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In this thesis, we analyze vvind speeds collected by South Florida Water 

Management District at stations L001 , L005, L006 and LZ40 in Lake Okeechobee 

from January 1995 to December 2000. There are many missing values and out­

liers in this data. To impute the missing values, three different methods are used: 

Nearby window average imputation , Jones imputation using Kalman filter, and EM 

algorithm imputation. To detect outliers and rernove impacts , we use ARIMA mod­

els of time series. Innovational and additive outliers are considered. It turns out 

that EM algorithm imputation is the best method for our wind speed data set. 

After imputing missing values, detecting outliers and removing the impacts , we 

obtain the best models for all four stations. They are all in the form of seasonal 

ARlMA(2, 0, 0) x (1, 0, 0)24 for the hourly wind speed data. 

lV 



TABLES 0 

FIGURES 

1 INTRODUCTION 0 

2 DATA EXPLORATION 

201 Station L001 0 
202 Station L005 0 
203 Station L006 0 
204 Station LZ40 

CONTENTS 

2°5 Using a Weibull Distribution to Describe vVind Speed 
206 Conclusion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 MISSING VALUE IMPUTATION AND OUTLIER 
DETECTION 0 0 0 0 0 0 0 0 0 

301 Missing Value Imputation 

301.1 Imputation Using Kalman Filter 0 

Vll 

Vlll 

1 

6 

7 
8 
9 

10 
12 
14 

20 

20 

21 

301.1.1 State-space Model and Kalman Recursive Estimation 21 
3°1.1.2 State-space Model Representations of ARMA and 

ARIMA Models 0 25 

301.2 EM Algorithm 0 

302 Outlier Detection 0 0 0 

3°2°1 Estimates of Outlier Impacts and Hypothesis Testing 
3°2°2 Outlier Detection Algorithm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

v 

28 

33 

34 
37 



3. 2.3 Outlier Detection with Missing Values 

4 MODELING .. 
5 CONCLUSIONS 

App endix 

COMPUTER PROGRAM 

A.l SAS Program . . 
A.2 l\Iat lab P rogram 

BIBLIOGRAPHY .. . 

Vl 

39 

46 
54 

55 

55 
55 

59 



2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

TABLES 

Descriptive Statistics for All Stations 

Descriptive Statistics for L001 

Descriptive Statistics for L005 

Descriptive Statistics for L006 

Descriptive Statistics for LZ40 

Exploratory Data Analysis 

6 

7 

9 

10 

11 

13 

2. 7 Wei bull Distribution Parameters and Goodness-of-Fit Tests . 14 

2 .8 

2.9 

3.1 

3 .2 

3.2 

3.3 

4.1 

4.2 

Correlations among Four Stations 

Large Values for All Stations . 

Location of Missing Values .. 

Summary of Outlier Detection 

Summary of Outlier Detection 

Classification !\'latrix . . 

Outlier Detection Report 

Parameter Estimates and Good-fitness Tests 

Vll 

17 

18 

40 

43 

44 

45 

48 

49 



1.1 

1.2 

2.1 

2.2 

2.2 

2.3 

3.1 

3.2 

4.1 

4.2 

4.2 

4.3 

FIGURES 

Lake Okeechobee and Data Col lect ion Sit es . 

F low Chart of Modeling Process . . . . . . . 

Plots of I\Ionthly Mean Values for All Stations 

Histograms of Wind Speeds 

Histograms of \Vind Speeds 

Plots of Possible Outliers at Station 1001 . 

Kalman Recursive Process ...... .. . 

Flow Chart for the Procedure of Outlier Detection . 

Flow Chart of Modeling Process 

Histograms of Residuals 

Histograms of Residuals 

Plots of Wind Speeds . . 

Vlll 

2 

4 

8 

15 

16 

19 

24 

37 

47 

50 

51 

52 



Chapter 1 

INTRODUCTION 

Lake Okeechobee (Figure 1.1) is a natural lake in South Central Florida. Its 

name comes from two Indian words and means "big \\·ater". It is the second largest 

natural lake in the United States of America and is located at 27 N Latitude and 80 

W Longitude. Its surface area is approximately 1730km 2
. It is very shallow, with 

mean and maximum depths of 2.7m and 5.5m, respectively. A flood control dike 

built between 1930 and 1960 encircled the natural lake [12]. Currently, the lake has a 

storage capacity of about 40 billion cubic meters of water. Water levels are regulated 

according to a schedule developed by the U.S. Army Corps of Engineers. In addition 

to providing regional flood control, primary uses of the lake include agricultural 

water supply, drinking water for lakeside cities and towns and a backup water supply 

for the communities of the lower east coast of Florida. Other uses are commercial 

and recreational fishing , navigation and wildlife habitat. Lake Okeechobee is also 

a major component of the Kissimmee-Okeechobee-Everglades hydrologic system, 

receiving drainage from the Kissimmee River and discharging to the Everglades 

Agricultural Area [17]. 
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Figure 1.1: Lake Okeechobee and Data Collection Sites 

Lake Okeechobee wind speed data are routinely collected by sensors and tran-

scribed from field/laboratory forms to an electronic format. The data set analyzed 

in this thesis is the wind speeds (miles per hour) collected at stations L001, L005, 

L006 and LZ40 (corresponding sample sites 16, 38, 39 and 35, respectively in Figure 

1.1) from January 1995 to December 2000. From the exploratory data analysis in 

Chapter 2, we observed that the monthly means of wind speeds are around 8mph 

in summer, while they are greater than 10mph in all other seasons. The patterns of 
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wind speeds for all four stations are similar. But the monthly means of wind speeds 

at station 1001 is substantially different from those of the other stations in Septem­

ber 1995 and February 1998, and there are more missing values at station 1001 than 

at other stations. In 1995, t he monthly means at station 1001 are ob\·iously less 

than those of other stat ions. This li tt le difference at station 1001 may be caused by 

various reasons, such as locat ion of the stat ion, device failures or bird int errupt ions. 

The wind speeds of the four stations are correlated positively. In an attempt to 

explain the distribution of the data in a three-parameter Weibull distribution , the 

goodness of fit tests in Table 2.7 show t hat the distribution does not fit vvell. A 

possible improvement may be to use a lognormal, beta or mixed distribution. 

Since there are lots of missing values in this data set, we have to impute the 

missing values before we detect outliers. In this thesis, we use three imputation 

methods: Nearby window average imputation , Jones imputation using Kalman fil­

ter [13] and EM algorithm imputation [19]. In Chapter 3, we introduce the three 

methods. 

The effects of extraneous objects, measuring device failures and human errors 

may distort the fi eld data. Usually qualified engineers , scientists or technicians 

identify abnormalities after inspecting the data manually. This manual process is 

slow, costly and sometimes inconsistent among inspectors [12] . Various methods , 

such as artificial intelligence [8], neural network [12] and outlier detection in time 

series models, have been used for detecting abnormal data. In Chapter 3, we also use 
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Figure 1.2: Flow Chart of Modeling Process 

t ime series analysis to detect and remove the abnormal data. A common approach 

to deal with outliers in a time seri es is to identify the locations, , and the types 

of outliers and then remove the impacts by using intervent ion models. Four types 

of outliers are usually considered: Innovational outlier (IO) , additive outlier (AO ), 

level shift (LS ) and temporary change (TC) [20]. For the wind speed data, the 

outliers could be either IO or AO . Hence, only IO and AO are considered in this 

t hesis. We also studied the power of three imputation methods by using a small 

portion of time series from station 1001. Based on the results, we use EM algorithm 

to impute missing values for the data set used in this thesis. 

To get the best model for the wind speed data, the idea is shown in Figure 
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1.2. After imputing the missing values and removing the impacts of outliers, we can 

get the best model. This is presented in Chapter 4. Due to the computing problem, 

the data set used in Chapter 4 is the hourly wind speeds of all four stat ions from May 

to August in 2000 only. The best models a re seasonal ARil\IA(2 , 0, 0) x (1, 0, 0)24 

for all four stett ions. The term (2 , 0, 0) gives the order of the nonseasonal part of t he 

ARI!\IA model; the term (1. 0, Oh1 gives the order of the seasonal part. The form 

of this model is given by 

where n is the number of observations in the time series; B is the backshift operator 

such that Bx1 = x1_ 1 ; (1- r/YI, 1B - r/h, 2B 2 )(1 - ¢2,1B 24
) is a polynomial of B with 

all roots outside the unit circle; { Et} is uncorrelated and identically distributed with 

mean zero and variance 0'
2 ; The value 24 reflects a daily circle in the hourly wind 

speed data. Thus , it shows that the wind speed in all stations under study behaves 

similarly. This suggests that it is not necessary to collect data from all the stations 

under study. 

In an appendix , we include the Matlab codes and SAS programs used for this 

thesis. 
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Chapter 2 

DATA EXPLORATION 

Lake Okeechobee wind speed data are routinely collected by sensors and t ran-

scribed from fi eld / laboratory forms to an elect ronic format . Field data were collected 

every 15 minutes by the South Florida Wat er Managem ent District (SFWMD) at 

a permanent data collection site (Figure 1.1, [11]). Wind speeds (miles per hour) 

were measured with a Skyvane Wind Sensor Model 2100. Occasionally the effects of 

extraneous factors such as birds, measuring device failures and human errors, m ay 

distort fi eld data [12]. The data set analyzed in this thesis consists of the wind 

speeds collected at stations 1001, 1005 , 1006 and LZ40 (corresponding sample sites 

16, 38 , 39 and 35 , resp ectively in Figure 1.1) from January 1995 to December 2000 . 

Table 2.1: Descriptive Statistics for All Stations 

Station N N Miss Mean Std Dev Min Max 
L001 189408 21024 10.214 5.549 0 72.4 
L005 206703 849 10.479 5.404 0 56.26 
L006 204162 6270 11.056 5.702 0 49.95 
LZ40 203414 7018 11.041 5.722 0 55.68 
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Table 2.2: Descriptive Statistics for 1001 

Month Obs Miss Mean Min 
Jan-95 2976 0 8.03 0.44 
Feb-95 2688 0 8.16 0 .44 
Mar-95 2976 0 9.44 0.44 
Apr-95 2880 0 9.48 0.44 
May-95 2976 0 7.81 0.44 
J un-95 2839 41 8.98 0.44 
Jul-95 2976 0 7.53 0.44 

Aug-95 2660 316 9 18 0.44 
Sep-95 1578 1302 4.70 0.44 
Oct-95 288 i 89 10.34 0.44 
Nov-95 2880 0 10.66 0.44 
Dec-95 2976 0 9.51 0.44 
J an-96 2976 0 9. 70 0.44 
Feb-96 2784 0 9.80 0.44 
Mar-96 2976 0 12.34 0.44 
Apr-96 2880 0 11.09 0.44 
May-96 2915 61 10.55 0.45 
J un-96 2880 0 9.61 0.46 
J ul-96 2976 0 10 .14 0.45 

Aug-96 2976 0 9.07 0.44 
Sep-96 2880 0 9.36 0.44 
Oct-96 2976 0 10.66 0.44 
Nov-96 2880 0 12.21 0.44 
Dec-96 1988 988 9.25 0.45 
Jan-97 2976 0 9.89 0.50 
Feb-97 2688 0 10.79 0.31 
Mar-97 2976 0 12.25 0.98 
Apr-97 2880 0 13.72 1.08 
May-97 376 2600 9.67 0.81 
Jun-97 800 2080 11.46 0. 74 
J ul-97 0 2976 

Aug-97 1981 995 13.31 0.84 
Sep-97 1116 1764 8.93 0.40 
Oct-97 2973 3 10.48 0.51 

Max 
30.69 
30.35 
27.21 
32.16 
30 78 
31.00 
28.47 
34.39 
26 01 
29 86 
26.31 
25.58 
28.64 
31.68 
32 28 
26.74 
31.12 
33.02 
30.87 
37.12 
34.36 
29.34 
27.16 
31.68 
35.67 
27 .82 
32.98 

63.59 
24.70 
22.27 

29.53 
21.40 
33.95 

Month Obs 
Jan-98 2976 
Feb-98 562 
Mar-98 1613 
Apr-98 2880 

May-98 2870 
Jun-98 1741 
Jul-98 1987 

Aug-98 1419 
Sep-98 2612 
Oct- 98 2976 
Nov-98 2879 
Dec-98 2885 
Jan-99 2976 
Feb-99 2688 
l'v!ar-99 2976 
Apr-99 2880 

May-99 2976 
Jun-99 2880 
Jul-99 2976 

Aug-99 2974 
Sep-99 2880 
Oct-99 2976 
Nov-99 2880 
Dec-99 2976 
Jan-00 2976 
Feb-00 2784 

Mar-00 2976 
Apr-00 2879 

May-00 2975 
J un-00 2880 
Jul-00 2976 

Aug-00 2976 
Sep- 00 2880 
Oct-00 2976 

Nov-97 2715 165 10.25 0.64 30.42 Nov-00 2880 
Dec-97 2976 0 10.60 0 .44 31.91 Dec-00 2976 

"." represents the missing value 

2.1 Station 1001 

Miss 
0 

2126 
1363 

0 
106 

1139 
989 

1557 
268 

0 

91 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 

Mean Min 
10.78 0.50 
17.59 3.53 
12.31 0.81 
12.92 0.76 

9.80 0.30 
10.88 0.84 
8.52 000 
8.06 0.00 
9.91 0.00 
8.64 0.00 
8.04 0.00 
9.51 0.40 
9.61 0.38 

10.35 0.00 
10.66 0.65 
10.47 0.48 
10.26 0 72 

9.58 0.56 
8.81 0.83 
9.40 0.52 

10.28 0.52 
12.39 0.55 
11.74 0.52 

9. 76 0.44 
9.90 0.42 
9. 78 0.42 

11.57 0.88 
12.35 1.06 
11.40 0.83 
10 .49 0.75 
10.11 0.70 

9.68 0.66 
9.63 0.57 

11.81 0. 77 

Max 
27.18 

40 .66 
25.71 
26.90 
25.80 
26 .14 

68.10 
58 .60 
39.90 

72.40 
37.45 
31.09 
30.80 
27.45 
29 01 
34 97 
29.36 
27.64 
31.43 
28.81 
34.00 

55.13 
28.65 
24.68 
32.69 
34.35 
29.36 
25.83 
25.81 
35.24 
34.89 
31.13 
30.57 
29.86 

0 10.86 0.49 26.55 
0 11 .57 0.66 35.09 

Station 1001 is 111 the north of Lake Okeechobee (Figure 1.1). Table 2.2 

and Figure 2.1 show that the monthly means are between 8mph and 13mph except 

September 1995 , July 1997 and February 1998. The monthly mean of wind speeds 

in July 1997 is missing because the wind speeds are all missing. Table 2.2 shows that 

there are 6 large values of maximum (bold) wind speed (wind speed that is 40mph or 
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Datemme O:::t-95 Aug-96 Jun-97 Apr-98 Feb-99 Dec-99 O:::t-00 

Figure 2.1: Plots of Monthly Mean Values for All Stations 

above is considered as a large value) . There are 21024 missing values at station LOO 1 

(Table 2.1) . The number of missing values on September 1995 and February 1998 

are 1302 and 2126 (Table 2.2) with missing rates 45.2% and 79%, respectively. It is 

possible that the large number of missing values caused the unusual monthly means: 

4. 70mph and 17.59mph for September 1995 and February 1998, respectively. There 

are more missing values in 1997 and 1998 than in the other years on this station. 

2.2 Station L005 

Station L005 is in the west of Lake Okeechobee (Figure 1.1). Table 2.3 and 

Figure 2.1 show that all the monthly means are between 8mph and 14mph. There 

are 4 large values of maximum wind speeds which are greater than 40mph. There 

are only 96 observed values on December 2000. The total number of missing values 
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Month Obs 
Jan-95 2976 
Feb-95 2688 

Mar-95 2976 
Apr-95 2880 
May-95 2976 
Jun-95 2880 
Jul-95 2976 

Aug-95 2938 
Sep-95 2880 
Oct-95 2908 
Nov-95 2839 
Dec-95 2929 
Jan-96 2976 
Feb-96 2784 

Mar-96 2976 
Apr-96 2413 
May-96 2976 
Jun-96 2880 
Jul-96 2976 

Aug-96 2976 
Sep-96 2880 
Oct-96 2976 
Nov-96 2880 
Dec-96 2976 
Jan-97 2976 
Feb-97 2688 
Mar-97 2976 
Apr-97 2880 
May-97 2976 
Jun-97 2880 
Jul-97 2976 

Aug-97 2976 
Sep-97 2880 
Oct-97 2976 
Nov-97 2880 
Dec-97 2976 

Table 2.3: Descriptive Statistics for 1005 

Miss 
0 
0 
0 
0 
0 
0 
0 

38 
0 

68 
41 
47 

0 
0 
0 

467 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Mean Min 
9.17 0.44 
9.37 0.44 

11.08 0.44 
11.96 0.44 
10.23 0.45 
10.53 0.44 
9.61 0.44 

10 33 0.44 
7.92 0.44 

11.4/ 0.44 
9.92 0.44 
9.35 0.44 

10.24 0.44 
10.19 0.44 
13.21 0.44 
12 .31 0.44 
11.24 0.44 

9.25 0.44 
9.92 0.44 
9.38 0.44 
9.17 0.44 

11.71 0.44 
12.56 0.44 

9.33 0.44 
9.52 0.44 

10.93 0.44 
11.72 0.44 
13.31 0.44 
10.62 0.44 
9.62 0.44 
7.44 0.44 
7.69 0.44 
9.73 0.44 

11.17 0.44 
10.09 0.44 
10.57 0.44 

Max 
29.55 
35.39 
25.87 
27.75 
34.33 
30.96 
35.37 
33.08 
27.10 
29.00 
23.66 
26.72 
31.88 
33.71 
31.06 
26.09 
31.38 
30.27 
32.81 
28.30 
25.58 
28.82 
29.07 
27.30 
33.18 
25.02 
30.76 
34.61 

45.39 
27.66 
31.79 
29.21 
27.11 
27.56 
24.60 
30 .81 

Month Obs 
Jan-98 2976 
Feb-98 2688 
Mar-98 2976 
Apr-98 2880 
May-98 2976 
Jun-98 2880 
Jul-98 2976 

Aug-98 2976 
Sep-98 2880 
Oct-98 2976 
Nov-98 2833 
Dec-98 2836 
Jan-99 2976 
Feb-99 2688 
Mar-99 2976 
Apr-99 2880 
May-99 2976 
Jun-99 2880 
Jul-99 2976 

Aug-99 2976 
Sep-99 2880 
Oct-99 2976 
Nov-99 2880 
Dec-99 2976 
Jan-00 2976 
Feb-00 2784 

Mar-00 2976 
Apr-00 2880 
May-00 2975 
Jun-00 2880 
Jul-00 2976 

Aug-00 2976 
Sep-00 2880 
Oct-00 2976 
Nov-00 2880 
Dec-00 96 

Miss 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

47 
140 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

Mean 
10.92 
13.23 
12.80 
12.85 

9.45 
9.56 
8.29 
8.64 

11.91 
10.92 
8.68 

10.09 
10.07 
10.33 
11.11 
10.10 
10.16 
9.40 
8.82 
8.94 

10.43 
13.30 
11.91 

9.79 
9.96 

10.20 
12.02 
12.75 
11 .65 
10.44 

9.25 
10.13 
10.5!1 
12.51 
11.49 
10.80 

Min 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.00 
0.00 
0.00 
0.00 
0.01 
0.04 
0.00 
0 .01 
0.00 
0.00 
0.00 
0.00 
0.00 
0 .00 
0.00 
0.00 
0.03 
0.00 
0.00 
0.00 
0.00 
0.67 
0.00 
0.00 
3 .21 

Max 
27.84 
37.54 
29.72 
26.54 
32 58 
33.98 
32.16 
34.11 
33.22 
25.81 
35.93 
29.14 
25.98 
27.04 
31.44 
32.62 
35.94 
33 .78 
26.81 
32.31 
34.62 

45.91 
27.51 
22.82 
31.62 
23.79 
28.35 
26.73 
25.23 
32.79 
34.80 
26.11 
34.90 

52.13 
56.26 
17.09 

is 849 (Table 2.1). There are many more missing values (467) on April 1996 than 

on any other months. 

2.3 Station 1006 

Station 1006 is m the south of Lake Okeechobee (Figure 1.1). Table 2.4 

shows that the monthly means are between 8mph and 14mph. Figure 2.1 shows 

that there is no extreme monthly mean value. Table 2.4 shows that four values of 
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Month Obs 
Jan-95 2976 
Feb-95 2466 

Mar-95 2760 
Apr-95 2741 
May-95 2976 
Jun-95 2878 
Jul-95 2976 

Aug-95 2976 
Sep-95 2880 
Oct-95 2976 
Nov-95 2843 
Dec-95 2976 
J an-96 2976 
Feb-96 2784 
Mar-96 2976 
Apr-96 2880 
May-96 2976 
Jun-96 2880 
Jul-96 2976 

Aug-96 2976 
Sep-96 2880 
Oct-96 2976 
Nov-96 2880 
Dec-96 2976 
Jan-97 2976 
Feb-97 2688 
Mar-97 2976 
Apr-97 2880 
May-97 2976 
Jun-97 2880 
Jul-97 2976 

Aug-97 2976 
Sep-97 2880 
Oct-97 2976 
Nov-97 2880 
Dec-97 2976 

Table 2.4: Descriptive Statistics for 1006 

Miss 
0 

222 
216 
139 

0 
2 
0 
0 
0 
0 

37 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Mean 
11.62 
11.44 
12.93 
12.23 
10.27 
11.20 

9.94 
10.66 

8.49 
12.37 
12.43 
10.92 
10.70 
10.84 
14.08 
11.66 
11.18 

9.83 
10.21 

8.97 
9. 72 

12.03 
13.65 
10.85 
10.28 
11.27 
12.00 
13.53 
10.85 

9.54 
7.34 
8.21 

10.05 
11.82 
11.21 
11 .68 

Min Max 
0.44 31.74 
0.44 36.61 
0.45 32 07 
0.44 34.59 
0.44 30.37 
0.44 33.78 
0.44 32.72 
0.44 34.83 
0 . ..1..1 28.63 
0.44 27.45 
04-l 29.15 
0.44 29.03 
0.44 3549 
0.44 39.36 
0.44 37.99 
0.44 27.93 
0.45 36.88 
0.44 36.27 
0.44 38.34 
0.44 29.32 
0.44 25.47 
0.44 33.43 
0.44 31.67 
0.44 31.31 
0.44 31.64 
0.44 31.76 
0.44 31.39 
0.44 30.88 
0.44 26 .19 
0.44 41.34 
0.44 29.60 
0.44 33.75 
0.44 28.04 
0.44 26.02 
0.44 32.94 
0.44 36.34 

Month 
Jan-98 
Feb-98 
Mar-98 
Apr-98 
May-98 
Jun-98 
J ul-98 

Aug-98 
Sep-98 
Oct-98 
Nov-98 
Dec-98 
Jan-99 
Feb-99 
Mar-99 
Apr-99 
May-99 
Jun-99 
Jul-99 

Aug-99 
Sep-99 
Oct-99 
Nov-99 
Dec-99 
Jan-00 
Feb-00 
Mar-00 
Apr-00 
May-00 
Jun-00 
Jul-00 

Aug-00 
Sep-00 
Oct-00 
Nov-00 
Dec-00 

Obs 
2976 
2688 
2976 
2880 
2976 
2880 
2976 
2976 
2880 
2976 
1782 

906 
2574 
2688 
2976 
2880 
2976 
2880 
2976 
2976 
2880 
2976 
2880 
2976 
2976 
2784 
2976 
2880 
2973 
2880 
2652 
1219 
2880 
2976 
2880 
2976 

Miss 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1098 
2070 

402 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 
0 

324 
1757 

0 
0 
0 
0 

Mean 
12.03 
14.22 
13 84 
13.42 

9.97 
9.40 
8.49 
8.4-l 

1121 
11.4 2 
10.03 
11.2·1 
10.09 
11.03 
11.91 
10.56 
10.39 

9.38 
8.27 
9.08 

10.61 
13.50 
13.31 
10.87 
11.12 
10.79 
12.11 
12.79 
10.96 
10.48 
9.61 

11.00 
9.81 

13.65 
12.14 
12.86 

Min 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.47 
0.00 
0.32 
0.60 

Max 
31.98 
37.89 
33.61 
29.78 
36.04 
33.12 
34.22 
34 98 
28.13 
31.28 

40.89 
32.72 
30.38 
31.66 
29.24 
35.93 

40.29 
31.72 
30.35 
31.51 
39.56 
49.95 
32.22 
29.79 
32.19 
24.79 
26.40 
31.77 
25.32 
36.53 
31.75 

42 .00 
30 .09 
36.12 
34 .93 
36.42 

maximum wind speed are over 40mph. There are 6270 missing values at this station 

(Table 2.1). The number of missing values on November 1998, December 1998 and 

August 2000 is more than 1000 (Table 2.4). 

2.4 Station LZ40 

Station LZ40 is m the middle of Lake Okeechobee (Figure 1.1) . Table 2.5 

shows that the monthly means are between 8mph and 14mph. Figure 2.1 shows 
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Month 
Jan-95 
Feb-95 
Mar-95 
Apr-95 
lvlay-95 
Jun-95 
Jul-95 

Aug-95 
Sep-95 
Oct-95 
Nov-95 
Dec-95 
Jan-96 
Feb-96 
Mar-96 
Apr-96 
lvlay-96 
Jun-96 
Jul-96 

Aug-96 
Sep-96 
Oct-96 
Nov-96 
Dec-96 
J an-97 
Feb-97 
Mar-97 
Apr-97 
May-97 
Jun-97 
Jul- 97 

Aug-97 
Sep-97 
Oct-97 
Nov-97 
Dec-97 

Obs 
2976 
2688 
2699 
1815 
2976 
~880 

2976 
:?976 
2880 
1730 
2403 
2939 
2976 
2784 
2976 
2880 
2976 
2880 
2976 
1786 
2263 
2976 
2880 
2121 
283 1 
2688 
2976 
2880 
2976 
2880 
2976 
2976 
2880 
2976 
2880 
2976 

Table 2.5: Descript ive Statistics for LZ40 

Miss 
0 
0 

277 
1065 

0 
0 
0 
0 
0 

1246 
477 

37 
0 
0 
0 
0 
0 
0 
0 

1190 
617 

0 
0 

855 
145 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Mean 
11.50 
11.03 
12.68 
11.90 
10.40 
11 .32 
10.17 
10 .98 

8.71 
12.95 
12.55 
10.97 
10.56 
10.41 
13 .55 
11.62 
11.36 

9.96 
10. 41 

9.21 
10.30 
11 .98 
13.55 
12.19 
10.07 
10.84 
12 .06 
13.56 
10.86 

9 .81 
7.68 
8.47 

10 .15 
11 .74 
11.00 
11.56 

Min 
0.44 
0 .44 
0.44 
0.45 
0.46 
0.4 5 
0 .49 
0.44 
0.46 
0.45 
0.44 
0.44 
0.44 
0.44 
0.45 
0.44 
0.45 
0.49 
0.45 
0.44 
0.44 
0.47 
0.44 
0.44 
0.44 
0.44 
0.59 
0 .44 
0.4 5 
0.45 
0 .45 
0.44 
0.44 
0.47 
0.44 
0.44 

Max 
33.86 
34.67 
31.33 
24.87 
25.64 
34.91 
33 14 
36.67 
30.04 
26 60 
27.92 
27.97 
32.46 
36.86 
37.54 
27.44 
37.80 
30.74 

40.75 
30.20 
30 .08 
34.28 
31.47 
30 .95 
31.90 
27 .59 
31.44 
32.61 

41.42 
40.98 
33.52 
30.61 
33.25 
26.95 
25.95 
36.59 

Month 
J an-98 
Feb-98 
Mar-98 
Apr-98 
:\lay-98 
Jun-98 
Jul-98 

Aug-98 
Scp-98 
Oct-98 
f\ ov-98 
Dec-98 
Jan-99 
Feb-99 
l\lar-99 
Apr-99 
l\lay-99 
Jun-99 
Jul-99 

Aug-99 
Sep-99 
Oct-99 
Nov-99 
Dec-99 
J an- 00 
Feb-00 
Mar-00 
Apr-00 
May-00 
Jun-00 
Jul-00 

Aug-00 
Sep- 00 
Oct-00 
Nov-00 
Dec-00 

Obs 
2976 
2688 
2976 
2880 
2976 
2880 
2976 
2976 
2880 
2530 
2268 
2976 
2976 
2688 
2976 
2880 
2976 
2880 
2976 
2976 
2880 
2976 
2880 
2927 
2976 
2784 
2976 
2880 
2975 
2880 
2976 
2976 
2880 
2976 
2879 
2976 

Miss 
0 
0 
0 
0 
0 
0 
0 
0 
0 

446 
612 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

49 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 

Mean 
11 .67 
13.88 
13.38 
13.43 

9.90 
9.66 
8.82 
1:1.75 

11.59 
ll.75 
9.25 

10.65 
10 .12 
10 .89 
11.42 
10 .37 
10.35 
9.64 
8.53 
9.34 

10.76 
13 .50 
13.10 
10.84 
10.91 
10.48 
12.09 
12.78 
11 .23 
10.65 
10.00 

9.89 
9.80 

13.4 1 
12. 13 
12.88 

Min 
0.50 
0.46 
0.50 
0.44 
0.44 
0.45 
0.45 
0.46 
0.44 
0.45 
0.00 
0.41 
0.00 
0.00 
0.01 
0.03 
0.10 
0.01 
0.01 
0.01 
0.01 
0.22 
0.42 
0.00 
0.01 
0 .00 
0.03 
0.13 
0.02 
0 .12 
0.02 
0 .26 
0.00 
0. 68 
0.00 
0 .00 

Max 
30.80 
37.67 
33.64 
29.65 
38.95 
32.36 
31.35 
33.99 
~9.58 

30.73 
40.59 
31.39 
28 86 
30.91 
29 33 
35.60 
35.00 
29.53 
29.44 
28.84 
37.79 

55.68 
31.54 
29.02 
32.78 
25.05 
30 .26 
30 .14 
25.66 
36.52 
32.41 
30 .02 
29 .56 
34.32 

49.30 
42 .60 

that there is no ext reme monthly mean value. There arc 7 values of maximum wind 

speed which are over 40mph (Table 2.5). The total number of missing values is 7018 

(Table 2.1). The number of missing values in April and October 1995, and August 

1996 is more than 1000 (Table 2.5). 
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2.5 Using a Wei bull Distribution to Describe Wind Speed 

The Weibull distribution is usually used to describe wind speeds and study 

wind power. It is very practical for this application , because the distribution does 

not a llow for negative Yalues and it is easy to appropriately consider the fact that 

on most clays there wi ll be a bit of wind and on some clays a lot. 

The three-parameter \Veibull distribution has probability density function 

given by 

where e is the threshold parameter , (]" is the scale parameter and c is the shape 

parameter [9]. The cumulative distribution function is given by 

y- e 
F(y ) = 1 - exp( -(--)c) for y > e. 

(]" 

The mean and variance are given by 

and 

1 
E(y) = e + O"r(1 + -) 

c 

where r is the gamma function . The mean wind speed is used to indicate how 

windy the site is. The shape parameter tells how peaked the distribution is; i.e., if 

the wind speeds always tend to be very close to a certain value, the distribution will 

have a high shape parameter value and will be very peaked. 

12 



Table 2.6: Exploratory Data Analysis 

Station Mean SD Skew Kurtosis Ql Q2 Q3 max 
1001 10.214 5.549 0.420 0.731 6.358 10.050 13.740 72.400 
1005 10.479 5.404 0.513 0.576 6.577 10.050 14.010 56.260 
1006 11.056 5.702 0.611 0.543 6.960 10.540 14.570 49.950 
1Z40 11.041 5.722 0.629 0.609 6.831 10.536 14.590 55.680 

To check if a \iVeibull distribution fits a data set well , we use the Anderson-

Darling test [18]. The hypotheses of the test are: 

H 0 : the data follow vVeibull distribution , 

Ha: the data do not folio,,- vVeibull distribution. 

The test statistic is given by 

A2 = -n- S 
' 

n 

where S = L(ln F(yi) + ln(1- F(Yn+l- i))), n is sample size, Yz are ordered and F 
i = l 

is the cumulative distribution function. 

The descriptive statistics for the 15-minute wind speed data for the four 

stations are shown in Table 2.6. We can see that more than 75% of the wind 

speed data are below 15mph. The means and standard deviations of Stations 1006 

and 1Z40 are about the same and greater than those of Stations 1001 and 1005. 

The histograms in Figure 2.2 show that the distributions are skewed to the right. 

The maximum likelihood estimations of the parameters of the Weibull distribution 

are reported in Table 2. 7 for all four stations . The p-values of Anderson-Darling 
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Table 2.7: Weibull Distribution Parameters and Goodness-of-Fit Tests 

Threshold Scale Shape Anderson-Dar ling 
Station (B) ( CJ) (c) Mean SD test stat istic p-value 

1 001 -1.864 13.614 2.297 10. 197 5.568 448.981 < 0.001 
1 005 -0 .889 12.822 2.211 10.467 5.424 106.016 < 0.001 
1006 -0.6 17 13. 170 2.146 11 .046 5.723 82.962 < 0.001 
1Z40 -0.241 12 .727 2.061 11.033 5.737 54.885 < 0.001 

goodness-fit -tes t are all less t han 0.001. T his means that a t hree-parameter vVeibull 

d ist ribut ion does not fit our wind speed data well. A possible suggestion will be to 

use a lognormal, beta or mixed d istribu t ion . 

2.6 Conclusion 

Comparing the number of missing values in Table 2.1, there are much more 

missing values at st at ion L001 t han at any other station . Comparing plot s of 

monthly means of wind speeds for a ll four stations (Figure 2. 1), we can see that 

the patterns of the plots for station L005, L006 and LZ40 are similar. Hence we fur-

t her check the correlat ions of wind speeds among these four stations. The P earson 

product moment correlat ion coefficient of two variables is given by 

where n is the number of observations, x and fi are sample means of two variables , 

and sx and sy are sample standard deviations of two vari ables, respectively. Table 

2.8 shows Pearson correlat ions of wind speeds among the st ations in 2000 . All 

correlation coefficients are great er than 0.6, and the p-values for t he hypot hesis 

14 
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Table 2 .8 : Correlations among Four Stations 

Station 1001 1005 1006 
1005 0.668 

( < 0.001) 
1006 0.748 0.678 

( < 0.001) ( < 0.001) 
1Z40 0.758 0.697 0.897 

( < 0.001) (< 0.001) ( < 0.001) 
Note: values m parentheses are p-va lues 

tests of the correlation coefficients being zero are less than 0.001. Therefore, the 

wind speeds of the four stations are correlated positively. 

The monthly means of wind speeds at station 1001 is substantially different 

from those of any other stations on September 1995 and February 1998, and there are 

more missing values at station 1001 than at other stations. In 1995, the monthly 

means at station 1001 are obviously less than at any other statim1. This little 

difference at station 1001 may be caused by various reasons such as location of the 

station, measuring device failures or bird interruptions. Further detection is needed. 

To check the large values of maximum wind speeds (i.e. gerater than 40mph) for all 

stations, we compared the maximum wind speeds at all stations for the months that 

have large values. Table 2.9 shows that there are large values on October 1999 at 

all stations. There was a hurricane named Floyd on October 1999. At station 1001 , 

the maximum wind speeds on April1997, July 1998, August 1998 and October 1998 

are obviously much higher than those at the other stations. In Figure 2.3, one can 
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Table 2.9: Large Values for All Stations 

Time 1001 1005 1006 1Z40 
07/ 96 30.87 32.81 38 .34 *40.75 
04/ 97 *63.59 34.61 30 .88 32.61 
05/ 97 24.7 *45 .39 26.19 *41.42 

06 / 97 22.27 27.66 *41.34 *40.98 
02 / 98 *40.66 37.54 37.89 37.67 
07/ 98 *68.1 32. 16 34.22 31.35 
08/ 98 *58.6 34.11 34.98 33.99 
10/ 98 *72.4 25.81 31.28 30.73 
11/ 98 37.45 35.93 *40.89 *40.59 
05/ 99 29.36 35.94 *40.29 35 

10/99 *55.13 *45.91 *49.95 *55.68 
08/ 00 31.13 26 .11 *42 30.02 
10/ 00 29.86 *52.13 36.12 34.32 
11/ 00 26 .55 *56 .26 34.93 *49 .3 
12/ 00 35.09 17.09 36.42 *42.6 
"*" represents that the value is unusually large 

see that those four points (63.59, 68.1 , 58.6 and 72.4) are outlier points, which might 

be affected by local climate or extraneous factors. 

Finaly, we conclude that there are outliers and many missing values in the 

data sets. The patterns of wind speeds for all four stations are similar and the wind 

speeds of these four stations are correlated positively. We also observed that for 

the four stations the monthly means of wind speeds arc around 8mph in summer 

while they are greater than 10mph in all other seasons. The monthly means of wind 

speeds at station 1001 are substantially different from those of the other stations 

on September 1995, February 1998 and in 1995. There are more missing values at 

station 1001 than at other stations. A three-parameter Weibull distribution does 
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Figure 2.3: Plots of Possible Outliers at Station LOOl 

not fit this data well, as 1s seen by checking th e goodness of fi t tests in Table 2.7. 

A possible improvement may be to use a lognorm al, beta or mixed distribution . 

19 



Chapter 3 

MISSING VALUE IMPUTATION AND OUTLIER 

DETECTION 

As pointed out in Chapter 2, there are many missing values and outliers 

in the wind speed data. Let Xt be the true time series, Yt be the observed series 

with missing values and outliers, and Zt be the observed series with outliers after 

imputation. Thus, we impute the missing values and then detect outliers. In this 

thesis, three imputation methods are used: Nearby window average imputation , 

Jones imputation using Kalman filter [13] and EM algorithm imputation [19]. Two 

types of outliers are considered in this thesis: Innovational outlier (IO ) and additive 

outlier (AO) [20]. 

3.1 Missing Value Imputation 

Nearby window average imputation, Jones imputation using Kalman filter 

and EM algorithm imputation are used to impute missing values . The idea of the 

Nearby window method is to use the average value of one value before the missing 
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value begins and one value after the missing value ends to impute the missing values . 

The other two methods are introduced in the following. 

3.1.1 Imputation Using Kalman Filter 

Richard H. Jones considered a state-space model ustng I\alman recursive 

estimation for t ime series data with missing values in 1980 . Here \Ye only introduce 

state-space model and Kalman filter (see [13] for details). 

3.1.1.1 State-space Model and Kalman Recursive Estimation 

A State-space model has two equations: the observation equation and the 

state equation. Let Yt be an observed time series. Then the observation equation is 

given by 

(3.1) 

where His a (1 xm) vector, B1 is a (mx 1) state vector, and v1 denotes the observation 

error. The v1's are assumed to be uncorrelated and identically distributed with mean 

zero and variance R. Although the state vector B1 is unobservabl e, we can assu111e 

that it follows the state equation 

(3.2) 

where G is assumed to be a known ( m x m) matrix. The term w1 denotes a vector of 

deviates, which is white noise with zero mean vector and known variance-covariance 

matrix Q, and is assumed to be uncorrelated with Vt· 
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Assuming that the best unbiased estimator for Bt-l is Bt- l based on our 

knowledge about the process prior to time t - 1, the variance-covariance matrix of 

' ' 
Bt - l is Pt- 1· Let Bt lt- l be the one-step ahead forecast of B1 from time t - 1, i.e. 

A ' 

et :t- 1 = GBt- 1· (3.3) 

Then the estimation error is 

GBt- 1 + wt - GBt- 1 

and the associated error covariance matrix is 

(3.4) 

(3.5) 

(3.6) 

where e~ 1 1 _ 1 is the transposition of etlt- l· If y1 is available, then we may use the 

observed Yt to improve the estimate of B1. Let Bt be the updated estimate of Bt 

satisfying the following equation: 

(3.7) 

where K 1 is called the Kalman gain [21 J. The reason for constructing this Bt is to 

minimize the variance of the prediction error et - Bt - Bt. To derive Kt we use the 

22 



minimum mean-square error criterion [3]. From (3.1) and (3.7), the error covariance 

matrix associated with the updated estimate is 

Rewrite the error covariance matrix associated with the updated estimate in the 

form: 

Differentiate the trace of Pt with respect to Kt. By the facts that 

d [trace(AB)] 1 dA = B ( AB must be square), 

d [trace(ACA 1
)] 

dA = 2AC ( C must be square) 

and 

we have 

d(tracePt) ( 1 1 

dKt = -2 H Ptlt-d + 2Kt(H Ptlt- 1 H + R). (3.9) 
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Compute 
(3.3) and (3 .4) 

Enter prior estimate 8o and 
its error covariance Po 

Compute Kalman gain 
using equation (3.10) 

Compute error covariance 
for updated estimate 
using equation (3.11) 

~ yo,y1, ... 

Update estimate withy, 
using equation (3 .7) 

8o, 81 , ... 

Figure 3.1: Kalman Recursive Process 

Setting (3.9) to be zero and solving for K 1, we get 

From (3.8) and (3.10), we have 

(3.10) 

(3.11) 

Equations (3 .3), (3 .4), (3.7), (3.10) and (3.11) are the Kalman filter recursive equa-

tions. The Kalman recursive process is shown in Figure 3.1. 
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3.1.1.2 State-space Model Representations of ARMA and ARIMA Mod­

els 

Let x 1 be a time series following an autoregressive-moving average (ARMA) 

model with order (p, q) , i. e., 

(3. 12) 

where n is the number of observations in the time series; B is the backshift operator 

such that Bx1 = x1_ 1 ; ¢( B) = 1 - <h B - ·· · -¢;pEP and 1/;(B ) = 1 -1j;1B ·- · · · - 1/JqBq 

are polynomials of B with all roots outside the unit circle; { Et} is white noise with 

mean zero and variance <J
2

. Let y1 still be an observed time series. Define the state 

vector of this process as 

x(t it) 

x(t+ 11t) 

x(t + m- 1jt) 

where m = max(p, q + 1) , x(tjt) = x1 and x(t + 1jt) is the proj ection of Xt + j on the 

values of the times series up to time t. Then the observation equation is 

Yt = [1 0 · · · O]Bt +lit, (3.13) 

where lit is the observational error , uncorrelated at different times and uncorrelated 

with the E's. The mean of lit is 0 and its variance is R = E[lltf . The state equation 
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lS 

(3.14) 

where 

0 1 0 0 

0 0 1 0 
G = 

j - 1 

cPi = 0 fori > p; A = [1, a2 , ··· , am]' ; a 1 = 1, ai = -'1/Jj - l + L ¢iaj- i for j > 1 and 
i= l 

'l/Jj = 0 for j > q (See [13] for details). 

For the ARMA model, the likelihood for n observations of the zero mean 

process 1s 

n -2 

L = ll (27rvtt! exp( - ~), 
t= l 2Vi 

(3.15) 

where Yt = Yt- x(t it- 1) and Vi = Ptit- I + R [13]. Dropping the constant 21r, we 

get 

l = - 2ln L = L Yt + In Vi . n [ - 2 l 
t = l vt 

(3.16) 

From (3. 14) we have 

Hence, the variance CJ
2 can be removed from the nonlinear estimation problem by 

dividing R by CJ
2 . The observational error variance is then replaced by the ratio of 
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the observational error variance to r:J
2

. In the recursions, since all variances have the 

same scale factor, Ptlt- 1 and Ptit are replaced by r:J
2 Pt lt- 1 and r:J

2 Ptit , respectively, 

and the likelihood becomes 

(3.17) 

Differentiating this with respect to r:J
2 and equating it to zero gives 

(3.18) 

Then subst ituting into (3.17) and dropping the constants gives 

n -2 n 

l = n ln L Yt + L ln Vi. 
l = 1 Vi 1= 1 

(3. 19) 

the function to be minimized with respect to the remaining parameters ¢1 , · · ·, ¢P , 

1p 1 , · · · , 7J;q, d and R. 

Jones uses a vector of zeros as initial state vector e0 , as well as the Akaike 

method to calculate the initia l stat e covariance matrix P0 = P010 (see [13] for details). 

If an observation Yt+ 1 is missing , r:J
2 in (3 .17) through (3. 19) is set to 1 and estimated 

later. Equations (3. 7) and (3.11) are replaced by 

A A 

et+1lt+1 = et+ 1lt· 

and 
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respectively. The corresponding term in (3.19) for the accumulation of -2ln like­

lihood is skipped. If a large block of data is missing, the recursion is equivalent to 

restarting the recursion at the other end. 

Let x 1 be a time series following an (AIUMA) model with order (p, d, q) , i.e ., 

¢( fl)a (B )x1 = 7jJ( B )r:1, t = 1, · · · , n, (3.20) 

where n is the number of observations in the time series; B is the backshift operator 

such that Bx1 = x1_ 1 ; ¢(B) = 1 - ¢1B- · · · - c/Jp BP; 7/J (B) = 1 - 7jJ 1B- · · · - ·1/JqBq 

are polynomials of B with all roots outside the unit circle; and a( B) = (1- B)d with 

all roots of a( B) on the unit circle. Also, { r:t} is white noise with mean zero and 

variance 0"
2

• Notice that a(B)x1 satisfy ARrviA(p, q) . So we can use a state-space 

representation for the ARMA model to solve the state-space model for ARIMA 

model. 

3.1.2 EM Algorithm 

The EM algorithm is a general iterative algorithm for ML estimation in an 

incomplete data problem [19]. It consists of an Expectation step followed by a 

Maximization step. The idea is to fill in the missing data Xmi ss based on an initial 

estimate of the parameter e, re-estimate e based on Xobs and the filled-in XmiSS> 

and iterate until the estimates converge. The specific applications of this idea have 

appeared in the statistical literature, and go as far back as 1926 [14]. The term EM 

was introduced by Dempster , Laird and Rubin [7] in 1977. Since then, there have 
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been many new uses of the EM algorithm, as well as further work on its convergence 

properties, e.g. Wu (1983) [22], Little and Rubin (1987) [14], Schafer (1997) [19] . 

In any incomplete data problem, the distribution of the complete data X can be 

factored as 

(3.21 ) 

Let l(B IX) = In f(X IB) . The corresponding log-likelihood is 

l(BIX) = l(BIXabs) + In j(XmissiXabs. B). (3.22) 

Since Xmiss is unknown, we take the expectation of (3.22) with respect to the distri­

bution f(Xmi ssiXobs, B1
) , where B1 is an estimate ofthe unknown parameter e. Then 

we get 

(3.23) 

where 

and 

Let e~+ 1 be the value of e that maximizes Q(BIB1
); then 
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By the fact that ln x ~ x - 1, we have 

== 0. 

Hence , 

> 0. 

That is, 

Thus maximizing l(B IXobs) is sufficed to maximizing Q(BIB1
) . One iteration of the 

EM algorithm includes two steps: 

1. E-step: the function Q( Bl61
) is calculated by taking the expectation of 

l(BIX) with the distribution j(XmissiXobs, et). 

2. M-step: the parameter e is found by maximizing Q(BIBt). 
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The two steps are iterated until the iterations converge. In SAS, the EM 

algorithm by Schafer [19] is used in the MI procedure. Let the parameter e = (f.l, L;) . 

For multivariate normal data, suppose there are G groups with distinct missing 

patterns. Then the observed-data log-likelihood can be expressed as 

G 

l(BIXobs) = L lg(BI Xobs), 
g= J 

where l9 (8IXobs) is the observed-data log-likelihood from the gth group , and 

where n9 is the number of observations in the gth group , the summation is over 

observations in the gth group, xi9 is a vector of observed values of x 9 variables, 

119 is the corresponding mean vector , and L;9 is the associated covariance matrix. 

The initial values for the first iteration are the sample means and sample variances 

from the observed data. The E-step uses the standard sweep operator [14] on the 

covariance matrix of the observations to calculate the conditional expectation and 

variance of missing values. Suppose that A is a (p x p) symmet ric matrix with 

elements aij · The standard sweep operator SW P[k] operates on A by replacing it 

with another (p x p) symmetric matrix B , where the elements of B are given by 

1 
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Let B = SW P[k]A. For example , assume Xt is a time series following the model: 

(1 - ¢B)xt = 1-l + Et for t = 1, · · ·, n , (3.24) 

where 1¢1 < 1, { Et} is white noise with mean zero and variance o-2 Let e = (1-l, ¢, a-) . 

The f\'IL estimate is {; = (fl, ¢, (J). Hence the variance and co\·ariancc of missing 

values can be estimated by e. Suppose that Xj is missing, and that l'j - 1 and Xj+l 

are present. The covariance matrix of :rj _ 1 , Xj and Xj+1 is 

o-2 
A= 1- ¢2 ¢ 1 ¢ 

¢2 ¢ 1 

Sweeping on var(xj_ 1), i. e. row and column 1, we get 

AJ- 1 = SW P [1JA = 

Then sweeping on var(xJ+1), i.e. row and column 3, 

1 
SWP[3]A· _1 = ---

J 1 + ¢2 

From (3.25) , we get 
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and 

3.2 Outlier Detection 

The effects of ext raneous objects, device failure and human errors may distort 

the field data. Usually qualified engineers, scientists or technicians identify abnor-

malities after inspecting the data manually. This manual process is slow, cos tly, 

and sometimes inconsistent among inspectors. Various methods, such as artificial 

intelligence [8], neural networks [12] and outlier detection in time series models, have 

been used for detecting abnormal values in data. In this thesis, we use time series 

analysis to detect and remove the abnormal data. 

The effect of an outlier could be either a short-term transient effect or a 

long-term change. With short-term effects, one or more outliers may be visible 

in the time series plot and these can create problems for handling non-stationary 

with standard time series methods. Thus detecting and removing outliers becomes 

important in modeling. Four types of outliers are usually considered: innovational 

outlier (IO), additive outlier (AO), level shift (LS) and temporary change (TC) [20]. 

An IO represents an extraordinary shock at a time point influencing a sequence of 

points. An AO causes an immediate and one-shot effect on the observed series. A 

LS produces an abrupt and permanent step change in the series. A TC causes an 
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initial effect at a time point, and this effect dies out gradually over time. Since any 

effect on wind speed is short-term, only IO and AO are considered in this thesis. 

The approach to deal with outliers here is using intervention models to identify the 

locations and the types of outliers , and to remove the impacts of outliers. 

3.2.1 Estimates of Outlier Impacts and Hypothesis Testing 

Let Xt be a time series following an autoregressi\·e- integrated-moving average 

(ARIMA) model with order (p, d, q) ; that is, 

r/J(B)a(B):rt = '1/J(B)Et, t = 1, · · · , n, (3.26) 

where n is the number of observations in the time series; B is the backshift operator 

are polynomials of B with all roots outside the unit circle; a(B) = (1- B)d with all 

roots of a( B) on the unit circle; and { Et} are independent and identically normal 

distributed with mean zero and variance CJ
2

. We consider the estimation problem 

when both the location and the dynamic pattern of an outlier are not known. The 

approach is to classify an outlier impact into two types: IO and AO. 

If the location and the dynamic pattern of an event are known, then the 

models [1] are: 

JQ: Zt = ¢(~i~iB) (Et + wdT)) and 
(3.27) 

Ao 'f/;(B) ((T) 
: Zt = ¢(B)a(B) Et + W t ' 
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where B, ¢(B), ?j;(B), cx(B) and {ct} are the same as in model (3.12), w is the 

impact of the possibly unknown outlier at T, and 

{ 

1 for t = T, 
([ = 

0 ot herwise 

and indicates the time of occurrence of the outlier impact. Here T is the poss ibly 

unknown location of t he outlier. Then (3.27) can be written in the form 

IO : ., - ,.,. + ~w((T) . 
"- l - ..c t ¢(B)a(B) t ' 

AO: Z t = x 1 +wdT)_ 

(3 .28) 

The effect of an IO is more intricate than the effects of other types of outliers. An IO 

represents an extraordinary shock at time point T influencing zr, zr +l, · · · , through 

the dynamic system described by </>(~~~{B) . To examine the effects of outliers on 

the estimated residua ls in model ( 3.12), we assume that the time series parameters 

are known and the series is observed from t = - J tot = n , where J is an integer 

Because the zeros of ?j;( B) are all outside the unit circle, the weights nj's for j beyond 

J would in practice become essentially equal to zero with J of moderate size. We 

use the outlier contaminated data { zt} for model (3.12) to get the estimated residual 

e1 = ir(B)z1 fort = 1, · · ·, n. For our two types of outliers, from (3.27) we have 

I 0 : et = w(fl + Et and 
(3.29) 
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where ii-(B) = 1r;p(B) and -J; is MLE of 'ljJ in (3.12) [2]. From the theory of least 

squares, the estimators of the impact w in these two models are 

10 : w10 = er and 
(3.30) 

where f} = (1 +ii-i+ ii-~ + · · · + ii-~ -rt 1 and F is the forward-shift operato r. Let 

H0 be the null hypothesis that w = 0 at T , HJO be the alternative hypothesis that 

an IO exists at T , and HA o be the alternat ive hypothesis that an AO exists at T. 

From (3. 12) and (3.28), the variances of the estimators for the impacts under H0 

are the following: 

Noticing EwJO = EwAo = 0 (E means expectation under H0 ) , hence the resul ts can 

be used to construct test statistics for testing the existence of an outlier. Thus the 

likelihood ratio tests are: 

Ho vs Hw: ~10 T = w~o and 
' (]" 

(3.31) 

Ho vs HAo: ~ - ~ AO T -- ~ ~ , 
' pa 

where a-= 1.483 x median{ let- eJ}, and e is the median of the estimated residuals 

[6]. The standardized statistics of the outlier effects ~IO ,T and ~AO,T in (3.31) 

asymptotically have a standard normal distribution [4]. 

To locate an IO or AO , the following decision rules are used: 

10 : TJJo = max l~w rl > c 
l <T <n ' 

(3.32) 
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loop 

r---~ Estimate ARlMA modd and compute resi duals e 
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fal se 

true 

l\.lod!fy residual e. Calculate new cr. w, A. q 

} '"""''"P 

Figure 3.2: Flow Chart for the Procedure of Outlier Detection 

AO : TJAo = max IAAo rl > c, 
l <T <n ' 

(3.33) 

where c is some suitably chosen positive constant. In practice, it is recommended 

to use c = 3.0 for high sensitivity, c = 3.5 for medium sensitivity, and c = 4.0 for 

low sensitivity in the outlier-detecting procedure when the length of the series is less 

than 200 [4]. In this thesis c = 3.5 is chosen to detect the out liers at any suspected 

point T . The possible outlier is classified as an IO if IAw,rl > IAAo,rl, else it is 

classified as an AO. 

3.2.2 Outlier Detection Algorithm 

The procedure for detecting outliers is described as follows (the flow chart is 

shown in Figure 3.2): 
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1. Estimate ARIMA model (3 .26) using { zt} and compute the residuals et 

to get w10 and WAO· 

2. Find the median of t he residuals e, and use a- = 1.483 x median{ let -

el} as t he estimate of () . Compute ~IO,t and ~ri O, t for t = 1, · · · , n . Let 171 = 

max { i ~w , t l, I ~A o,tl } fort = 1, · · · , n. Record the location Tt = t ifr71 > 3.5, else T1 = 

n 

0. If L Ti = 0, stop. If 17 = mr-x 17t = l ~w ,r l > 3.5 , then there is the possibility of an 
i = l 

IO at T . T he impact w is est imated by w10 in (3 .30). If TJ = mr-x 17t = I ~Ao ,r l > 3.5 , 

then t here is t he possibili ty of an AO at T . The impact w is estimated by w AO in 

(3.30). 

3. For t he point T in step 2, t he new residual for IO is set to 

fort = T; 

else . 

The new residuals adjusting for AO are 

fort < T ; 

fort 2: T. 

A new estimate (j is computed from the m odified residuals. Recompute w10 , wAo, /\ 10 ,1 

and AAo,t based on the same initial estimates of the time series parameters, but using 

the modified residuals et 's and the estimate a. 

4. Repeat steps 2 and 3 until no further outlier candidates can be identified , 

n 

that is, L Ti = 0. 
i = l 
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5. Suppose that the k time points T1 , · · ·, Tk are detected as IO's or AO's. 

Treat these times as known, and estimate the outlier parameters w1 , w2 , · · · , w k and 

the time series parameters simultaneously, using models of the form 

where 

Li(B) = 
{ 

1 

1/J( B ) 
¢(B)o(B) 

for an AO at t = Ti , 

for an IO at t = Ti. 

6. Repeat step 1 to 5 until no further new outlier is detected. 

3.2.3 Outlier Detection with Missing Values 

(3.34) 

Before detecting outliers, we first impute missing values. In this section, three 

imputation methods are used: nearby window average imputation, Jones imputation 

using Kalman filter [13] and EM algorithm imputation [19]. We study the power of 

these three imputation methods by using a small portion of time series from station 

1001. Three data sets are used. Data set A (True) is the hourly wind speed data of 

January 1996 without missing values. Data sets B and D are constructed from the 

data set A with missing values by deleting some observations and then imputing 

these missing values using the EM and Jones imputation , respectively. The locations 

of missing values are listed in Table 3.1. Data set C is constructed from the data 

set A with missing values by deleting some observations and imputing these missing 

values using nearby window average imputation. The average value is the average 
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Table 3.1: Location of Missing Values 

Beginning End Number of missing 
03JAN96:12 
19JAN96:04 
23JAN96:13 
25JAN96:16 

03JAN96:13 
19JAN96:06 
23JAN96:17 
26JAN96:05 

2 
3 
5 

14 

of one va lue before t he missing value begins and one value after t he missing value 

ends. To fit the models for the data, v\'e use the Time Series Forecas ting System 

in SAS. The system can generate the best model by using 12 crit eria such as Mean 

square error , R-square, Akaike Information criterion (AIC) , and Schwarz Bayesian 

Information Criterion (SBC) . Here we use AIC and SBC. For ARIMA models, AIC 

and SBC are computed as follows: 

AIC: - 2ln(L) + 2k and 

SBC: - 2ln(L) + kln(n), 

where L is the likelihood function , f..; is the number of free parameters and n is the 

number of residuals that can be computed for the time series. For the exponential 

models, AIC and SBC are computed as follows: 

n 

SSE 
AIC : n ln( - -) + 2k and 

n 
SSE 

SBC: nln( - -) + kln(n), 
n 

where SSE = l:(Yt- Yt) 2
, and Yt is the one-step predicted value for the series. 

t = O 

The smaller the values of AIC and SBC are, the better the model is . By comparing 
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the values of AIC and SBC for several possible models for these three data sets, 

we choose single exponential smoothing models . The single exponential smoothing 

model in SAS is defined as follows [16]: Let Xt be a time series observation at period 

t . The single exponential smoothing operation is 

St = CU:t + (1 - o)st- 1 (3.35) 

and 

(3.36) 

where St is the smoothed value at period t, a is t he smoothing constant (0 <a< 1), 

and Ft+ 1 is the forecast for Xt+ l · Thus (3.36) can be rewrit ten as 

axt + (1- a)it 

a[xt + (1- a)xt- 1 + (1- o:) 2
x t - 2 + · · ·] 

(3.37) 

(3.38) 

Theorem The single exponential smoothing model is equivalent to the 

ARIMA(0,1 ,1) model [5]. 

Proof: 

Let Xt be a time series following ARIMA(O,l ,1) model, that is 

(1 - B )xt = (1 - 'lj; B)Et t = 1, · · · , n , 

where n, B , 'ljJ and Et are the same as model (3.12). Rewrite (3.39) as: 

Xt - Xt-1 = Et - 'lj; Et - 1 
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or 

Et = Xt- Xt - 1 + '1/JEt - 1· 

Then we have 

:L' t = :L' t - 1 + Et - '1/J Et - 1 = :1't - l - D Et - 1 + Et· 

Therefore, the one-step-ahead forecast for :I' n + l based on x1 , · · · , Xn is 

From (3. 41 ) and (3.43), we have 

Xn + l Xn - '1/J(xn - · Xn - 1 + '1/J En - d 

Xn- '1/J(Xn- Xn- '1/JEn - 1 + '1/J En - 1) 

(1- '1/J)xn + '1/Jxn. 

Setting a= 1 - '1/J, the above equation is the same as (3.35). 

Let Et = 1:1 - x1 for all t. Then x1 = x 1 - E1. From (3. 37) , we have 

(1 - B )xt+ l 

O:Xt + (1 -a )(xt- Et) 

O:'Xt + Xt- O'X t - (1- a)Et 

Et+l - (1 - a)Et 

(1- (1- a)B)Et+l· 
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Table 3.2: Summary of Outlier Detection 

Data A Data B Data C Data D 
Time Impact Type Impact Type Impact Type Impact Type 

501 1513 IO 15 .02 IO 15.11 IO 15.13 IO 
581 12.22 IO 12.17 IO 12.21 10 12.22 IO 
131 -11.77 IO -11.75 10 -11.77 IO -11.77 IO 

20 9.08 AO 8.98 AO 9.06 AO 9.09 AO 
275 8 .96 AO 8.90 AO 8.95 AO 8.96 AO 
159 11.08 10 11.12 10 11.08 IO 11.07 10 

60 10.36 10 8.28 10 * * * * 
65 10 05 IO 10.31 10 10.26 IO 10.26 !0 
50 -9.16 IO -9.02 10 -9.13 !0 -9.17 IO 

278 9. 12 IO 9.06 10 9 .11 10 9.13 10 
714 8.99 10 8.91 IO 8 .98 IO 9.00 IO 
177 -8.49 10 -8.53 10 -8.50 IO -8.49 !0 
641 6.72 AO 6.69 AO 6.71 AO 6.72 AO 

17 -8.04 IO -8 .13 10 -8 .06 IO -8 .04 IO 
649 7.95 10 7.97 10 7.95 IO 7.95 10 
354 7.66 10 7.58 10 7.64 IO 7.66 10 
738 -6.10 AO -6.13 AO -6.11 AO -6.10 AO 
201 6.09 AO 6. 11 AO 6.09 AO 6.09 AO 
379 -6.07 AO -6 .04 AO -6.07 AO -6 .07 AO 
658 -5.84 AO -5.84 AO -5.84 AO -5.84 AO 
650 7 18 10 7.40 IO 7.22 10 7.16 !0 
503 10.39 IO 10.06 !0 10.37 !0 10.46 IO 

19 -9.59 10 -9.43 10 -9.54 !0 -9.58 IO 
52 -8.99 !0 -8 .64 10 -8.90 IO -8.99 IO 

583 8.8"/ IO 9.56 10 9.61 IO 9.63 IO 
67 8 .23 10 8.26 IO 8.39 IO 8.43 IO 

444 -5.65 AO -5.65 AO -5 .68 AO -5.68 AO 
206 7.34 IO 7.31 10 6 .99 IO 7.02 10 
309 7.22 IO 7.18 IO 6 .89 IO 6.92 IO 

69 7.92 AO 7.84 AO 7.84 IO 7.90 IO 
505 8.74 IO 8.33 IO 8.63 IO 8.75 IO 

55 -8 .01 IO -7.87 IO -6 .67 IO -6 .68 IO 
21 -7 85 IO -7.67 IO -7.73 IO -7.78 IO 

490 5.44 AO 5.47 AO 5.41 AO 5.42 AO 
582 7.05 IO 7.34 IO 7.08 IO 7.00 IO 
716 7.03 IO * * 7.00 IO 7.06 IO 
585 7.00 IO 8.28 IO 8 .31 10 8.52 !0 
229 5 .33 AO * * 5.64 AO 5.62 AO 
620 5 .25 AO * * 5 .24 AO 5.24 AO 
592 * * -10.04 IO * * * * 
436 * * 9.03 IO * * * * 
594 * * ~1.09 IO * * * * 
596 * * -9.27 !0 * * * * 

"*" · Outlier ts not detected. 
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Table 3.2: Summary of Outlier Detection 

Data A Data B Data C Data D 
Time Impact Type Impact Type Impact Type Impact Type 

70 * * * * -7.00 IO -7.0 1 10 
204 * * • * -6 .98 IO -6. 96 10 
427 * * • * 6.79 10 6.78 10 
296 * * * * 5.41 AO 5.39 AO 
187 * * * • -6 .70 IO -6. 68 10 

72 * * * * -10.04 10 -10 .06 10 
189 • * * • -8 .49 IO -8 . 5 ~ 10 
337 * * • • -5.11 AO -5.11 r\ 0 
250 • * • • -6 57 IO -6. 62 10 
191 * • • • -10.24 IO -10.20 10 

74 • • • • -9 .08 IO -9.81 10 
252 * • • • -7.54 IO -7 .06 10 
487 * * • • -5.04 AO -·1.96 AO 
718 * • • • 6.47 10 6.63 10 
652 * * * • 4.92 AO 4.97 AO 

89 • • * • -4.89 AO ·4.88 AO 
123 • • * * -6.42 10 -6.44 10 
429 * * * • 6.41 10 6.41 10 
687 * • • * 6.39 10 6.41 10 
259 • • * • -4.84 AO -4.86 AO 
383 • • • • -4.83 AO -4.79 AO 
395 * • • • 4.82 AO 4.89 AO 
344 • • * • 6.14 10 6.B 10 
506 • • * • 4.66 AO • • 
193 • • * • -9.32 IO -9.80 IO 
507 • • * • 7.79 IO * • 

76 • • • • -6.46 IO -7.55 10 
587 • • • • 6.31 IO 7.44 IO 
509 • • • • 10.77 IO • • 
589 • • • * 7.07 IO 8.15 10 
511 • • * * 9.05 IO * * 
591 • • * * 6.60 AO 9.76 10 
310 • * * • 5.96 IO 5.91 IO 
584 • * * * * * 5.87 10 
139 * • * * * * 5.86 IO 
266 * • • * * * 5.86 10 
692 * * * * * * -5.84 IO 
546 • * * * * * 6.35 IO 
191 * * * * * * -10.20 IO 

74 * * * * * * -9.81 IO 
718 * • * * * * 6.63 IO 
141 * * • * * * 6.47 IO 
143 • * * • * * 8.43 IO 

71 * * • * * * 7.19 10 
78 * • * * * * -6.33 IO 

268 * * * * * * 5.89 IO 
23 * * * * * * -5.72 IO 

179 * * * * * * -5.69 IO 
593 * * * * * * 8.53 IO 
595 * * * * * * 7.64 IO 
597 * • * * * * 6.85 IO 
606 * * * * * * -8.24 IO 
599 * * * * * * 6.13 IO 
608 * * * * * * -6.89 IO 

71 * * * * * * -6.07 IO 
161 * * * * * * 6.04 IO 
307 * * * * * * -5.96 IO 

"*" Outlier IS not detected. 
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Table 3.3: Classification Matrix 

Data B Data C Data D 
Type AO IO * AO IO * AO IO * Total 

AO 10 0 2 11 1 0 11 1 0 12 
IO 0 26 1 0 26 1 0 26 1 27 

* 0 4 57 10 23 28 8 45 8 61 
Total 10 30 60 21 50 29 19 72 9 100 

Setting 'ljJ = 1 -- o:, the above equation is the same as (3.39). D 

Thus, the AREviA(0,1,1) model is used for outlier detection . Table 3.2 lists 

the locations , impacts and types of outliers that are detec ted in the four data sets. 

Given data A are true , from Table 3.3 , the overall correct rates of outliers (IO,AO 

and over detected outliers labeled by *) of data B, C and D are 10+1
2
0
6
0
+5Z = 93%, 

11+26+29 = 66o/co and 11+26 +8 = 450/o respectively while the correct rates of outliers 100 100 ;c, ' 

(10, AO) of data B, C and D are ~~!;~ = 92%, 1 ~~~~i6 = 97% and 1 ~~!~i6 = 97%, 

respectively; the correct rates of IO outliers of all three methods are ;~ = 96%; the 

correct rates of AO outliers of data B is ~~ = 83%; the correct rates of AO outliers 

of data C and D are i; = 92%. 

By comparing the correction rates , we see that the best result is the EM alga-

rithm. We also know that when the data are not fully observed, the EM algorithm 

is a general technique for finding maximum-liklihood estimates for parametric mod-

els [19]. Hence we use the EM algorithm to fill the missing values and then detect 

outliers for the data set in this thesis. 
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Chapter 4 

MODELING 

To get the best model for the wind speed data, we use EM algorithm to 

impute missing values and the method introduced in Chapter 3 to detect outliers 

and remove impacts of outliers. Let Xt be the true time series, Yt be the observed 

series with missing values and outliers, and Zt be the observed series with outliers 

after imputation. The idea is the following (Figure 4.1): 

Step 1: Impute the missing values in Yt using the EM algorithm. The data 

set we get then is Zt · SAS code is in Appendix A.l. 

Step 2: Detect outliers and remove the impacts of outliers in Z t· The data 

set we get then is :rt· 

Step 3: Let y~ be Xt but with the same missing values as Yt· Re-do steps 1 

and 2. If there exist outliers in step 2, finish step 2 and do step 3. Otherwise, fit 

the best models for Zt. 

The data set used in this chapter is th e hourly wind speeds of all four stations 

from May to August in 2000. To fit the models for the data, we still use Time Series 

Forecasting System in SAS. AIC and SBC are used as information criterions. During 
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Loop of 
modeling 

Figure 4.1: Flow Chart of Modeling P rocess 

t he process of imputing missing values, detec ting out liers and removing impacts of 

outliers, we get the fit ted models are seasonal ARIMA models. In SAS, the seasonal 

ARIMA model is denoted by ARIMA (p , d, q) x (P, D , Q) 5 • The term (p , d, q) gives 

the order of the nonseasonal part of the ARIMA model; the term (P, D , Q )s gives the 

order of the seasonal part . The value of s is t he number \)f observat ions in a seasonal 

cycle such as 12 for monthly series . The fitted models are ARIMA(2 , 0, 0) x (1 , 0, 0)24 

of the form 

For convenience of outlier detection st age, we de-mean before fit t ing the models. 

Table 4.1 reports the summary of outer loops in outlier detection stage in the first 
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Table 4. 1: Outlier Detection Report 

Outer 1001 1005 1006 LZ40 
Loop mean AO IO mean AO IO mean AO IO mean AO IO 

1 10.407 47 57 10.373 40 49 10.181 44 45 10 .431 47 55 
2 10. 114 21 16 10.120 21 31 9.884 27 24 10.039 31 24 
3 10.114 2 6 10.058 12 18 9.773 4 8 9.94 6 7 7 
4 10.121 1 1 10 .034 8 8 9.725 2 5 9.931 2 6 
5 10 .120 0 0 10.007 2 4 9.694 1 0 9.934 2 2 
6 10.007 0 4 9.691 2 1 9.938 2 2 
7 10.006 0 3 9.687 l 0 9.9-12 1 0 
8 10.002 1 2 9. 688 1 0 9.9-!4 0 0 
9 9. 993 1 1 9.690 0 0 

10 9.991 0 0 

loop of modeling. In the second loop of modeling, no out lier is detected in Station 

1001 , 1005 and 1Z40. Hence we go on to model for Station 1 006 uutil no out lier is 

detected in the locations of observed values . Finally, after impn ting missing values , 

and detecting and removing impacts of outliers, we get the following best models for 

the hourly wind speeds of stations 1001 , 1005, 1006 and 1Z40 from May to August 

in 2000: 

1001: (1- 0.895B + 0.097B2)(1 - 0.156B 24 )xt = 10.144 + Et-

1005: (1- 0.924B + 0.100B2)(1 - 0.207B24
)xt = 10.014 + Et-

1006: (1 - 0. 878B + 0.050B 2)(1 - 0.240B24 )xt = 9.659 + Et. 

1Z40: (1 - 0.988B + 0.146B2)(1 - 0.225B24)x t = 9.991 + Et-

The parameter estimates and goodness of fit tests are shown in Table 4.2 . We 

can see that all the parameter estimates are significant. To check the white-uoise 

assumption, we draw the histograms for residuals . The histograms in Figure 4.2 are 

about normal. This means that the assumptions for residuals of the four models are 
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Table 4.2: Parameter Estimates and Good-fitness Tests 

L001 L005 L006 LZ40 
intercept estimate 10.144 10.014 9.659 9.991 

T 43 .735 36 .996 31.227 33.624 
p-value < 0.001 < 0.001 < 0.001 < 0.001 

¢ 1,1 est imate 0.895 0.924 0.878 0.988 
T 48.728 50.308 47.311 53 .862 

p-value < 0.001 < 0.001 < 0.001 < 0.001 

¢1.~ estimate -0.097 -0.100 -0.050 -0.146 
T -5.290 -5.463 -2.685 -7.990 

p-value < 0.001 < 0.001 < 0.007 < 0.001 

¢2,1 estimate 0.156 0.207 0.240 0.225 
T 8.517 11.388 13.236 12.375 

p-value < 0.001 < 0.001 < 0.001 < 0.001 
AIC 4545.242 4291.438 4650.076 4075.418 
SBC 4569.203 4315.399 4674.036 4099.379 

valid. From the four models, we can conclude that the wind speeds in these four 

stations have the similar patterns. This conclusion is the same as the one we get in 

Chapter 2. The first plot in Figure 4.3 is the plot of wind speeds vs time for station 

1006 from August 14 to 23, 2000. We can see that there is a large block of missing 

values . The second plot is the plots of wind speed for station 1001, 1005, LZ40 and 

imputation wind speeds of 1006 at the same time. Again we can see that the plots 

have similiar patterns. This means that EM algori thm is a very good method to 

impute missing values for our wind speed data set. We also can see that there is a 

daily cycle in wind speed data from the models. 

Through analyzing of Lake Okeechobee wind speed data, we can conclude 

that the wind speeds of the four stations we study have similar patterns and a daily 
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Figure 4.3: Plots of Wind Speeds 

cycle. For the data we study in this thesis, the best method to impute missing values 

is the EM algorithm and the best fitted model is the seasonal ARIMA(2, 0, 0) x 

(1 , 0, 0)24 . The fact that the wind speeds of the four stations have similar patterns 

and models shows that the wind speed in all stations under study behave in a similar 

way. Furthermore the method of outlier detection using intervention models in time 

series models and the EM algorithm to impute missing values are more effective 
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than the manual process of inspecting abnormal values and filling missing values in 

the data set . 
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Chapter 5 

CONCLUSIONS 

In t his t hesis, we analyzed wind speeds at four stations in Lake Okeechobee. 

There are lots of missing values and out liers in t he data. The patterns of wind 

speeds for all four stations are similar and have a daily cycle. But t he mont hly 

means of wind speeds a t stat ion 1001 are subst antially different from t hose of the 

other stations in February 1998 and in 1995. This little difference at station 1001 

m ay be caused by various reasons such as location of t he st ation , device fa ilures 

or bird interruptions. Furt her study is needed . The wind speeds of t he st at ions 

are correlated positively. A three-parameter vVeibull distribution does not fit the 

data well. The EM algorithm is good for imputing missing values of the da t a. 

The method of outlier detection seems more effective than t he manual process of 

inspecting abnormal values and fillin g missing values in the data set . In a future 

study, we may consider using a lognormal, beta or mixed distribution to fit the da t a. 

We also need combine the computer programs only using SAS. 
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Appendix 

COMPUTER PROGRAM 

A.l SAS Program 

I*********************************************************** I 
/* Title: EM imputation * / 
/* Input : hourly wind speeds of 4 stations from 05100 to 08/ 00 *I 
I* Output: wind speeds after EM imputation *I 
I******* ******************************************* ********* I 
option ls=70 ps= 750 nodate nonumber ; 

data missOO; 
infile 'c: \ dataOO.prn' ; 
input year month day hour ws1 ws5 ws6 ws40 ; 
datetime=dhms(mdy(month , day, year),hour ,O,O) ; 
format datetime datetime10.; 
drop year month day hour; 
run ; 

proc mi data= missOO out=a; 
var ws1 ws5 ws6 ws40; 
run; 

A.2 Matlab Program 
MatLab code for outlier detection of ARIMA(2, 0, 0) x (1 , 0, 0): 

%File re .m: Detect outlier, compute impact 
%Input file: re. txt is residuals 
%0uput file : impact.txt is impacts, postions and types of outliers clear; 
hu=1; 
j= 1; 
while hu==1; 
dataset=load('c: \ re.txt '); %input residuals 
resi= dataset(: , 1); 
[n, m] =size(resi); 
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mO=median(resi) ; 
ml=median( abs( resi-mO)); 
sigma=1.483*ml ; 
phil= 0.8948 ; %¢Jt ,1 
phi2=-0 .0971 ; %¢1,2 
phi= 0.1564; %¢2,1 
%compute A for IO 
fort = 1 : n; 
lambda _io( t )= resi( t ) / sigma ; 
end ; 
%compute w, A for AO 
for t = l :(n-26); 
p( t) = 1 + phil A2+ phi2 A2+ phiA2+(phil *phi )A2+(phi2*phi ) A2; 
pp( t) = resi( t )-phil *resi( t + 1 )-phi2*resi( t + 2) 
- phi *resi ( t + 24) + phi 1 *phi *resi( t + 25 )+phi2*phi *resi( t + 26) ; 
end ; 
for t = n-25 ; 
p ( t )= 1 + phil A2+ phi2A2+ phiA2+ (phil *phi) A2; 
pp( t) = resi( t )-phil *resi( t+ 1 )-phi2*resi( t + 2)-phi *resi( t + 24) + phil *phi *resi( t+ 25); 
end; 
for t = n-24 ; 
p( t )= 1 +phil A2+phi2A2+ phiA2; 
pp( t) = resi( t )-phil *resi( t+ 1 )-phi2*resi( t+ 2)-phi *resi( t + 24) ; 
end ; 
for t = (n-23):(n-2); 
p(t )=1 +phil A2+ phi2A2; 
pp( t )= resi( t )-phil *resi( t+ 1 )-phi2*resi( t + 2) ; 
end; 
for t = n-1 ; 
p( t )=1 +phil A2; 
pp( t )= resi( t )-phil *resi( t + 1) ; 
end; 
for t=n ; 
p(t) = l ; 
pp(t)=resi(t); 
end; 
for t=l:n; 
w _ao(t )=pp(t) / p( t ); 
lamda_ao( t )= w _ao( t) / (sqrt(l / p( t)) *sigma); 
%check if IO exist 
if abs(lamda_io(t)) >= 3.5 k_io(t) = t; 
else k_io(t)=O; 
end; 
%check if AO exist 
if abs(lamda_ao(t)) > = 3.5 k_ao(t)=t; 
else k_ao(t)=O; 
end ; 
%decide outlier type: 0 for AO, 1 for IO 
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if abs(lamda_ao(t))> abs(lamdajo(t)) diff(t)=O; 
eta( t )=abs(lamda_ao( t)); tau( t )=k_ao( t); 
w( t )=w _ao( t ); 
else diff(t)=l; 
eta(t)= abs(lamdajo(t)); tau(t)=kjo(t); 
w( t )=resi( t); 
end; 
end; 
ita= max( eta); 
k= l; 
for t= l:n 
if eta(t)==ita & tau(t) > 0 k= t; 
impa(j) =w(k); 
loc(j)=tau(k); 
d(j)=diff(k); 
break; 
else k=O ; 
end; 
end; 
if diff(k)==l resi(k)=O 
else 
if k==n; 
resi(k)=resi(k )-w(k); 
elseif k==n-1; 
resi(k)=resi(k)-w(k); 
resi(k+ 1 )=resi(k+ l)+w(k)*phil; 
elseif k < n- 1 & k> n-24; 
resi (k) =resi (k )-w(k); 
resi(k+ 1 )=resi(k+ 1 )+w(k)*phil; 
resi (k+ 2) =resi (k+ 2 )+w(k) *phi2; 
elseif k == n-24; 
resi(k)=resi(k)-w(k); 
resi(k+ 1 )=resi(k+ 1 )+w(k)*phil; 
resi(k+ 2) =resi(k+ 2) +w(k) *phi2; 
resi(k+ 24) = resi (k+ 24 )+w(k) *phi; 
elseif k == n-25; 
resi(k)=resi(k)-w(k); 
resi(k+ 1 )=resi(k+ 1 )+w(k) *phil; 
resi(k+ 2) =resi(k+ 2) +w(k) *phi2; 
resi(k+ 24) =resi(k+ 24) +w(k) *phi; 
resi(k+25)=resi(k+25 )-w(k )*phil *phi; 
elseif k < n-25; 
resi(k)=resi(k )-w(k); 
resi(k+ 1 )=resi(k+ l)+w(k)*phil; 
resi(k+ 2) = resi (k+ 2) +w(k) *phi2; 
resi(k+ 24) =resi(k+ 24) +w(k) *phi; 
resi(k+ 25) =resi(k+25 )-w(k)*phil *phi; 
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resi(k+26)=resi(k+26)-w(k)*phi2*phi; 
end; 
end; 
re=[resi]; 
fid=fopen('re.txt', 'w'); 
fprintf( fid, '%10.4f \ n' ,re); 
fclose(fid); 
if sum(loc) ==O 
break; 
else xy=[impa;loc;d]; 
j= j + l ; 
ficl=fopen('impact. txt ·, 'w ' ) ; 
fprintf(fid, '%10.4f %4.0f %4.0f\n' ,xy); 
fclose(fid); 
end 
end 

%File ws.m: remove impact of outlier. 
%input: impact.txt(impact, location, type of outlier) ws.txt (wind speed) 
%output:wsa.txt(wind speed after removing impacts of outliers) 
phi1=0.9878; 
phi2=-.146; 
phi=0.2253; 
dataset=load('c: \ ws.txt '); 
ws=dataset(:, 1); 
dataset=load('c: \impact. txt'); 
im pact=dataset (:,:); 
[m, n] =size(impact); %m is row, n is column 
w=impact(:,l); 
loca=impact(:,2); 
d=impact(:,3); % 0 for ao, 1 for io 
for t=l:m 
if d(t)==O 
ws(loca( t) )=ws(loca( t) )-w( t); 
else ws(loca( t) )=ws(loca( t) )-w( t); 
ws(loca( t )+ 1 )=ws(loca( t )+ 1 )-phil *w( t); 
end 
end 
speed=[ws]; 
fid=fopen('ws.txt', 'w'); 
fprintf(fid, '%10.4f\n' ,speed); 
fclose(fid); 
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