:

P, = Py — Py H'K) — KHPyy o + Ky(HPy 1 H' + R)K,.

Differentiate the trace of P; with respect to K;. By the facts that

and

we have

d(traceP;)

d t "aACE AB [; A lg m St be Stl are
L = ( —)} - i ( ik = ),
t,r A 4 A, t e square

trace(Py—1H'Ky) = trace(K,HPy;_,),

= —Q(H.Pt]t_l)l -+ 2Kt(HPt]t-1HI = R)
dK;

23
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Enter prior estimate 6o and
its error covariance Po

Compute Kalman gain

using equation (3.10)
/ Yo, V1, ...

Compute Update estimate with yi
3.3)and (3.4) using equation (3.7)
geq

: \‘ 6o, 61, ...
Compute error covariance
for updated estimate

using equation (3.11)

Figure 3.1: Kalman Recursive Process

Setting (3.9) to be zero and solving for K;, we get
Ky = Py H'(HPy . H + R)™". (3.10)
From (3.8) and (3.10), we have
P, = Py_y — K,HP,_1. (3.11)

Equations (3.3), (3.4), (3.7), (3.10) and (3.11) are the Kalman filter recursive equa-

tions. The Kalman recursive process is shown in Figure 3.1.
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3.1.1.2 State-space Model Representations of ARMA and ARIMA Mod-
els
Let ; be a time series following an autoregressive-moving average (ARMA)

model with order (p,q), i.e.,
¢(B)z; = (B)e; t=1,-+,n, (3.12)

where n is the number of observations in the time series; B is the backshift operator
such that Bxy = %_1; ¢(B) =1-¢$B—---—¢,BP and ¢(B) =1 -y B—---—,B?
are polynomials of B with all roots outside the unit circle; {¢;} is white noise with
mean zero and variance o2. Let y; still be an observed time series. Define the state

vector of this process as

x(t|t)

z(t + 1|t)
et = )

z(t+m — 1|t)

where m = max(p, ¢ + 1), x(t|t) = z, and z(t 4 1|t) is the projection of z;,; on the

values of the times series up to time ¢. Then the observation equation is
Yye=1[10 -+ 0]6; + 1, (3.13)

where 14 is the observational error, uncorrelated at different times and uncorrelated

with the €’s. The mean of v, is 0 and its variance is R = E[14]*. The state equation
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1S

95+1 == Gé’t + A€t+1, (314)
where
[
0 1 0 0
0 0 1 0

= :
& = )

ém Cbmfl e Q—/)Q él

j-1
(D/i:()for l>p,A: 1'a2‘...7aln /; ay :1’ a':_t"—l -+ (;bi(lf~i fOl‘j>1and
J J J

=1

Y =0 for j > ¢ (See [13] for details).

For the ARMA model, the likelihood for n observations of the zero mean

process is
- r\— 1 gtz i
L= H(27T"t) 2 exp(—ﬁ), (315>
t=1 t

where 7, =y, — 2(t|t — 1) and V; = Py;—1 + R [13]. Dropping the constant 27, we
get

n 7
l=-2InL =) [—y—t +In Vt} : (3.16)
i=1 LV
From (3.14) we have
P”tAl == GPt_lGI = O'2AA/.

Hence, the variance o can be removed from the nonlinear estimation problem by

dividing R by o2. The observational error variance is then replaced by the ratio of
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the observational error variance to o2. In the recursions, since all variances have the
same scale factor, Py,_; and Py, are replaced by O'QPm_l and azPﬂt, respectively,

and the likelihood becomes
l=-2lnLl=> {—:j;— + 111(02%)} . (8.17)

Differentiating this with respect to 0% and equating it to zero gives
5 1o
02:—2.‘1’%. (3.18)
t

Ny

Then substituting into (3.17) and dropping the constants gives

n QZ n
= 4 t : 5
l—nlnzv+21n% (3.19)
t=1 vt t=1
the function to be minimized with respect to the remaining parameters ¢y, -, ¢p,

Y1, -+, %, d and R.

Jones uses a vector of zeros as initial state vector 6y, as well as the Akaike
method to calculate the initial state covariance matrix Py = Pyo (see [13] for details).
If an observation y;, is missing, o2 in (3.17) through (3.19) is set to 1 and estimated

later. Equations (3.7) and (3.11) are replaced by
ét+1]t+1 = ét+1jty
and

Pt+1|t+1 = Pt+1|t,
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respectively. The corresponding term in (3.19) for the accumulation of —21In like-
lihood is skipped. If a large block of data is missing, the recursion is equivalent to
restarting the recursion at the other end.

Let x; be a time series following an (ARIMA) model with order (p,d, q), i.e.,
o(B)a(B)x; = ¢¥(B)e, t=1,---,n, (3.20)

where n is the number of observations in the time series; B is the backshift operator
such that Bxy = 2;_1; ¢(B)=1—¢B— -+ — ¢pB?; Y(B)=1—9B—-- — 4, BY
are polynomials of B with all roots outside the unit circle; and a(B) = (1— B)¢ with
all roots of a(B) on the unit circle. Also, {¢} is white noise with mean zero and
variance o?. Notice that a(B)z, satisfy ARMA(p,q). So we can use a state-space
representation for the ARMA model to solve the state-space model for ARIMA

model.

3.1.2 EM Algorithm

The EM algorithm is a general iterative algorithm for ML estimation in an
incomplete data problem [19]. It consists of an Expectation step followed by a
Maximization step. The idea is to fill in the missing data X,,;ss based on an initial
estimate of the parameter 6, re-estimate 6 based on X, and the filled-in X,,iss,
and iterate until the estimates converge. The specific applications of this idea have
appeared in the statistical literature, and go as far back as 1926 [14]. The term EM

was introduced by Dempster, Laird and Rubin [7] in 1977. Since then, there have

w
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been many new uses of the EM algorithm, as well as further work on its convergence
properties, e.g. Wu (1983) [22], Little and Rubin (1987) [14], Schafer (1997) [19].
In any incomplete data problem, the distribution of the complete data X can be

factored as

f(\|9) =3 f(‘\’obs|9)f()(missi‘/\yobs- 9) (3-21)

Let [(6

X) =1In f(X|0). The corresponding log-likelihood is

16)X) = 18] Xops) + In f(Ximiss| Xops, 0)- (3.22)

Since X5 is unknown, we take the expectation of (3.22) with respect to the distri-

bution f(Xmiss| Xobs, 0'), where 6" is an estimate of the unknown parameter #. Then

we get
Q(616°) = (8] Xos) + H(6]6"), (3.23)
where
QU1 = [ UBIX)F (Ximiss| Xots, 0)d Xonis
and

H(Q'Qt) - / [ln f(Xmiss|Xobsa 0)] f(Xmisleobs» 6)t)d)(miss-
Let 8"t be the value of 6 that maximizes Q(6]6"); then

Q(0t+1 l()t) >_ Q(Qtlgt)
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By the fact that Inz < z — 1, we have

H(gt'et) . H(0t+1|9t) —

—

(1 £ (Xmisl Xobs: 0)] F(Xmiss| Xobsr 68°)d X miss

/ hl f mzss‘Xobs, 9t+1)} f(Xmiss|‘Xrob37 gt)deiss

_ / rln F(Xoniss| Xobs, QHI)
UK ten | X oo 85

[ F(Kinisa| Xoban 0°1)

| F( Xmiss | Ko 0)

f(szss’Xobs; 9t+l) ()\rmzssP Xobsv Qt)] dX miss

‘| f(*’\'misslj(obsv 8t>d)(miss

I/
\

- ljl f(JYTHiSS"XObsa et)d‘xymiss

Il
\

Hence,

l(9t+1iXobs) == l(etiXobs) = Q(et—i—lwt) = H(9t+1‘9t) - (Q(etwt) - H(0t|9t))

= Q(O"H1]6Y) — Q(6Y16") + H(8'l9") — H(6'")

vV
o

That is,

HP L K ) 2 WO | X s )

Thus maximizing (8] X ) is sufficed to maximizing Q(6]6"). One iteration of the
EM algorithm includes two steps:

1. E-step: the function Q(6|6') is calculated by taking the expectation of
(8| X) with the distribution f(Xmiss| Xops, 0°).

2. M-step: the parameter 6 is found by maximizing Q(6]6").

o
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The two steps are iterated until the iterations converge. In SAS, the EM
algorithm by Schafer [19] is used in the MI procedure. Let the parameter § = (p, ).
For multivariate normal data, suppose there are G groups with distinct missing

patterns. Then the observed-data log-likelihood can be expressed as

G
l(9|‘YObS> - Z ZQ(H ‘Yobs)v

g=1

7

where (6| Xy5) is the observed-data log-likelihood from the gth group, and

n 1 "
L8 Xne) = —2 10 [By| — = 3 1w — ) 5 (3 — )|
2 2

2%
where n, is the number of observations in the gth group, the summation is over
observations in the gth group, x;, is a vector of observed values of x, variables,
iy is the corresponding mean vector, and ¥, is the associated covariance matrix.
The initial values for the first iteration are the sample means and sample variances
from the observed data. The E-step uses the standard sweep operator [14] on the
covariance matrix of the observations to calculate the conditional expectation and
variance of missing values. Suppose that A is a (p X p) symmetric matrix with
elements a;;. The standard sweep operator SW P[k] operates on A by replacing it

with another (p x p) symmetric matrix B, where the elements of B are given by

1
bk = ——;
Ak
bix = by =25 fork#j;
Akk
by = by=a;— 2™ fork+£jandk#£L

Ok
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Let B = SWP[k]A. For example, assume z, is a time series following the model:
(1—¢Blzmy=p+e fort=1mn, (3.24)

where |¢| < 1, {¢} is white noise with mean zero and variance o*. Let 6 = (u, ¢, o).
The ML estimate is 8 = (f1,¢,0). Hence the variance and covariance of missing
values can be estimated by 6. Suppose that z; is missing, and that x;_; and x4,

are present. The covariance matrix of ¥;_,2; and x4, is

1 ¢ ¢?

PY
_1_¢2 o 1 Cb
¢ ¢ 1

Sweeping on var(x;_y), i.e. row and column 1, we get

-

L g ¢*
Aj-l = SWP[I]A = ¢ 02 O'2¢

¢ o*¢ o*(1+¢Y)

Then sweeping on var(z;41), i.e. row and column 3,

% ¢ &
SW/P[3]A]-_1:T—7—3-(J~5§ 6 o ¢ |- (8.25)
From (3.25), we get
0_2
Var(zj|zj-1, j41,0) 14
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and

E(zjlzj1,250,0) = p+ (41— 1)

—
+ e
R

1%3(55]‘1 = i) =+

2 ¢
14+¢2"  1+4¢2

(3’1;1 + ."L’]'+1).

3.2 Outlier Detection

The effects of extraneous objects, device failure and human errors may distort
the field data. Usually qualified engineers, scientists or technicians identify abnor-
malities after inspecting the data manually. This manual process is slow, costly,
and sometimes inconsistent among inspectors. Various methods, such as artificial
intelligence [8], neural networks [12] and outlier detection in time series models, have
been used for detecting abnormal values in data. In this thesis, we use time series
analysis to detect and remove the abnormal data.

The effect of an outlier could be either a short-term transient effect or a
long-term change. With short-term effects, one or more outliers may be visible
in the time series plot and these can create problems for handling non-stationary
with standard time series methods. Thus detecting and removing outliers becomes
important in modeling. Four types of outliers are usually considered: innovational
outlier (I0), additive outlier (AQO), level shift (LS) and temporary change (TC) [20].
An IO represents an extraordinary shock at a time point influencing a sequence of
points. An AO causes an immediate and one-shot effect on the observed series. A

LS produces an abrupt and permanent step change in the series. A TC causes an

-

33



initial effect at a time point, and this effect dies out gradually over time. Since any
effect on wind speed is short-term, only IO and AO are considered in this thesis.
The approach to deal with outliers here is using intervention models to identify the

locations and the types of outliers, and to remove the impacts of outliers.

3.2.1 Estimates of Outlier Impacts and Hypothesis Testing
Let x; be a time series following an autoregressive-integrated-moving average

(ARIMA) model with order (p,d, q); that is,
o(B)a(B)r; = ¢(B)e, t=1,---n, (3.26)

where n is the number of observations in the time series; B is the backshift operator
such that Bz; = x4_1; ¢(B) =1-¢B—++-—¢pBPand ¢(B) = 1-yyB—-- - — ¢, B¢
are polynomials of B with all roots outside the unit circle; a(B) = (1 — B)? with all
roots of a(B) on the unit circle; and {¢;} are independent and identically normal
distributed with mean zero and variance o?. We consider the estimation problem
when both the location and the dynamic pattern of an outlier are not known. The
approach is to classify an outlier impact into two types: 10 and AO.

If the location and the dynamic pattern of an event are known, then the

models [1] are:

: _ _y(B (T)

10: = FB)alD) (e: +w¢"’) and (327
: _. _¥(B) (T)

AO : 2y = ¢(B)a(§76t + w(t 3
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where B, ¢(B), ¢(B), a(B) and {¢} are the same as in model (3.12), w is the

impact of the possibly unknown outlier at 7', and

1 fa £ =7,
0 otherwise
and indicates the time of occurrence of the outlier impact. Here 7" is the possibly

unknown location of the outlier. Then (3.27) can be written in the form

HieE 2y = T3 T (_)(—u)ét 1

(3.28)
AO : Z¢ :‘T[—f*w"ct(T).

The effect of an IO is more intricate than the effects of other types of outliers. An IO

represents an extraordinary shock at time point 7" influencing 27, 2741, - - -, through
the dynamic system described by %g(%). To examine the effects of outliers on

the estimated residuals in model (3.12), we assume that the time series parameters
are known and the series is observed from t = —J to t = n, where J is an integer
larger than p+d+g¢,and 1 <T < n. Let n(B) = ﬂE(MB)ﬂ =1-mB-mB?*—

Because the zeros of 1(B) are all outside the unit circle, the weights 7;’s for j beyond
J would in practice become essentially equal to zero with J of moderate size. We

use the outlier contaminated data {z;} for model (3.12) to get the estimated residual

é, = 7(B)z for t =1,--- n. For our two types of outliers, from (3.27) we have

0 = th(T) + ¢ and
(3.29)

A0 : & = w(B)(T) + ¢,
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where #(B) = 7;(B) and ¥ is MLE of ¢ in (3.12) [2]. From the theory of least
squares, the estimators of the impact w in these two models are

10 : @jo =ér and
(3.30)

AO : a0 = pPA(F)ér = P24 (F)#(B)zr,

Uand F is the forward-shift operator. Let

where p> = (1+ 7] + 73+ + 72 ;)
Hy be the null hypothesis that w = 0 at T', H;o be the alternative hypothesis that
an 10 exists at 7', and H 4o be the alternative hypothesis that an AO exists at 7.

From (3.12) and (3.28), the variances of the estimators for the impacts under Hy

are the following:
10 : wvar(wro) = o
AO : wvar(wao) = po.

Noticing Ew;o = Ewao = 0 (E means expectation under Hy), hence the results can
be used to construct test statistics for testing the existence of an outlier. Thus the

likelihood ratio tests are:

HO (U5} Hjol j\IO,T = Qg_Q and
(3.31)

Hy vs Hyo: 5\Ao,T: %“};‘2,
where ¢ = 1.483 x median{|é; — €|}, and é is the median of the estimated residuals
[6]. The standardized statistics of the outlier effects 5\10,T and 5\AO,T in (3.31)

asymptotically have a standard normal distribution [4].

To locate an IO or AO, the following decision rules are used:
10 o = max |Atog| > ¢ (3.32)
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[ ——{ Estimate ARIMA model and compute residuals e

Modify Zt [

Calculate o, , A, 1. record T l

Outer
loop

Inner loop

\ Modify residual e. Calculate new ©. @, A, 1) I

Figure 3.2: Flow Chart for the Procedure of Outlier Detection
AO - Nao = 11;1:;'5?(" '/\AO,T‘ > c, (333)

where ¢ is some suitably chosen positive constant. In practice, it is recommended
to use ¢ = 3.0 for high sensitivity, ¢ = 3.5 for medium sensitivity, and ¢ = 4.0 for
low sensitivity in the outlier-detecting procedure when the length of the series is less
than 200 [4]. In this thesis ¢ = 3.5 is chosen to detect the outliers at any suspected
point T'. The possible outlier is classified as an IO if |5\10‘T| o |5\A0,T’, else it is

classified as an AQ.

3.2.2 Outlier Detection Algorithm
The procedure for detecting outliers is described as follows (the flow chart is

shown in Figure 3.2):
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1. Estimate ARIMA model (3.26) using {z;} and compute the residuals é,
to get wyo and w4o.

2. Find the median of the residuals é, and use 6 = 1.483 x median{|é;, —

€|} as the estimate of 0. Compute )A\,O,z and ;\[\O,, for £ = 1,««+ m Let m =

ma.zr{];\m.t ) /A\AO,,[} fort =1, --,n. Record the location ; = t if 7, > 3.5, else 7; =
n

0. If Z 7 =0, stop: Iy = max g, = |[Aror| > 3.5, then there is the possibility of an
i=1

IO at T'. The impact w is estimated by @y in (3.30). If n = max 7, = |/A\A07T| > 3.5,
then there is the possibility of an AO at 7. The impact w is estimated by w40 in
(3.30).

3. For the point T in step 2, the new residual for 10 is set to

0, fert=T,
é;, else.

The new residuals adjusting for AO are

é¢, fort < T}

& — aont(B)CT) fort>T.

A new estimate & is computed from the modified residuals. Recompute w;o, @40, /A\[oyt
and /A\Ao,t based on the same initial estimates of the time series parameters, but using
the modified residuals ¢€,’s and the estimate ¢.

4. Repeat steps 2 and 3 until no further outlier candidates can be identified,

n
that is, > 7 = 0.

=1
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5. Suppose that the k time points T}, - -, T} are detected as I0’s or AO’s.
Treat these times as known, and estimate the outlier parameters wy,ws, - -+, wp and

the time series parameters simultaneously, using models of the form
' [T v ;
Zy = Zw,L,(B)Q,( ) + TN o St (334)

where
1 for an AD at £t =T,
5B . -
5(—;)%()3—) for an IO at £t ="T;.

6. Repeat step 1 to 5 until no further new outlier is detected.

3.2.3 Outlier Detection with Missing Values

Before detecting outliers, we first impute missing values. In this section, three
imputation methods are used: nearby window average imputation, Jones imputation
using Kalman filter [13] and EM algorithm imputation [19]. We study the power of
these three imputation methods by using a small portion of time series from station
L001. Three data sets are used. Data set A (True) is the hourly wind speed data of
January 1996 without missing values. Data sets B and D are constructed from the
data set A with missing values by deleting some observations and then imputing
these missing values using the EM and Jones imputation, respectively. The locations
of missing values are listed in Table 3.1. Data set C is constructed from the data
set A with missing values by deleting some observations and imputing these missing

values using nearby window average imputation. The average value is the average
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Table 3.1: Location of Missing Values

Beginning End Number of missing
03JAN96:12 03JAN96:13 2
19JAN96:04 19JAN96:06 3
23JAN96:13 23JANO96:17 5
25JANO96:16  26JAN96:05 14

of one value before the missing value begins and one value after the missing value
ends. To fit the models for the data, we use the Time Series Forecasting System
in SAS. The system can generate the best model by using 12 criteria such as Mean
square error, R-square, Akaike Information criterion (AIC), and Schwarz Bayesian
Information Criterion (SBC). Here we use AIC and SBC. For ARIMA models, AIC

and SBC are computed as follows:

AIC : —2In(L) + 2k and

SBC : —-21In(L) + k1n(n),

where L is the likelihood function, £ is the number of free parameters and n is the
number of residuals that can be computed for the time series. For the exponential

models, AIC and SBC are computed as follows:

AIC :n ln(S ) + 2k and

E
SBC : nln(SS )+ kln(n),

n

where SSE = > (y; — §¢)%, and §; is the one-step predicted value for the series.
t=0

The smaller the values of AIC and SBC are, the better the model is. By comparing

-
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the values of AIC and SBC for several possible models for these three data sets,
we choose single exponential smoothing models. The single exponential smoothing
model in SAS is defined as follows [16]: Let z; be a time series observation at period

t. The single exponential smoothing operation is
st =axy+ (1 — a)s;; (3.35)

and

Ty = St (3-36)

where s, is the smoothed value at period ¢, « is the smoothing constant (0 < a < 1),

and Fy,, is the forecast for z;.;. Thus (3.36) can be rewritten as

Feon = am+ (1— )2y (3.37)

= o+ (1 —a)zi1 + (1 =a)’za+ -] (3.38)

Theorem The single exponential smoothing model is equivalent to the
ARIMA(0,1,1) model [5].
Proof:

Let z; be a time series following ARIMA(0,1,1) model, that is
(1-B)z;=(1—-9B)e t=1,---,n, (3.39)
where n, B, 9 and ¢, are the same as model (3.12). Rewrite (3.39) as:

Ty = Tj—q = €= ’d)Et_l (340)
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or

€ = Ty — Ty—1 + Per1. (3.41)
Then we have
By = &g F € = t’ft—l = T-1 — lefffl =t &5 (342)
Therefore, the one-step-ahead forecast for x,,., based on xy,---,x, is
i‘n+1 =Tn — wfn- (343)

From (3.41) and (3.43), we have

jnﬁ'-l = &p — ¢’($n — Tp-1+ 1!’%—1)
= Tn — %/)(fﬁn - jn - wfn—]. =+ l/)fn—1)
= Tpn — ¢(In - fn)

= Tp— ¢$n = d’j'n

= (1 —-v)z, + YI,.

Setting @ = 1 — 1, the above equation is the same as (3.35).

Let ¢, = x; — &, for all . Then #; = z; — . From (3.37), we have

Tyl — €41 — Qg -+ (1 = O’)(ilft = Gt)
Ty — €41 = axp+ 13— ar; — (1 — a)e
Ty — Ty = €1 — (1 = Ot)ft

(1-B)zyyr = (1—(1—a)B)eg-
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Table 3.2: Summary of Outlier Detection

Data A Data B Data C Data D

Time | Impact Type | Impact Type | Impact Type | Impact Type
501 15.13 10 15.02 10 15.11 10 1513 10
581 1222 IO 1217 10 12.21 10 12.22 IO
131 -11.77 10 -11.75 10 -11.77 10 -11.77 10
20 9.08 AO 8.98 AO 9.06 AO 9.09 AO
275 8.96 AO 8.90 AO 8.95 AO 8.96 AO
159 11.08 IO 11.12 IO 11.08 IO 11.07 10
60 10.36 10 8.28 IO Ld ¥ * &
65 10.05 10 10.31 10 10.26 1O 10.26 IO
50 -9.16 IO -9.02 IO -9.13 10 -9.17 10
278 9.12 IO 9.06 10 9.11 IO 9.13 10
714 8.99 IO 8.91 IO 8.98 IO 9.00 IO
177 -8.49 10 -8.53 10 -8.50 IO -8.49 10
641 6.72 AO 6.69 AO 6.71 AO 6.72 AO
17 -8.04 IO -8.13 10 -8.06 IO -8.04 IO
649 7.95 10 797 10 7.95 IO 7.95 IO
354 7.66 10 7.58 10 7.64 IO 7.66 10
738 -6.10 AO -6.13 AO -6.11 AO -6.10 AO
201 6.09 AO 6.11 AO 6.09 AO 6.09 AO
379 -6.07 AO -6.04 AO -6.07 AO -6.07 AO
658 -5.84 AO -5.84 AO -5.84 AO -5.84 AO
650 718 10 7.40 10 7.22 10 7.16 10
503 10.39 IO 10.06 IO 10.37 10 10.46 10
19 -9.59 IO -9.43 10 -9.54 10 -9.58 IO
52 -8.99 IO -8.64 10 -8.90 IO -8.99 IO
583 8.87 IO 9.56 IO 9.61 IO 9.63 IO
67 8.23 10 8.26 IO 8.39 10 8.43 10
444 -5.65 AO -5.65 AO -5.68 AO -5.68 AO
206 7.34 10 731 10 6.99 10 7.02 10
309 722 IO 7.18 10 6.89 IO 6.92 IO
69 7.92 AO 7.84 AO 7.84 10 7.90 IO
505 8.74 10 8.33 IO 8.63 IO 8.75 IO
55 -8.01 IO -7.87 10 -6.67 10 -6.68 10
21 -7.85 10 -7.67 10 -7.73 10 -7.78 10
490 544 AO 547 AO 541 AO 542 AO
582 7.05 IO 7.34 10 7.08 10 7.00 IO
716 7.03 10 % * 7.00 IO 7.06 IO
585 7.00 IO 8.28 IO 8.31 10 8.52 10
229 5.33 AO * * 564 AO 5.62 AO
620 5.25 AO * * 524 AO 524 AO
592 * * -10.04 IO % . * *
436 ® * 9.03 IO * * * *
594 ® * -11.09 1O & N * &
596 d * -9.27 10 * * * *

“*¥7: Qutlier is not detected.
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Table 3.2: Summary of Outlier Detection

Data A Data B Data C Data D

Time | Impact Type | Impact Type | Impact Type | Impact Type
70 % = * * -7.00 IO -7.01 10
204 & = i * -6.98 10 -6.96 10
427 e % * * 6.79 10 6.78 10
296 % v * * 541 AO 539 AO
187 i % * ¥ -6.70 10 -6.68 10
72 ¥ i * * -10.04 IO -10.06 10
189 i % * * -8.49 10 -8.52 10
337 Y * * * -5.11  AO -5.11 AO
250 % & ¥ * -6.57 10 -6.62 10
191 * % ¥ * -10.24 10 -10.20 10
74 * % * % -9.08 IO -9.81 10
252 % * * % -7.54 10 -7.06 10
487 * % o * -5.04 AO -4.96 AO
718 i * * i 6.47 10 6.63 10
652 2 * * i 492 AO 4.97 AO
89 ¥ i * e -4.89 AO -4.88 AO
123 ¥ % * N -6.42 10 -6.44 10
429 * * * o 6.41 10 6.41 10
687 % * - * 6.39 10 6.41 10
259 " * a o -4.84 AO -4.86  AO
383 " ¥ " % -4.83 AO -4.79 AO
395 * L o B 482 AO 4.89 AO
344 * % * ¥ 6.14 IO 6.13 10
506 * * ¥ " 4.66 AO * &
193 % * % i -9.32 10 -9.80 IO
507 ¥ * * & 7.79 10 & %
76 e s e & -6.46 10 -7.55 10
587 % ¥ o ¥ 6.31 IO 744 IO
509 * * e % 10.77 10 * *
589 ¥ * e ® 7.07 IO 8.15 10
511 * % ™ * 9.05 10 * "
591 & % 5 i 6.60 AO 9.76 10
310 * * & % 596 IO 591 IO
584 % o 2 * P * 5.87 10
139 e * 5 % t * 5.86 10
266 2 * % = % * 5.86 10
692 * * ¥ % % * -5.84 10
546 % #* * = * * 6.35 10
191 ¥ x * * * * -10.20 10
74 % % * * * * -9.81 10
718 * & i * * * 6.63 10
141 * * i * * * 6.47 IO
143 * x ¥ ® * % 8.43 10
71 * * * % % L 719 10
78 * * * ¥ v ¥ -6.33 IO
268 * * e * * = 5.89 IO
23 * * * * b & -5.72 10
179 N ¥ ® % 4 * -5.69 10
593 * * = % o ® 8.53 10
595 * ¥ i ® % * 7.64 10
597 o * ¥ & % a 6.85 10
606 £ * = % & o -8.24 10
599 2% * ® = % * 613 IO
608 * * % % & o -6.89 10
71 * * % ® x i -6.07 10
161 % * % % % * 6.04 IO
307 i ¥ % * * * -5.96 10

“¥7 . Outlier is not detected.
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Table 3.3: Classification Matrix

Data B Data C Data D
Type | AOIO *| AO I0 x| AO IO x | Total
AO| 10 0 2| 11 1 0] 11 10 12
IO 026 1 0 26 1 0 261 27
* 0 4 57| 10 2328 8 45 8 61
Total || 10 30 60| 21 5029 | 19 729 100

Setting 1 = 1 — a, the above equation is the same as (3.39). O

Thus, the ARIMA(0,1,1) model is used for outlier detection. Table 3.2 lists
the locations, impacts and types of outliers that are detected in the four data sets.
Given data A are true, from Table 3.3, the overall correct rates of outliers (I0,AO
and over detected outliers labeled by *) of data B, C and D are 10-%2—63{—57- = 93%,

11426429 — 6% and 142648 — 459% respectively, while the correct rates of outliers
100 100 5 BEE] Y,

(I0, AO) of data B, C and D are 3428 = 92%, L2428 — 97% and U2 = 97%,

12427 12427

respectively; the correct rates of IO outliers of all three methods are % = 96%; the

correct rates of AO outliers of data B is }—g = 83%; the correct rates of AO outliers
of data C and D are 33 = 92%.

By comparing the correction rates, we see that the best result is the EM algo-
rithm. We also know that when the data are not fully observed, the EM algorithm
is a general technique for finding maximume-liklihood estimates for parametric mod-
els [19]. Hence we use the EM algorithm to fill the missing values and then detect

outliers for the data set in this thesis.
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Chapter 4

MODELING

To get the best model for the wind speed data, we use EM algorithm to
impute missing values and the method introduced in Chapter 3 to detect outliers
and remove impacts of outliers. Let x; be the true time series, y; be the observed
series with missing values and outliers, and 2, be the observed series with outliers
after imputation. The idea is the following (Figure 4.1):

Step 1: Impute the missing values in y; using the EM algorithm. The data
set we get then is z;. SAS code is in Appendix A.1.

Step 2: Detect outliers and remove the impacts of outliers in z;. The data
set we get then is a;.

Step 3: Let y, be o, but with the same missing values as y;. Re-do steps 1
and 2. If there exist outliers in step 2, finish step 2 and do step 3. Otherwise, fit
the best models for z.

The data set used in this chapter is the hourly wind speeds of all four stations
from May to August in 2000. To fit the models for the data, we still use Time Series

Forecasting System in SAS. AIC and SBC are used as information criterions. During
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false

Xt
\ Model

Figure 4.1: Flow Chart of Modeling Process

the process of imputing missing values, detecting outliers and removing impacts of
outliers, we get the fitted models are seasonal ARIMA models. In SAS, the seasonal
ARIMA model is denoted by ARIMA(p,d, q) x (P, D,Q)s. The term (p,d, q) gives
the order of the nonseasonal part of the ARIMA model; the term (P, D, Q)s gives the
order of the seasonal part. The value of s is the number of observations in a seasonal
cycle such as 12 for monthly series. The fitted models are ARIMA(2,0,0) x (1,0, 0)24

of the form
(1—-¢11B— ¢1,2Bz)(1 = ¢2,1324):ct = U+ €.

For convenience of outlier detection stage, we de-mean before fitting the models.

Table 4.1 reports the summary of outer loops in outlier detection stage in the first
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Table 4.1: Outlier Detection Report

Outer L001 L005 1006 LZ40

Loop mean AO IO mean AO IO mean AO IO mean AO IO
il 10.407 47 57 | 10.373 40 49 10.181 44 45 | 10.431 47 55
2 10.114 21 16 | 10.120 21 A 9.884 27 24 | 10.039 31 24
3 10.114 2 6 | 10.058 12 18 9.773 4 8 9.946 7 %
4 10.121 1 1 10.034 8 8 9.725 2 5 9.931 2 6
5 10.120 0 0 | 10.007 2 4 9.694 1 0 9934 2 2
6 10.007 0 4 9.691 2 1 9.938 2 2
7 10.006 0 3 9.687 1 0 9.942 i 0
8 10.002 1 3 9.688 1 0 9944 0 0
9 9.993 1 1 9.690 0 0
10 9.991 0 0

loop of modeling. In the second loop of modeling, no outlier is detected in Station
L001, L005 and LZ40. Hence we go on to model for Station LO06 until no outlier is
detected in the locations of observed values. Finally, after imputing missing values,
and detecting and removing impacts of outliers, we get the following best models for
the hourly wind speeds of stations L001, L005, LO06 and LZ40 from May to August

i 2000:

L001: (1 —0.895B + 0.097B*)(1 — 0.156B**)z; = 10.144 + ¢,.
L005: (1 —0.924B + 0.100B%)(1 — 0.207B*")z; = 10.014 + ¢;.
L006: (1 — 0.878B + 0.050B%)(1 — 0.240B*")z, = 9.659 + ¢;.

LZ40: (1 —0.988B + 0.146B%)(1 — 0.225B*)z; = 9.991 + ,.

The parameter estimates and goodness of fit tests are shown in Table 4.2. We
can see that all the parameter estimates are significant. To check the white-noise
assumption, we draw the histograms for residuals. The histograms in Figure 4.2 are

about normal. This means that the assumptions for residuals of the four models are

~
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Table 4.2: Parameter Estimates and Good-fitness Tests

L0O01 L005 L006 LZ40
intercept estimate 10.144 10.014 9.659 9.991
T 43.735 36.996 31,227 33.624

p-value | < 0.001 < 0.001 < 0.001 < 0.001

¢1,1 estimate 0.895 0.924 0.878 0.988

T 48.728 50.308 47.311 53.862

p-value | < 0.001 < 0.001 < 0.001 < 0.001

@12 estimate -0.097 -0.100 -0.050 -0.146

T -5.290 -5.463 -2.685 -7.990

p-value | < 0.001 < 0.001 < 0.007 < 0.001

@2, estimate 0.156 0.207 0.240 0.225

T 8.517 11.388 13.236 12.375

p-value | < 0.001 < 0.001 < 0.001 < 0.001

AIC 4545.242  4291.438 4650.076 4075.418
SBC 4569.203 4315.399 4674.036 4099.379

valid. From the four models, we can conclude that the wind speeds in these four
stations have the similar patterns. This conclusion is the same as the one we get in
Chapter 2. The first plot in Figure 4.3 is the plot of wind speeds vs time for station
L006 from August 14 to 23, 2000. We can see that there is a large block of missing
values. The second plot is the plots of wind speed for station L001, L0O05, LZ40 and
imputation wind speeds of LO06 at the same time. Again we can see that the plots
have similiar patterns. This means that EM algorithm is a very good method to
impute missing values for our wind speed data set. We also can see that there is a
daily cycle in wind speed data from the models.

Through analyzing of Lake Okeechobee wind speed data, we can conclude

that the wind speeds of the four stations we study have similar patterns and a daily
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cycle. For the data we study in this thesis, the best method to impute missing values
is the EM algorithm and the best fitted model is the seasonal ARIMA(2,0,0) x
(1,0,0)94. The fact that the wind speeds of the four stations have similar patterns
and models shows that the wind speed in all stations under study behave in a similar
way. Furthermore the method of outlier detection using intervention models in time

series models and the EM algorithm to impute missing values are more effective
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than the manual process of inspecting abnormal values and filling missing values in

the data set.
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Chapter 5

CONCLUSIONS

In this thesis, we analyzed wind speeds at four stations in Lake Okeechobee.
There are lots of missing values and outliers in the data. The patterns of wind
speeds for all four stations are similar and have a daily cycle. But the monthly
means of wind speeds at station L0O01 are substantially different from those of the
other stations in February 1998 and in 1995. This little difference at station L001
may be caused by various reasons such as location of the station, device failures
or bird interruptions. Further study is needed. The wind speeds of the stations
are correlated positively. A three-parameter Weibull distribution does not fit the
data well. The EM algorithm is good for imputing missing values of the data.
The method of outlier detection seems more effective than the manual process of
inspecting abnormal values and filling missing values in the data set. In a future
study, we may consider using a lognormal, beta or mixed distribution to fit the data.

We also need combine the computer programs only using SAS.
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Appendix

COMPUTER PROGRAM

A.1 SAS Program

/***********************************************************/

/* Title: EM imputation W

/* Input: hourly wind speeds of 4 stations from 05/00 to 08/00 s

/* Output: wind speeds after EM imputation *
FA AR AR AR RAA AR AF AR FHAA A RAAAHAAF AR A |

option 1s=70 ps=750 nodate nonumber;

data miss00;

infile ’c:\data00.prn’;

input year month day hour wsl ws5 ws6 ws40;
datetime=dhms(mdy(month, day, year),hour,0,0);
format datetime datetimel0.;

drop year month day hour;
run;

proc mi data=miss00 out=a;
var wsl wsb ws6 ws40;
run;

A.2 Matlab Program
MatLab code for outlier detection of ARIMA(2,0,0) x (1,0,0):

%File re.m: Detect outlier, compute impact

%Input file: re.txt is residuals

;%Ouput file: impact.txt is impacts, postions and types of outliers clear;
=132

=1

while hu==1,

dataset=load(’c:\re.txt’);  %input residuals

resi=dataset(:,1);

[n, m] =size(resi);
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mO=median(resi);
m1l=median(abs(resi-m0));
sigma=1.483*m]1;
phil=0.8948; %op11
phi2=-0.0971; %1 s
phi=0.1564; Y%,
%compute A for 10

fort=1:n;
lambda io(t)=resi(t)/sigma;
end;

Y%compute w, A for AO

for t=1:(n-26);
p(t)=1+philA2+phi2A2+phiA2+(phil*phi)A2+(phi2*phi)A2;
pp(t)=resi(t)-phil*resi(t+1)-phi2*resi(t+2)
—phi*resi(t+24)+phil *phi*resi(t+25)+phi2*phi*resi(t4-26);
end;

for t=n-25;

p(t)=1+philA2+phi2A2+phiA2+(phil*phi)A2;
pp(t)=resi(t)-phil*resi(t+1)-phi2*resi(t+2)-phi*resi(t+24)-+phil*phi*resi(t+25);
end;

for t=n-24;

p(t)=1+philA24+phi2A2+phin2;
pp(t)=resi(t)-phil*resi(t-+1)-phi2*resi(t+2)-phi*resi(t+24);
end;

for t=(n-23):(n-2);

p(t)=1+4philA2+phi2A2;
pp(t)=resi(t)-phil*resi(t+1)-phi2*resi(t+2);

end;

for t=n-1;

p(t)=1+philA2;

pp(t)=resi(t)-phil*resi(t+1);

end;

for t=n;

p(t)=1;

pp(t)=resi(t);

end;

fair t=10¢

w_ao(t)=pp(t)/p(t);
lamda_ao(t)=w_ao(t)/(sqrt(1/p(t))*sigma);

%check if IO exist

if abs(lamda_io(t))>= 3.5 k_io(t)=t;

else k_io(t)=0;

end;

%check if AO exist \
if abs(lamda_ao(t))>= 3.5 k_ao(t)=t;

else k_ao(t)=0;
end;
%decide outlier type: 0 for AO, 1 for 10
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if abs(lamda_ao(t))> abs(lamda_o(t)) diff(t)=
eta(t)=abs(lamda_ao(t)); tau(t)=k_ao(t);
w(t)=w_ao(t);

else diff(t)=1;

eta(t)= abs(lamda_io(t)); tau(t)=k_io(t);
w(t)=resi(t);

end;

end;

ita=max(eta);

k=1;

for t=1:n

if eta(t)==ita & tau(t)> 0 k=t;
impa(j)=w(k);

loc(j)=tau(k);

d(j)=diff(k);

break;

else k=0;

end;

end;

if diff(k)==1 resi(k)=0

else

1t k==

resi(k)=resi(k)-w(k);

elseif k==n-1;

resi(k)=resi(k)-w(k);
resi(k+1)=resi(k+1)+w(k)*phil;

elseif k < n —1 & k> n-24;
resi(k)=resi(k)-w(k);
resi(k+1)=resi(k+1)+w(k)*phil;
resi(k+2)=resi(k+2)+w(k)*phi2;

elseif k == n-24;

resi(k)=resi(k)-w(k);
resi(k+1)=resi(k+1)+w(k)*phil;
resi(k+2)=resi(k+2)+w(k)*phi2;
resi(k+24)=resi(k+24)+w(k)*phi;

elseif k == n-25;

resi(k)=resi(k)-w(k);
resi(k+1)=resi(k+1)+w(k)*phil;
resi(k+2)=resi(k+2)+w(k)*phi2;
resi(k+24)=resi(k+24)+w(k)*phi;
resi(k+25)=resi(k+25)-w(k)*phil*phi;
elseif k < n-25;

resi(k)=resi(k )w(k);
resi(k+1)=resi(k+1)+w(k)*phil;
resi(k+2)=resi(k+2)+w(k)*phi2;
resi(k+24)=resi(k+24)+w(k)*phi;
resi(k+25)=resi(k+25)-w(k)*phil*phi;
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resi(k+26)=resi(k+26)-w(k)*phi2*phi;
end;

end;

re=[resi|;

fid=fopen(’re.txt’,'w’);
fprintf(fid,’%10.4f\n’ re);

fclose(fid);

if sum(loc)==

break;

else xy=[impa;loc;d];

J=i+L

fid=fopen(’impact.txt’,'w’);
fprintf(fid,’%10.4f %4.0f %4.0f\n’ xy);
fclose(fid);

end
end

%File ws.m: remove impact of outlier.

%input: impact.txt(impact, location, type of outlier) ws.txt (wind speed)
Youtput:wsa.txt(wind speed after removing impacts of outliers)
phil=0.9878;

phi2=-.146;

phi=0.2253;

dataset=load(’'c:\ws.txt');

ws=dataset(:,1);

dataset=load(’c:\impact.txt’);
impact=dataset(:,:);

[m,n] =size(impact); ~ %m is row, n is column
w=impact(:,1);

loca=impact(:,2);

d=impact(:,3); % 0 for ao, 1 for io

for t=1:m

il dit)==0

ws(loca(t))=ws(loca(t))-w(t);

else ws(loca(t))=ws(loca(t))-w(t);
ws(loca(t)+1)=ws(loca(t)+1)-phil*w(t);

end

end

speed=[ws];

fid=fopen(’'ws.txt’,'w’);

fprintf(fid,’%10.4 f\n’,speed);

fclose(fid);
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