You are here

COMPARISON OF FUNDAMENTAL DIAGRAMS FOR TRAFFIC FLOW BETWEEN INTERNAL COMBUSTION VEHICLES AND ELECTRIC VEHICLES WITH AUTOMATION AND DRIVER ASSISTANCE

Download pdf | Full Screen View

Date Issued:
2023
Abstract/Description:
Adaptive cruise control (ACC) system is the first widely offered automated functionality that regulates the longitudinal movement of the vehicle using onboard radar sensors, and they can maintain a safe following distance with the preceding vehicle. In most of the field experiments with ACC-equipped vehicles conducted with internal combustion engine vehicles, there is still a gap in research on how the automation systems such as ACC combined with electric powertrains will influence the traffic flow be examined. This study refined and recalibrated an ACC car-following model for EVs and integrated it into AIMSUN to realistically simulate ACC-equipped vehicles and their impact on the fundamental diagram of traffic flow. Simulations were conducted for various ACC market penetrations, and fundamental diagrams were constructed for those market penetrations using detector measurements at various locations along the simulated segment. Overall, the capacity and the jam density increase as the EV with ACC market penetration rises. EVs with ACC can achieve higher capacities compared to ICEs with ACC.
Title: COMPARISON OF FUNDAMENTAL DIAGRAMS FOR TRAFFIC FLOW BETWEEN INTERNAL COMBUSTION VEHICLES AND ELECTRIC VEHICLES WITH AUTOMATION AND DRIVER ASSISTANCE.
41 views
20 downloads
Name(s): Yagantekin, Kemal Ulas , author
Kan, David , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Civil, Environmental and Geomatics Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2023
Date Issued: 2023
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 73 p.
Language(s): English
Abstract/Description: Adaptive cruise control (ACC) system is the first widely offered automated functionality that regulates the longitudinal movement of the vehicle using onboard radar sensors, and they can maintain a safe following distance with the preceding vehicle. In most of the field experiments with ACC-equipped vehicles conducted with internal combustion engine vehicles, there is still a gap in research on how the automation systems such as ACC combined with electric powertrains will influence the traffic flow be examined. This study refined and recalibrated an ACC car-following model for EVs and integrated it into AIMSUN to realistically simulate ACC-equipped vehicles and their impact on the fundamental diagram of traffic flow. Simulations were conducted for various ACC market penetrations, and fundamental diagrams were constructed for those market penetrations using detector measurements at various locations along the simulated segment. Overall, the capacity and the jam density increase as the EV with ACC market penetration rises. EVs with ACC can achieve higher capacities compared to ICEs with ACC.
Identifier: FA00014202 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2023.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Traffic flow
Automated vehicles
Electric vehicles
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014202
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.