You are here

DEVELOPMENT OF A HIFI-Α LENS SPECIFIC KNOCKOUT MOUSE AS A MODEL FOR HYPOXIA DRIVEN LENS DIFFERENTIATION

Download pdf | Full Screen View

Date Issued:
2023
Abstract/Description:
During eye lens development the lens receives oxygen from a network of capillaries that comprise of the tunica vasculosa lentis and the anterior pupillary membrane. In development there is regression of this capillaries with the vitreous and aqueous humor, which is the lens only source of oxygen, leaving the lens in low oxygen state. The lens contains a decreasing oxygen gradient from the surface to the core that parallels the differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 alpha (HIF1a), in the regulation of genes required for lens fiber cell differentiation, structure, and transparency. Previous studies by our lab discovered the HIF1a-dependent gene expression patterns of lens genes by utilizing a Multiomics approach that integrated analysis from CUT&RUN, RNA-seq, and ATACseq. Additionally, our lab also established a hypoxia and HIF1a-dependent mechanism for the non-nuclear organelle degradation process required to form mature transparent fiber cells.
Title: DEVELOPMENT OF A HIFI-Α LENS SPECIFIC KNOCKOUT MOUSE AS A MODEL FOR HYPOXIA DRIVEN LENS DIFFERENTIATION.
53 views
17 downloads
Name(s): Adele, Adedamola , author
Kantorow, Marc , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biomedical Science
Charles E. Schmidt College of Medicine
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2023
Date Issued: 2023
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 31 p.
Language(s): English
Abstract/Description: During eye lens development the lens receives oxygen from a network of capillaries that comprise of the tunica vasculosa lentis and the anterior pupillary membrane. In development there is regression of this capillaries with the vitreous and aqueous humor, which is the lens only source of oxygen, leaving the lens in low oxygen state. The lens contains a decreasing oxygen gradient from the surface to the core that parallels the differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 alpha (HIF1a), in the regulation of genes required for lens fiber cell differentiation, structure, and transparency. Previous studies by our lab discovered the HIF1a-dependent gene expression patterns of lens genes by utilizing a Multiomics approach that integrated analysis from CUT&RUN, RNA-seq, and ATACseq. Additionally, our lab also established a hypoxia and HIF1a-dependent mechanism for the non-nuclear organelle degradation process required to form mature transparent fiber cells.
Identifier: FA00014167 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2023.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cell differentiation
Lens, Crystalline
Eye lens
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014167
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.