You are here
Using color image processing techniques to improve the performance of content-based image retrieval systems
- Date Issued:
- 2001
- Summary:
- A Content-Based Image Retrieval (CBIR) system is a mechanism intended to retrieve a particular image from a large image repository without resorting to any additional information about the image. Query-by-example (QBE) is a technique used by CBIR systems where an image is retrieved from the database based on an example given by the user. The effectiveness of a CBIR system can be measured by two main indicators: how close the retrieved results are to the desired image and how fast we got those results. In this thesis, we implement some classical image processing operations in order to improve the average rank of the desired image, and we also implement two object recognition techniques to improve the subjective quality of the best ranked images. Results of experiments show that the proposed system outperforms an equivalent CBIR system in QBE mode, both from the point of view of precision as well as recall.
Title: | Using color image processing techniques to improve the performance of content-based image retrieval systems. |
149 views
79 downloads |
---|---|---|
Name(s): |
Costa, Fabio Morais. Florida Atlantic University, Degree grantor Furht, Borko, Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2001 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 125 p. | |
Language(s): | English | |
Summary: | A Content-Based Image Retrieval (CBIR) system is a mechanism intended to retrieve a particular image from a large image repository without resorting to any additional information about the image. Query-by-example (QBE) is a technique used by CBIR systems where an image is retrieved from the database based on an example given by the user. The effectiveness of a CBIR system can be measured by two main indicators: how close the retrieved results are to the desired image and how fast we got those results. In this thesis, we implement some classical image processing operations in order to improve the average rank of the desired image, and we also implement two object recognition techniques to improve the subjective quality of the best ranked images. Results of experiments show that the proposed system outperforms an equivalent CBIR system in QBE mode, both from the point of view of precision as well as recall. | |
Identifier: | 9780493421971 (isbn), 12870 (digitool), FADT12870 (IID), fau:9744 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2001. |
|
Subject(s): |
Image processing--Digital techniques Imaging systems--Image quality Information storage and retrieval systems |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12870 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |