

AN EMPIRICAL STUDY OF MODULE ORDER

MODELS

by

Boonlit Adipat

A Thesis Submitted to the Faculty of

The College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Florida Atlantic University

Boca Raton, Florida

August 2001

AN EMPIRlCAL STUDY OF MODULE ORDER MODELS

by

Boonlit Adipat

This thesis was prepared under the direction of the candidate's thesis advisor, Dr.
Taghi M. Khoshgoftaar, Department of Computer Science and Engineering, and has
been approved by the members of his supervisory committee. It was submitted to
the faculty of The College of Engineering and was accepted in partial fulfillment of
the requirements for the degree of Master of Science.

:t;:'VISORY COMMITTEE:

Ta-; -~ ~visor
~ee.'>

-

Vice Provost Date

ii

ACKNOWLEDGMENTS

I would like to express my gratitude and thanks to my advisor, Dr. Taghi

M. Khoshgoftaar, for his guidance, invaluable comments and great encouragement

offered during my thesis work. His profound knowledge in the field of software

reliability and quality engineering were immensely help me to complete my work.

I thank Dr. Eduardo Fernandez and Dr. Marty Solomon for willing to serve

on my thesis committee and reviewing my thesis. I would like to give the great

thank to Erik Geleyn for patiently reviewing my thesis, Kehan Gao for advising

me how to use T§IEX i also thank N aeem Seliya and N andini Sundaresh for their

research work that made my work possible.

I thank to my previous advisor, Suwat Pattaramalai and all of my friends

in ESEL lab, Sajan, Dhaval, Bhava.na, Yongbin and in Thai Student Organization,

Sangthen Chirdchid, Narongrit Butrieng, Settapong and Usanee Malisuwan

I would like to share the great pride and express the best gratitude to my

parents, Yuttana and Nuchakorn Adipat for their moral support, precious advice,

and sacrifices they have made throughout my studies.

I appreciate the moral support from my very special friend Alisa Kasintorn.

lll

Author:

Title:

Institution:

Thesis Advisor:

Degree:

Year:

ABSTRACT

Boonlit Adipat

An Empirical Study of Module Order Models

Florida Atlantic University

Dr. Taghi M. Khoshgoftaar

Master of Science

2001

Most software reliability approaches classify modules as fault-prone or not

fault-prone by way of a predetermined threshold. However, it may not be practical

to predefine a threshold because the amount of resources for reliability enhancement

may be unknown. Therefore, a module-order model (MOM) predicting the rank­

order of modules can be used to solve this problem. The objective of this research is

to make an empirical study of MOMs based on five different underlying quantitative

software quality models. We examine the benefits of principal components analysis

with MOM and demonstrate that better accuracy of underlying techniques does not

always yield better performance with MOM. Three case studies of large industrial

software systems were conducted. The results confirm that MOM can create efficient

models using different underlying techniques that provide various accuracy when

predicting a quantitative software quality factor over the data sets.

iv

To my parents

CONTENTS

TABLES.
FIGURES

1 INTRODUCTION ..
2 SOFTWARE METRICS

2.1 Introduction
2.2 Software Metrics Used in This Study
2.3 LLTS metrics

2.3.1 LLTS product Metrics
2.3.2 LLTS Process Metrics
2.3.3 LLTS Execution Metrics

2.4 NT metrics .
2.5 LNTS metrics .

3 METHODOLOGY ..

3.1 Module-Order Modeling
3.2 Classification
3.3 SMART
3.4 Principal Components Analysis
3.5 Model Performance Evaluation
3.6 Underlying quantitative models

3.6.1 Case-Based Reasoning .
3.6.2 Multiple Linear Regression .
3.6.3 Artificial Neural Network .
3.6.4 Tree model

v

vii
ix

1
7

7
9

10

10
14
15

15
16

19

19
26
27
31
33
33

33
36
37
39

3.6.5 CART
3.6.6 SPLUS . .

4 EXPERIMENTS .

4.1 Case Study Methodology .
4.2 System Description

4.2.1 LLTS System Description
4.2.2 NT System Description . . .
4.2.3 LNTS System Description

4.3 Experiments on LLTS

4.3.1 Experiments on LLTS-RAW
4.3.2 Experiment on LLTS-PCA .

4.4 Experiment on NT

4.4.1 Experiment on NT-RAW .
4.4.2 Experiment on NT-PCA

4.5 Experiment on LNTS

4.5.1 Experiment on LNTS-RAW
4.5.2 Experiment on LNTS-PCA

40
41

43

43
45

45
48
49

51

55
76

105

106
116

125

126
135

4.6 Comparing module-order models based on RAW and PCA metrics . 146

4.6.1 Comparing module-order models for LLTS .
4.6.2 Comparing module-order models of NT . . .
4.6.3 Comparing module-order models for LNTS .

5 CONCLUSIONS

5.1 Overview . . .
5.2 Future Work .

BIBLIOGRAPHY .

VI

147
151
154

160

160
163

164

TABLES

2.1 Software Product Metrics of LLTS data . 11

2.2 Software Process Metrics of LLTS data . 12

2.3 Software Execution Metrics of LLTS data . 12

2.4 NT System Profile . 16

2.5 NT Product Metrics 17

2.6 LNTS System Profile 18

2.7 LNTS Product Metrics 18

3.1 Effectiveness and efficiency . 28

4.1 Factor Pattern for Principal Components of Product Metrics for
LLTS data set . 47

4.2 Factor Pattern for Principal Components of Design Product Metrics
for NT data set . 49

4.3 Factor Pattern for Principal Components of Software Metrics for
LNTS data set 50

4.4 Example of module-order modeling result 52

4.5 Presentation outline for LLTS data 55

4.6 LLTS-RAW, Comparative accuracy of underlying quantitative
models . 56

V1l

4. 7 LLTS-PCA, Comparative accuracy of underlying quantitative
models 81

4.8 Presentation outline for NT data 105

4.9 NT-RAW, Comparative accuracy of underlying quantitative models 106

4.10 NT-PCA, Comparative accuracy of underlying quantitative models 116

4.11 Presentation outline for LNTS data 126

4.12 LNTS-RAW, Comparative accuracy of underlying quantitative
models . 127

4.13 LNTS-PCA, Comparative accuracy of underlying quantitative
models . 137

viii

FIGURES

3.1 Module-order model operation . 21

3.2 Smart Architecture . . 29

3.3 MOM page in SMART 30

3.4 Example of Tree model in purpose of classification . 39

4.1 Example of Alberg diagram . . . 53

4.2 Example of Performance diagram 53

4.3 Alberg diagram for LLTS-RAW release 2: CBR, MLR, ANN 60

4.4 Close view of Alberg diagram for LLTS-RAW release 2: CBR,
MLR, ANN . 60

4.5 Performance of LLTS-RAW release 2: CBR, MLR, ANN 61

4.6 Alberg diagram for LLTS-RA.W release 3: CBR, MLR, ANN 61

4. 7 Close view of Alberg diagram for LLTS-RAW release 3: CBR,
MLR, ANN . 62

4.8 Performance of LLTS-RAW release 3: CBR, MLR, ANN 62

4.9 Alberg diagram for LLTS-RAW release 4: CBR, MLR, ANN 63

4.10 Close view of Alberg diagram for LLTS-RAW release 4: CBR,
MLR, ANN . 63

4.11 Performance of LLTS-RAW release 4: CBR, MLR, ANN 64

ix

4.12 Alberg diagram for LLTS-RAW release 2: CART-LS, CART-LAD,
SPLUS . 66

4.13 Close view of Alberg diagram for LLTS-RAW release 2: CART-LS,
CART-LAD, SPLUS . 66

4.14 Performance of LLTS-RAW release 2: CART-LS, CART-LAD,
SPLUS . 67

4.15 Alberg diagram for LLTS-RAW release 3: CART-LS, CART-LAD,
SPLUS . 67

4.16 Close view of Alberg diagram for LLTS-RAW release 3: CART-LS,
CART-LAD, SPLUS . 68

4.17 Performance of LLTS-RAW release 3: CART-LS, CART-LAD,
SPLUS . 68

4.18 Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD,
SPLUS . 69

4.19 Close view of Alberg diagram for LLTS-RAW release 4: CART-LS,
CART-LAD, SPLUS . 69

4.20 Performance of LLTS-RAW release 4: CART-LS, CART-LAD,
SPLUS . 70

4.21 Alberg diagram of LLTS-RAW release 2: CART-LS, CART-LAD,
SPLUS and CBR . 71

4.22 Close view of Alberg diagram of LLTS-RAW release 2: CART-LS,
CART-LAD, SPLUS and CBR 71

4.23 Performance of LLTS-RAW release 2: CART-LS, CART-LAD,
SPL US and CBR . 72

4.24 Alberg diagram for LLTS-RAW release 3: CART-LS, CART-LAD,
SPLUS and CBR . 72

4.25 Close view of Alberg diagram for LLTS-RAW release 3: CART-LS,
CART-LAD, SPLUS and CBR 73

X

4.26 Performance of LLTS-RAW release 3: CART-LS, CART-LAD,
SPL US and CBR . 73

4.27 Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD,
SPLUS and CBR . 74

4.28 Close view of Alberg diagram for LLTS-RAW release 4: CART-LS,
CART-LAD, SPLUS and CBR 74

4.29 Performance of LLTS-RAW release 4: CART-LS, CART-LAD,
SPL US and CBR . 75

4.30 Alberg diagram of LLTS-RAW release 2: CART-LS, CART-LAD . 77

4.31 Close view of Alberg diagram for LLTS-RAW release 2: SPLUS,
CART-LAD . 77

4.32 Performance of LLTS-RAW release 2: CART-LS, CART-LAD 78

4.33 Alberg diagram for LLTS-RAW release 3: SPLUS, CART-LAD. 78

4.34 Close view of Alberg diagram for LLTS-RAW release 3: SPLUS,
CART-LAD . 79

4.35 Performance of LLTS-RAW release 3: SPLUS, CART-LAD 79

4.36 Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD 80

4.37 Close view of Alberg diagram for LLTS-RAW release 4: SPLUS,
CART-LAD . 80

4.38 Performance of LLTS-RAW release 4: CART-LS, CART-LAD 81

4.39 Alberg diagram for LLTS-PCA release 2: CBR, MLR, ANN . 84

4.40 Close view of Alberg diagram for LLTS-PCA release 2: CBR, MLR,
ANN . 85

4.41 Performance of LLTS-PCA release 2: CBR, MLR, ANN . . 85

4.42 Alberg diagram for LLTS-PCA release 3: CBR, MLR, ANN 86

xi

4.43 Close view of Alberg diagram for LLTS-PCA release 3: CBR, MLR,
ANN . 86

4.44 Performance of LLTS-PCA release 3: CBR, MLR, ANN . . 87

4.45 Alberg diagram for LLTS-RAW release 4: CBR, MLR, ANN 87

4.46 Close view of Alberg diagram for LLTS-PCA release 4: CBR, MLR,
ANN . 88

4.47 Performance of LLTS-PCA release 4: CBR, MLR, ANN . . . 88

4.48 Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD,
SPLUS . 90

4.49 Close view of Alberg diagram for LLTS-PCA release 2: CART-LS,
CART -LAD, SPL US . 90

4.50 Performance of LLTS-PCA release 2: CART-LS, CART-LAD,
SPLUS . 91

4.51 Alberg diagram for LLTS-PCA release 3: CART-LS, CART-LAD,
SPLUS . 91

4.52 Close view of Alberg diagram for LLTS-PCA release 3: CART-LS,
CART-LAD, SPLUS . 92

4.53 Performance of LLTS-PCA release 3: CART-LS, CART-LAD,
SPLUS . 92

4.54 Alberg diagram for LLTS-PCA release 4: CART-LS, CART-LAD,
SPLUS . 93

4.55 Close view of Alberg diagram for LLTS-PCA release 4: CART-LS,
CART-LAD, SPLUS . 93

4.56 Performance of LLTS-PCA release 4: CART-LS, CART-LAD,
SPLUS . 94

4.57 Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD,
SPL US and ANN . 95

xii

4.58 Close view of Alberg diagram for LLTS-PCA release 2: CART-LS,
CART-LAD, SPLUS and ANN 96

4.59 Performance of LLTS-PCA release 2: CART-LS, CART-LAD,
SPL US and ANN . 96

4.60 Alberg diagram for LLTS-PCA release 3: CART-LS, CART-LAD,
SPLUS and ANN . 97

4.61 Close view of Alberg diagram for LLTS-PCA release 3: CART-LS,
CART-LAD, SPLUS and .ANN. 97

4.62 Performance of LLTS-PCA release 3: CART-LS, CART-LAD,
SPL US and ANN . 98

4.63 Alberg diagram for LLTS-PCA release 4: CART-LS, CART-LAD,
SPL US and ANN . 98

4.64 Close view of Alberg diagram for LLTS-PCA release 4: CART-LS,
CART-LAD, SPLUS and ANN. 99

4.65 Performance of LLTS-PCA release 4: CART-LS, CART-LAD,
SPLUS and ANN . 99

4.66 Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD 101

4.67 Close view of Alberg diagram for LLTS-PCA release 2: CART-LS,
CART-LAD . 101

4.68 Performance of LLTS-PCA release 2: CART-LS, CART-LAD. 102

4.69 Alberg diagram for LLTS-PCA release 3: MLR, CART-LAD . 102

4.70 Close view of Alberg diagram for LLTS-PCA release 3: CART-LS,
CART-LAD . 103

4.71 Performance of LLTS-PCA release 3: MLR, CART-LAD 103

4.72 Alberg diagram for LLTS-PCA release 4: SPLUS, CBR . 104

xiii

4.73 Close view of Alberg diagram for LLTS-PCA release 4: SPLUS,
CBR . 104

4.74 Performance of LLTS-PCA release 4: SPLUS, CBR . 105

4.75 Alberg diagram for NT-RAW: CBR, MLR, ANN. . . 108

4.76 Close view of Alberg diagram for NT-RAW: CBR, MLR, ANN 109

4.77 Performance of NT-RAW: CBR, MLR, ANN 109

4. 78 Alberg diagram for NT-RAW: CART-LS, CART-LAD, SPLUS 111

4.79 Close view of Alberg diagram for NT-RAW: CART-LS,
CART-LAD, SPLUS 111

4.80 Performance of NT-RAW: CART-LS, CART-LAD, SPLUS 112

4.81 Alberg diagram for NT-RAW: CART-LS, CART-LAD, SPLUS and
CBR . 113

4.82 Close view of Alberg diagram for NT-RAW: CART-LS,
CART-LAD, SPLUS and CBR 113

4.83 Performance of NT-RAW: CART-LS, CART-LAD, SPLUS and
CBR . 114

4.84 Alberg diagram for NT-RAW: CBR, MLR 114

4.85 Close view of Alberg diagram for NT-RAW: CBR, MLR 115

4.86 Performance of NT-RAW: CBR, MLR 115

4.87 Alberg diagram for NT -PCA: CBR, MLR, ANN . 118

4.88 Close view of Alberg diagram for NT-PCA: CBR, MLR, ANN 119

4.89 Performance of NT-PCA: CBR, MLR, ANN 119

4.90 Alberg diagram for NT-PCA: CART-LS, CART-LAD, SPLUS 121

xiv

4.91 Close view of Alberg diagram for NT-PCA: CART-LS,
CART-LAD, SPLUS . 121

4.92 Performance of NT-PCA: CART-LS, CART-LAD, SPLUS 122

4.93 Alberg diagram for NT-PCA: CART-LS, CART-LAD, SPLUS and
MLR . 123

4.94 Close view of Alberg diagram for NT-PCA: CART-LS,
CART -LAD, SPL US and MLR

4.95 Performance of NT-PCA: CART-LS, CART-LAD, SPLUS and

124

MLR . 124

4.96 Alberg diagram of NT-PCA: MLR, CART-LAD . 125

4.97 Close view of Alberg diagram for NT-PCA: MLR, CART-LAD . 125

4.98 Performance of NT-PCA: MLR, CART-LAD 126

4.99 Alberg diagram for LNTS-RAW: CBR, MLR, ANN . 129

4.100 Close view of Alberg diagram for LNTS-RAW: CBR, MLR, ANN 129

4.101 Performance of LNTS-RAW: CBR, MLR, ANN 130

4.102 Alberg diagram for LNTS-RAW: CART-LS, CART-LAD, SPLUS 131

4.103 Close view of Alberg diagram for LNTS-RAW: CART-LS,
CART-LAD, SPLUS . 132

4.104 Performance ofLNTS-RAW: CART-LS, CART-LAD, SPLUS 132

4.105 Alberg diagram for LNTS-RAW: CART-LS, CART-LAD, SPLUS
and CBR. 133

4.106 Close view of Alberg diagram for LNTS-RAW: CART-LS,
CART-LAD, SPLUS and CBR 134

4.107 Performance of LNTS-RAW: CART-LS, CART-LAD, SPLUS and
CBR . 134

XV

4.108 Alberg diagram for LNTS-RAW: CART-LS, CART-LAD . 136

4.109 Close view of Alberg diagram for LNTS-RAW: CART-LS,
CART-LAD . 136

4.110 Performance of LNTS-RAW: CART-LS, CART-LAD 137

4.111 Alberg diagram for LNTS-PCA: CBR, MLR, ANN . 139

4.112 Close view of Alberg diagram for LNTS-PCA: CBR, MLR, ANN . 139

4.113 Performance of LNTS-PCA: CBR, MLR, ANN 140

4.114 Alberg diagram for LNTS-PCA: CART-LS, CART-LAD, SPLUS 141

4.115 Close view of Alberg diagram for LNTS-PCA: CART -LS,
CART-LAD, SPLUS . 142

4.116 Performance of LNTS-PCA: CART-LS, CART-LAD, SPLUS 142

4.117 Alberg diagram for LNTS-PCA: CART-LS, CART-LAD, SPLUS
and CBR. 143

4.118 Close view of Alberg diagram for LNTS-PCA: CART -LS,
CART-LAD, SPLUS and CBR 144

4.119 Performance of LNTS-PCA: CART-LS, CART-LAD, SPLUS and
CBR . 144

4.120 Alberg diagram for LNTS-PCA: CART-LS, CART-LAD 145

4.121 Close view of Alberg diagram for LNTS-PCA: CART-LS,
CART-LAD . 145

4.122 Performance of LNTS-PCA: CART-LS, CART-LAD . . . 146

4.123 Alberg diagram for LLTS PCA and RAW comparison release 4:
CBR . 147

4.124 Alberg diagram for LLTS PCA and RAW comparison release 2:
MLR . 148

xvi

4.125 Alberg diagram for LLTS PCA and RAW comparison release 2:
ANN . 148

4.126 Alberg diagram for LLTS PCA and RAW comparison release 2:
CART-LS . 149

4.127 Alberg diagram for LLTS PCA and RAW comparison release 2:
CART-LAD . 150

4.128 Alberg diagram for LLTS PCA and RAW comparison release 3:
CART-LAD . 150

4.129 Alberg diagram for LLTS PCA and RAW comparison release 4:
SPLUS . 151

4.130 Alberg diagram for NT PCA and RAW comparison: CBR 152

4.131 Alberg diagram for NT PCA and RAW comparison: MLR 153

4.132 Alberg diagram for NT PCA and RAW comparison: ANN 153

4.133 Alberg diagram for NT PCA and RAW comparison: CART-LS . 154

4.134 Alberg diagram for NT PCA and RAW comparison: CART-LAD 155

4.135 Alberg diagram for NT PCA and RAW comparison: SPLUS 155

4.136 Alberg diagram for LNTS PCA and RAW comparison: CBR 156

4.137 Alberg diagram for LNTS PCA and RAW comparison: MLR . 156

4.138 Alberg diagram for LNTS PCA and RAW comparison: ANN . 157

4.139 Alberg diagram for LNTS PCA and RAW comparison: CART-LS 157

4.140 Alberg diagram for LNTS PCA and RAW comparison: CART-LAD 158

4.141 Alberg diagram for LNTS PCA and RAW comparison: SPLUS . . 158

xvii

Chapter 1

INTRODUCTION

The importance of software engineering has been increasing in industrials,

businesses and organization all over the world. High assurance of software quality

is required because of the large amount of monetary loss or even unassessed cost to

human lives due to a potential software failure. Consequently, reliability becomes

an undeniable ingredient while developing software products. However, a reliability

process involves time consumption, budget and quality standards. The limited time

and high cost reduces the quality of software testing, which is the essential process in

the software development cycle. To solve the problem, we may focus on the modules

that are most likely to be faulty and apply reliability-enhancement activities to

them [6]. A software fault is a defect in an operational product causing the software

failure [5].

While performing the reliability enhancement process, a software quality

model is created to help to predict the number of faults in modules early in the

life cycle. Numerous researches have focused on classification models to identify

fault-prone and not fault-prone modules early in the life cycle [3, 14, 16, 22]. To

1

define the fault-prone or not fault-prone modules, we have to determine a threshold

before modeling. However, it's hard to define the threshold at the time of modeling

because of the unspecified amount of resources for the reliability-improvement effort.

Therefore, a module-order model (MOM) predicting the rank-order of modules has

been proposed to alleviate the problem of classifying fault-prone or not fault-prone

modules [10].

A module-order model (MOM) predicts the rank-order of modules based on

a software quality factor such as number of faults, and uses the selected cutoff rank

for reliability enhancement. The modules above the cutoff point are classified as

fault-prone modules, otherwise the modules are not fault-prone. A module-order

model consists ?f an underlying quantitative model that produces a prediction of

the quality factor and an or~ering of the modules by using the predicted quality

factor. The product and process metrics are used as inputs to the underlying quan­

titative models. Then, a module-order model retrieves the predicted variable from

the underlying techniques as input.

Preliminary research [10] gave the definition of the module-order model and

a method to build and evaluate the modeL Multiple Linear Regression was the

underlying quantitative model. Another study [12] observed the comparative result

of module-order model with non parametric discriminant analysis for the purpose of

classification . The underlying quantitative model applied in this study was also

Multiple Linear Regression. The study used module-order modeling to build the

2

rank-order of modules based on the number of faults. Then, the defined threshold

was provided to compute the misclassification rates. This result Wa.s compared

to other misclassification rates obtained by applying nonparametric discriminant

analysis.

Both researches used the same two empirical case studies to evaluate the

performance of module-order models. The conclusion from these two researches

demonstrated that module-order modeling is very useful to use when the thresh­

old can not be appropriately defined at the time of modeling. The results were

consistently effective and robust in the two different projects, and MOM even per­

forms better than nonparametric discriminant analysis in view of classification. In

addition, a module-order model presented good performances even though the un­

derlying quantitative model produced the predicted dependent quality factor with

poor accuracy.

As previously described, the prior studies were only based on one underlying

technique. However, any underlying quantitative model can be applied to module­

order modeling as long as it uses at least an ordinal scale [18]. Therefore, our study

will complete prior research about module-order modeling based on a variety of un­

derlying quantitative models. The main objectives of this thesis can be summarized

as the following items.

• Study the impact of different underlying quantitative models on module-order

modeling. In this study, we focus on the following five different underlying

3

techniques: Case-Based Reasoning (CBR), Multiple Linear Regression (MLR),

Artificial Neural Network (ANN), CART-Least ~quare (CART-LS), CART­

Least Absolute Deviation (CART-LAD) and SPLUS.

• Study whether principal components analysis can give the benefits when module­

order modeling.

• Verify the hypothesis that better accuracy of underlying techniques does not

ensure better performance in module-order modeling.

The first scope of our research is to perform a case study of module-order

modeling using different underlying techniques. A module-order model can use any

method to retrieve the predicted quality factor. We used graphical presentation to

observe the behaviors and performances of the different module-order models. It was

found that the module-order models based on CBR, MLR and ANN had very similar

behaviors and performances. The diagrams show the very close trend of lines along

the considered ranges. In contrast, the tree modeling techniques, CART-LS, CART­

LAD and SPLUS, present different results. The graphs illustrated the separately

trend of lines, especially for the two CART methods. They present the varying

behavior and performance along the considered range. Further, when comparing

tree-modeling with non tree-modeling methods, we found that SPLUS performs

close to CBR, MLR and ANN when module-order modeling.

4

The second scope investigates the benefits of using principal components

analysis [28] when module-order modeling. We compared the module-order models

built using PCA with ones using RAW metrics. It was observed that the module­

order models using PCA had very close behaviors to the ones using RAW metrics for

CBR, MLR and ANN. For tree-modeling techniques, the models built using RAW

are usually better than the ones using PCA metrics. Therefore, it was concluded

that the use of principal components analysis did not improve the module-order

models.

The third scope of our research is to verity that better prediction accuracy

does not guarantee better performance when module-order modeling. In prior re­

searches [12, 10], two different data sets were used to build the model. The results of

the underlying quantitative prediction used for module-order modeling were differ­

ent. The accuracy of the predicted quality factor from one data set was much better

than one from the other. However, the performance of module-order models were

about the same. In this study, the variation of fundamental quantitative models and

incremental case studies were added. The accuracy of each underlying quantitative

model in each data set was compared before applying module-order modeling. After

conducting the experiments, we found several evidences to confirm our hypothesis.

The techniques with the best prediction didn't yield better performances than the

other underlying models when module-order modeling.

This study used three large data sets as materials for the case studies. The

5

first case is a very large legacy telecommunications system written in a high level

language similar to PASCAL. The second one is a large network telecommunications

system, and the last one is also a network telecommunications system. All of these

three software systems have the complete characteristics making them suitable for

a case study based on the software engineering community standard [30]. The

experiment was conducted on both raw and principal component metrics for all

three data sets. The tool used in this thesis is the Software Measurement Analysis

Reliability Toolkit, SMART, developed at the Empirical Software Engineering Lab

(ESEL), Florida Atlantic University [13].

Looking through the layout of this study. This thesis consists of five chap­

ters. Chapter 1, introduction, describes the objectives and history of previous re­

searches in the area of interest. Chapter 2, Software metrics, gives the details of

different me tries used in this study. Chapter 3, methodology, discusses the various

methodologies involved in this study. Module-order modeling is explained in deep

detail. Other underlying modeling techniques and some algorithms are also briefly

described. Chapter 4, experiment, presents the case study experiments and their

results. Chapter 5, conclusion, analyzes the result and concludes with the lesson

learned in this study.

6

Chapter 2

SOFTWARE METRICS

This Chapter explains the definition and the importance of software met­

tics, including the information about the metrics used in the three systems in this

study. Those three systems are the large legacy telecommunications system (LLTS),

the network telecommunications (NT), and the large network telecommunications

system (LNTS).

2.1 Introduction

Software metrics are the results of software measurement activities used to

evaluate the performance, reliability and quality of the software processes and prod­

ucts. The attributes of software metrics are distinguished into 2 groups, internal

and external attributes [5].

• Internal attributes are defined as attributes that can be measured by observing

the characteristic of the process and product separated from the system's en­

vironment such as size (line of codes), complexity (number of decision points)

7

• External attributes are measured to determine how the process and product

interacts with its environment. These attributes can be measured only when

the code is executed, for example, the number of failure experienced by users.

For software metrics, there is no definite conclusion on how to group the

metrics_ In this study, software metrics can be categorized into 3 classes: process,

product and execution [5].

Process metrics are the collections of software development activities associ­

ated with time. The activities in the particular process are arranged according to a

time schedule. This means one activity cannot begin unless the previous activity is

finished. Therefore, process metrics measure the attributes during the development

process_ Examples of this kind of metric can be any activity in the development

period such as history of faults discovered and corrections, time used to fix errors

or even the records of programmers, etc.

Product metrics are the artifact or document observed at the present time on

the software product. The program's source code is classified in this group. Product

metrics are not concerned with the development process. In contrast, they focus on

the structure of the software. Example of product metrics are program size, number

of calls to other modules, number of loops, etc.

Execution metrics are the gathered information when the software is exe­

cuting in the real operating environment. Examples of execution metrics are the

duration of operation and deployment of the product.

8

Standard software metric should reach following requirements [1]:

• It can be calculated, uniquely, for all programs to which we apply it.

• It doesn't need to be calculated for programs that change size dynamically or

programs that, in principle, cannot be debugged

• Adding something to a program (e.g., instructions, storage, processing time)

will never decrease the measured complexity.

The first requirement assures a usable and objective measure. The second

guarantees that the metrics are applied to the reasonable programs and the third is

the intuitive understanding.

2.2 Software Metrics Used in This Study

The following items are brief description of the three data sets used in this

research.

• Large Legacy Telecommunications System (LLTS): LLTS consists of four re­

leases with a large amount of software metrics, approximately 3500 to 4000

modules from several million lines of code in each release.

• Network Telecommunications (NT): NT was collected from a network telecom­

munication systems, which has about 1.3 million lines of code. It is written in

a high level programming language, PASCAL.

9

• Large Network Telecommunications System (LNTS): LNTS was collected from

another large network telecommunications system. It has about 13 million

lines of code, written by another high level programming language, PROTEL.

2.3 LLTS metrics

Metrics for the Large Legacy Telecommunications System (LLTS) were col­

lected using the Enhanced Measurement for Early Risk Assessment of Latent Defects

(EMERALD) system, a decision support system that facilitates software measure­

ment and software quality models [7]. EMARALD utilizes the Datrix software an­

alyzer developed by Bell Canada [21] to measure the static attributes of the source

code. The measurement by EM_.t\.RALD is done periodically on the latest source

code. The basic unit that Datrix measures is a procedure: a function or subrou­

tine. Then, EMERALD gathers metrics that Datrix provides from the module level.

We classified the metric collected from EMERALD into 3 classes as mentioned. Ta­

ble 2.1lists the names and descriptions of twenty-four product metrics of LLTS data.

Table 2.2 and Table 2.3 lists fourteen process metrics and four execution metrics of

LLTS data respectively [15].

2.3.1 LLTS product Metrics

Product metrics for LLTS can be further organized into three main groups:

call graph metrics, control How graph metrics and statement metrics. Call graph

metrics give the call relation among the procedures. Control How graph metrics

10

Table 2.1: Software Product Metrics of LLTS data

Symbol Description
Call Graph Metrics
CALUNQ Number of distinct procedure calls to others.
CAL2 Number of second and following calls to others.

CAL2 = CAL- CALUNQ where CAL is the total number of
calls.

Control Flow Graph Metrics
CNDNOT Number of arcs that are not conditional arcs.
IFTH Number of non-loop conditional arcs (i.e., if-then constructs).
LOP Number of loop constructs.
CNDSP NSM Total span of branches of conditional arcs. The unit of measure

CNDSPNMX
CTRNSTMX
KNT

NDSINT

is arcs.
Maximum span of branches of conditional arcs.
Maximum control structure nesting.
Number of knots. A "knot" in a control How graph is where
arcs cross due to a violation of structured programming prin­
ciples.
Number of internal nodes (i.e., not an entry, exit, or pending
node).

NDSENT Number of entry nodes.
NDSEXT Number of exit nodes.
NDSPND Number of pending nodes (i.e., dead code segments).
LGPATH Base 2 logarithm of the number of independent paths.
Statement Metrics
FILINCUQ Number of distinct include files.
LOG Number of lines of code.
STMCTL Number of control statements.
STMDEC Number of declarative statements.
STMEXE Number of executable statements.
VARGLBUS Number of global variables used.
VARSPNSM Total span of variables.
VARSPNMX Maximum span of variables.
VARUSDUQ Number of distinct variables used.
VARUSD2 Number of second and following uses of variables.

VARUSD2 = VARUSD- VARUSDUQ where VARUSD is the
total number of variable uses.

11

Symbol
DES_pR
BETA_pR
DES ...FIX
BETA...FIX

GUST ...FIX

REQ_UPD
TOT_UPD
REQ

SRC_GRO
SRC_MOD
UNQJJES
VLO_UPD

LO_UPD

UPD_CAR

Table 2.2: Software Process Metrics of LLTS data

Description
Number of problems found by designers.
Number of problems found during beta testing.
Number of problems fixed that were found by designers.
Number of problems fixed that were found by beta testing in
the prior release.
Number of problems fixed that were found by customers in the
prior release.
Number of changes to the code due to new requirements.
Total number of changes to the code for any reason.
Number of distinct requirements that caused changes to the
module.
Net increase in lines of code.
Net new and changed lines of code.
Number of different designers making changes.
Number of updates to this module by designers who had 10 or
less total updates in entire company career.
Number of updates to this module by designers who had be-
tween 11 and 20 total updates in entire company career.
Number .of updates that designers had in their company ca-
reers.

Table 2.3: Software Execution Metrics of LLTS data

Symbol
USAGE
RESCPU

BUSCPU

TANCPU

Description
Deployment percentage of the module.
Execution time (microseconds) of an average transaction on a
system serving consumers.
Execution time (microseconds) of an average transaction on a
system serving businesses.
Execution time (microseconds) of an average transaction on a
tandem system.

12

indicates the flow of control from one statement to another in the software system.

Statement metrics measure the properties of the program text, regardless of the

meaning of the text or the order of the text in the program [5].

Call graph is a directed graph that represents the trace of the procedures in a

program module. A call graph gives a layout of the procedure and subroutine calls.

It ignores details and shows the abstract model of software design. In general, the

main procedure is denoted by a root node. A call is represented by an edge, and

child nodes represent the called procedure or subroutines. Some examples of metrics

collected from call graphs are the number of distinct procedure calls, CALUNQ, and

the number of second and following calls, CAL2. These metrics can be collected in

the early high level design phase of the development process.

Control Flow Graph is the di.l"ected graph that shows the flow of control from

one statement to another. Its structure consists of a start node, a stop node, and

the inner nodes lying on several paths. Examples of control flow graph metrics are

number of nodes and number of arcs in the graph, the out-degree and in-degree of

a node, or conditional and unconditional arcs that create paths. Control flow graph

metrics can be measured when the detailed design of the algorithm is completed.

Statement metrics can be collected when the program is in the non execut­

ing state. These metrics measure some properties of the source code without any

interpretation. They only provide the quantity of a particular feature of the source

13

code. Therefore, this metrics will not be changed when the text is rearranged. Ex­

amples of statement metrics are lines of code (LOC), number of statements, number

of unique operators and operands, total number of keyword appearances and total

number of tokens [5]. For LOC, the treatment blank line and comment has to be

described. In this study, we exclude blank lines, but includes comment lines.

2.3.2 LLTS Process Metrics

Process metrics give the detail of software-development activities. Prior re­

search has shown that process metrics play a significant role in software quality

prediction [2]. The discussion about process metrics can be divided in terms of in­

ternal and external process attributes as earlier mentioned. Internal attributes are

the components that can be collected directly from the process development with­

out executing the software, for example, the number of requirement reviews, number

of requirement errors found during inspection, or even the number of programmers

working on the project. For external attributes, they are only measured with respect

to how the process relates to its environment. Examples of external attributes are

cost, controllability and stability. Frequently, external attributes are measured in

terms of internal attributes such as effectiveness of code maintenance, defined as the

average number of faults discovered per thousand lines of code. Table 2.2 lists the

available process metrics in LLTS data. However, process metrics are not applied in

this study because the prediction of number of faults in a program was done early

14

in the software life cycle.

2.3.3 LLTS Execution Metrics

The execution metrics are collected from the real operation of the program

in prior releases such as time or deployment. In this study, the execution met­

tics are USAGE and three time laboratory measurements, RESCPU, BUSCPU,

and TANCPU. USAGE was calculated from deployment records in the previous re­

leases [8). The current releases are assumed to be similar to the prior ones because

they were all deployed by the same users. Previous work [2] demonstrated that

USAGE was a very important variable and played a significant role in the software

quality model. Obviously, when the system has more users, The probability of users

finding new faults is higher.

2.4 ~T ~etrics

Network Telecommunications (NT) data is a network telecommunications

system created by professional programmers. From 12 million lines of code, a large

sample of modules, approximately 1.3 million lines of code, was used to collect

software metrics. Table 2.4 gives the description of the NT system profile. NT

metrics include lines of code, control-flow graph edges, and other non-declaration

statements. There are 11 variables in the NT system metrics. For each module,

nine static metrics were observed and recorded by using a software metrics analyzer

package. Static metrics can be measured during the detailed design phase or later

15

Table 2.4: NT System Profile

Application Telecommunications
Language Pascal-like
Lines of Code 1.3 million
Executable Statements 1.0 million
Control Flow Graph Edges 364.0 thousand
Source Files 25.0 thousand
Functional Modules 2.0 thousand
Product Metrics 9
PC A Domain Metrics 5
Reuse Covariates 2
Quality Metric Number of faults

from code. Besides these nine static metrics, NT metrics include two categorical

variables, IS NEW and ISCHG.

{

1 a module did not exist in the prior release
ISNEW= O

otherwise

ISCHG= {:
a module was modified from prior release

otherwise

The detail of NT product metrics are shown in table 2.5. For apparent understand-

ing, McCabe cyclomatic complexity is calculated from

VG = Arcs- Vertices+ Entrypoints + Exitpoints.

2.5 LNTS metrics

Large Network Telecommunications System (LNTS) metrics were collected

using the Datrix software analyzer mentioned earlier in the EMERALD project. The

16

Table 2.5: NT Product Metrics

Symbol Description
Call Graph Metrics

MU Number of modules used.
TC Total calls to other modules.
uc Unique calls to other modules.

Control Flow Graph Metrics
IFTH H-Then conditional arcs.
LP Number of loops.
NL Nesting level.
SPC Span of conditional arcs.
SPL Span of loops.
VG McCabe cyclomatic complexity.

system profile of LNTS data is summarized in table 2.6 . Starting with 13 million

lines of code, LNTS metrics were created from a subset of the entire software system.

This subset covered only the modules modified during the development process. For

the rest, modules were considered reliable because they remained unchanged. The

subset consists of about 7 million lines of code, 180000 thousand source files,and ap-

proximately 7000 modified modules. The metrics structure is similar to NT metrics

structure. The detail of LNTS product metrics can be found in table 2.7.

17

Table 2.6: LNTS System Profile

Application Telecommunications
Language PROTEL
Lines of Code 7.0 million
Executable Statements 6.0 million
Control Flow Graph Edges 2.0 million
Source Files 18.0 thousand
Changed Modules 7.0 thousand
Design Metrics 9
PC A Domain Metrics 4
Quality Metric Number of faults

Table 2. 7: LNTS Product Metrics

Symbol Description
Call Graph Metrics

UCT Unique procedure calls
TCT Total calls to others
NDI Distinct files included

Control Flow Graph Metrics
VG McCabe's cyclomatic complexity
NL Number of loops
IFTH Number of if-then structures
NELTOT Total nesting level
PSCTOT Total number of vertices within the

span of loops or if-then structures
RLSTOT Total edges plus vertices within loop

structures

18

Chapter 3

METHODOLOGY

This chapter discusses Module-Order Modeling (MOM) in detail, and the

methodologies used in this study. It also gives an overview of principal components

analysis (PCA), underlying quantitative models and how to use these methodologies

in our research.

3.1 Module-Order Modeling

Software quality modeling is mainly used to predict the quality of modules

to perform cost-effective enhancements before the software becomes operational.

However, defining such modules to be fault-prone requires a specific threshold before

modeling. This is frequently not suitable because of the undetermined amount of

reliability enhancement effort. Therefore, predicting the rank-order of modules is

often more useful. The module-order modeling ranks the modules according to the

predicted quality factor, and gives management more flexible reliability enhancement

strategies than classification models [12].

19

Module-order model uses the product and process metrics to predict the rank­

order of quality factor such as number of faults or code churn. The goal is to develop

a suitable model that predicts the ranking of modules, according to a quality factor

from the most to the least fault-prone. An efficient model can help the engineers to

focus on, and enhance the modules that possibly bring the greatest payoff when the

product is released.

A module-order model consists of the following components (12].

1. An underlying quantitative software quality prediction model

2. A ranking of modules according to a quality measure predicted by the under­

lying model

3. A procedure for evaluating the accuracy of a model's ranking

In this study, the underlying quantitative software quality models are Case­

Based Reasoning, Multiple Linear Regression, Artificial Neural Network, SPLUS

and CART algorithms for tree modeling. All techniques use different means to

predict the dependent variables. The inputs to these modeling methods are the

process and product metrics collected during the development process.

There are two kinds of input data sets provided to the underlying quantitative

models: fit and test data sets . In general, we use the fit data set to build the models

based on different techniques and use the test data set to evaluate the models.

When evaluating the model, the accuracy of the result is measured by the difference

20

Underlying
Quantitative

Models

Module
Order
Model

Figure 3.1: Module-order model operation

Ranking
modules

between actual a.nd predicted dependent variables. Two statistical values, AAE a.nd

ARE, a.re used to represent the accuracy of the prediction. Small AAE and ARE

values indicate an accurate modeL

The input to the module-order models is the actual quality factor (dependent

variable) measured during the development process a.nd the predicted quality factor.

The output of the module-order model is the ranking of the modules based on the

predicted quality factor of each module. Our goal is to compare the performance of

module-order models based on different underlying quantitative models and relate

the performance of MOM to the accuracy of the underlying models. In this study

module-order modeling is applied to the test data set . The concise scope of module-

order model operation is shown in Figure 3.1

Since the quality factor we are interested in this study is the number of faults,

the predicted quality factor must have at least a.n ordinal scale (1,2,3, ...) [18]. In

21

contrast, the quality factor of classification models has a nominal scale, fault-prone

or not fault-prone modules.

Building the software quality model uses the following steps [26].

L Build a model using data from past projects: The fit data set is used to build

the modeL In some methodologies, many models can be built by varying the

main parameter in the algorithm. The model, which has the best accuracy

will be chosen.

2. Evaluate the model using distinguished historical data: After building the

model, the test data set is used to evaluate the model and test the quality of

fit.

3. Use the model on the current project's data: The acceptable model is applied

to the actual project's data we want tl;le dependent variable predicted for.

According to the modeling technique, the underlying quantitative model is

built. Suppose a quantitative model has an actual dependent variable represented

by Fi, and f(xi) is an ideal function of independent variables, the vector Xi-

(3.1)

Then, suppose F(xi) be the predicted dependent variable of .Fi estimated by

a fitted quantitative model, j(xi)-

F(xi) =/(xi)

22

(3.2)

All independent variables are chosen by the selection method included in the

modeling technique.

Spearman correlation [24)was proposed to evaluate the accuracy between ac­

tual and predicted ranking of a module-order modeL It represents the over all

ranking accuracy over the entire data set, but it does not give a measure of robust­

ness. In our case, we do not care about the accuracy over the entire data set, but

we want to see the performance of a module-order model in terms of robustness (ex­

plained later in this section). Therefore, spearman correlation is not appropriated

for evaluation of a module-order model [10).

For module-order modeling, the accuracy of the predicted dependent variable

is not the goal. However, we concentrate on the ability of the model to approximate

an ordering starting with the most fault-prone to a certain percentile. Therefore,

we use the following method to evaluate how a module-order model performs.

Let ~ be the percentile rank of observation i in a perfect ranking, R. Let

R(xi) be the percentile rank of observation i in a predicted ranking, R.

1. Determine the perfect ranking of modules in the test data set, R, by ordering

modules according to Fi (actual software quality factor).

2. Determine the predicted ranking, R, by ordering modules according to F(xi)

(predicted software quality factor) from the least to the most fault-prone.

23

3. After applying module-order modeling, modules are ordered for reliability im-

provement beginning with the most fault-prone module and ending with the

least fault-prone modules at the highest considered percentage. A cutoff point,

c, is the percentile indicating the last module included in the enhancement

process.

Management will choose to enhance the module in priority order according to

the ranking. However, since the rank of the last module enhanced is unknown

at the time of modeling, we choose a range of pe-rcentiles, C, that might be

in the interest of the manager to consider. In this research, we covered the

50 percent of the entire modules. In general, there is no project where more

than 50 percent of the modules will be reviewed. Other projects may choose

different percentiles.

For each cutoff percentile value of interest, c E C:

• Calculate the sum of actual number offaults, G(c), in modules above the

cutoff percentile for perfect ranking, R

G(c) = L Fi (3.3)
i:Ri~c

• Calculate the sum of actual number of faults in modules above the cutoff

percentile G(c) for predicted ranking, R

G(c) = L Fi (3.4)
i:R(:z:i);?:c

24

4. Let Gtot be the total number of actual faults. Calculate the per-centage of

faults of two rankings rationalized by the Gtot, G(c)/Gtot and GfttGtot· This

value shows us the benefit of using the model at the cutoff point, c

5. Calculate the performance of the model, ¢(c) , representing how closely the

faults in predicted ranking match those in the perfect ranking.

""() = G(c)
'P c G(c)

Higher c implies the more fault-prone modules.

(3.5)

The ratio of the actual faults at c, ¢(c), determines the performamce of the

model's ranking at the given cutoff c compared to the perfect ra.nJiting. The

variation of if>(c) shows the robustness of the modeL If the variation otf ¢(c) over

the range Cis small, it refers that the model is robust. Due to the uncertain

resources for reliability enhancement, we prefer to see the consistemcy of the

accuracy over a range of c.

All modules above the selected cutoff point would be considered to be reviewed

in the same way, and those below the cutoff point would be considered to be

acceptable. Therefore, the difference between the model's ranking amd perfect

ranking is not a suitable measure of the model's accuracy. The ac:::curacy of

the rank-order within the enhanced group (above the selected c), ne.or within

the non-enhanced group (below the selected c) are relevant. However-, the high

25

accuracy, ¢(c), at the selected cutoff point cis preferred because the model's

accuracy at the cutoff point c is only interested for management view.

3.2 Classification

We can also use module-order modeling to classify modules [11]. The mod­

ules above the cutoff percentile c are considered as fault-prone, and the other below

are considered as not fault-prone.

Classification can be performed when the threshold value is determined.

This number depends on the project specification. Different projects have differ­

ent threshold. When the threshold number is given, we can classify the modules.

The accuracy of classification is measured by means of misclassification rates. As in

general, the same mathematical method for classification is applied to module-order

model. The defined threshold is translated to a corresponding c cutoff percentile of

modules. Type I misclassification is when we specify the module to be fault-prone,

but it's actually not fault-prone. On the other hand, Type II misclassification is

when the module is determined to be not fault-prone, but it's actually fault-prone.

Obviously, Type II misclassification is more severe than Type I because the actual

fault-prone modules are not reviewed, and are more expensive to fix when faults are

found by the customer [12].

In management aspect, misclassification rates are not appropriate. Conse­

quently, we use effectiveness and efficiency, which are more relevant to management

26

view [10, 9]. Effectiveness is defined as the proportion of fault-prone modules cor­

rectly identified. If we review a not fault-prone module, we waste the time because

the module is already in an acceptable condition. Efficiency is the proportion of

reliability enhancement effort that is not wasted. Effectiveness is maximized by

minimizing Type II misclassification, and efficiency is maximized by minimizing

Type I misclassification. This shows that effectiveness and efficiency have the same

variation as Type I and Type II misclassification. When the one increases, the other

decreases. It is the same tradeoff as effectiveness and efficiency. Further details are

shown in Table 3.1 .

3.3 SMART

The section briefly introduces SMART, the Software Measurement Analysis

and Reliability Toolkit, and how we used SMART in our study.

Currently, SMART handles four types of models, case-based reasoning (CBR),

CBR with two data clustering, CBR with three data clustering and module-order

model [13]. Since our study concentrates on module-order model (MOM), we will

only explain the feature of MOM in SMART.

SMART architecture can be grouped into 3 main parts shown in Figure 3.2.

• Data manager: This part operates the input data, fit and test data set. Fit

data set is used to build the model, and test data set is used to validate the

modeL

27

G1
G2
Classi
Class(x;)

1r't

1r'2

Pr{lll}

Pr{212}
Pr{2ll}
Pr{ll2}
etiectiveness

efiiciency ·

Table 3.1: Effectiveness and efficiency

Not fault-prone group (class)
Fault-prone group (class)
Actual class of module i
Predicted class of module i based on vector of independent
variable, Xi

Expected proportion of not fault-prone modules
Expected proportion of fault-prone modules
Rate of correct classifications of not fault-prone modules

Pr{lll} = Pr{Class(xi) = G1 IClassi = Gt}

Rate of correct classifications of fault-prone modules
Type I misclassification rate
Type IT misclassification rate
Proportion of fault-prone modules that received reliability
enhancement treatment out of all the fault-prone modules

effectiveness = Pr{212} = 1 - Pr{ll2}

Proportion -of fault-prone modules that received reliability
enhancement treatment out of all modules that received it.

fli · Pr{212}1r2
e CleilCy = Pr{211}11't+Pr{212}1r2

• User Interface: Using dialog-based property sheet, graphical interface helps

the user to control the tool comfortably.

• Data analysis: Using the input from data manager, four types of models are

chosen to analyze the data according to the user's purpose.

28

FIT data

TEST data

Data
Manager User

Interface

Case-Based Reasoning

Module Order Model

Two Groups Data
Clustering

Three Groups Data
Clustering

Figure 3.2: Smart Architecture

Usually, module-order model in SMART is designed to have multiple lin-

ear regression (MLR) as underlying quantitative models. The weights used in this

technique are provided by the user. When the input data set is entered, MLR au-

tomatically performs its operations a.nd estimates the predicted dependent variable.

After that MOM ca.n build the model by using that given variables_

Based on the contribution of this research, the goal is to study the perfor-

ma.nce of MOM based on different underlying quantitative software models. There-

fore, we input predicted variables from the different techniques we previously men-

tioned. In the latest updated version, MOM allows the user to input a set of

predicted variables obtained from other modeling techniques besides MLR in the

"Using Input Prediction" console as shown in the Figure 3.3.

The statistical result from MOM are labelled Cl through C8.

• Cl: Percentage of G(c) based on sum of dependent values in all modules

• C2: Percentage of G(c) based on sum of dependent values in all modules

29

5%(33ob;]
10%(66ob;}
1~(99ob;J
20%(132ob$]
:25% (165 ob$)
~(198ob$)
35%(231 ob$J
411%(2S4 ob$)
45% 2'51

Figure 3.3: MOM page in SMART

• C3: Percentage of the model's accuracy at the given cutoff, if>(c) : Cl/C2

• C4: Model's inefficiency, !-efficiency

• C5: Type I misclassification rate at the specific cutoff

• C6: Type II misclassification rate at the specific cutoff

• C7: Model's effectiveness

• C8: Model's efficiency

30

where, G(c) is sum of the actual dependent variable values above the cutoff

under a perfect ranking, and G(c) is the sum of actual dependent vanable values

above the cutoff under the predicted ranking.

3.4 Principal Components Analysis

Most independent variables have a high correlation among each other. This

causes degradation of software quality models because a slight change in the fit data

set makes the models very unstable. Principal components analysis is used to solve

this problem.

Principal components analysis is the technique used to remove the correla­

tion among all independent variables. It transforms the raw data set into principal

component data set, reducing the number of variables, but without losing the sig­

nificant variation. In principal components form, the independent variables are not

correlated. They are a set of orthogonal vectors.

Consider a data set that has n modules and each module has m independent

variables. This produces the metric n x m dimensions where all variables in all

columns are standardized, having a mean of zero and a variance of one. We called

this Z metric. The principal components are the linear combinations of m standard­

ized random variables, Z1 , ... , Zm· Then, proceeding the following steps will obtain

the principal components.

L Calculate the covariance matrix, E, of Z

31

2. Calculate the eigenvalues,>-.;, and eigenvectors, ej, j = l , .. . ,m. Each eigenvalue

is the variance of the corresponding principal component.

3. Because the eigenvalues series are decreasing,).1 > ... >).2 , the dimension-

ality of the data can be reduced without losing the significant variance by

considering only the first p components, p «: m .

We want to achieve at least 90% of variance of the original standardized met-

rics, so we choose the minimum p such that E~=l >-.;/m > 0.90.

4. Calculate the m x p standardized transformation matrix, T, whose each col-

umn, tj, is defined as

ej £ . 1 tj = ~ or J = , . .. ,p
v>..j

(3.6)

5. Calculate domain metrics, D;, for each module. Dis ann x p matrix with D;

values for each column, j = l, ... ,p.

(3.7)

D=ZT (3.8)

The principal component variables are uncorrelated and suitable to build

software quality models. Each component has a mean of zero and a variance of one.

32

3.5 Model Performance Evaluation

The accuracy of quantitative software quality models can be evaluated by

calculating the error values. Two common statistics for evaluating predictions are

average absolute error, AAE, and average relative error, ARE.

(3.9)

(3.10)

In the equation, n is the number of modules in the data set. Yi is the actual

dependent variable and Yi is the predicted dependent variable from the quantitative

modeL For ARE, the denominator has one added to avoid division by zero [17].

3.6 Underlying quantitative models

In this study, we input the predicted value from 5 quantitative prediction

models to a module-order model (MOM) and observe the performance of MOM. We

want to compare the result of MOM based on different quantitative models. This

section covers the brief description of these 5 methodologies.

3.6.1 Case-Based Reasoning

Case-Based Reasoning, CBR, is the technique for predicting the software

quality factors by using the historical data [29]. Thus the data stored in the database

are the cases in a case library. Applying CBR to the system, when the new data is

33

obtained, the system measures the difference between the new data and the cases.

The algorithm chooses the most similar cases and generates the solution to the new

input data.

The difference between the retrievied data and cases is measured in the form

of a "distance". To compute an efficient similarity (or distance), several similarity

functions are used.

• Case Similarity Function

Suppose the test data set is the i x k dimensional matrix. Let Xi be the vector

of metrics of the ith module (row) from the new input, test data set, and there

are k metrics (column) in each module. Xilc represents the kth component in

the .,-th module. For the data in the case library, suppose the case or fit data set

is the j x k dimensional matrix. Let c; be the vector of the jth module (row)

in the case, fit data set. The case library has the same number of metrics for

each module then the test data, so c;1c stands for the kth (column) component

in the ih module.

- Euclidean Distance

(3.11)

where, m is the number of variables and w; is weighted in each jth vari-

able, approved by the user.

34

- Absolute Distance

m

dii = E w~~: lc;~~:- Xi~~: I (3.12)
k=l

- Mahalonobis Distance

This algorithm is used when the variables in the data set are highly

correlated.

(3.13)

S is the covariance matrix of the variables for all modules im the case

library. s-1 is the inverse of S. Prime (1) means transpose.

The smaller distance presents the more similarity of new input ;and cases.

After the most similar cases are selected, the system determines the answer

by using a solution algorithm.

• Solution Algorithm.

The most similar cc:.ses are represented by the nearestneighbors. Let N be

the complete set of nearest neighbors, which are the most similar cases in the

fit data set to the case in the test data set. The number of nearest neighbors,

nN is defined by the user.

- Unweighted Average

(3.14)

35

where iii is the predicted dependent variable and Y; is an actual dependent

variable from module j in the case library.

-Weighted Average

Yi = L ai;Y;
jEN

(3.15)

(3.16)

The output of solution algorithm is the predicted result created by Case-Based

Reasoning methodology. More detail in CBR approach can be found in [29].

3.6.2 Multiple Linear Regression

Multiple Linear Regression is one of the instrument widely used to define the

dependent variable by using a statistical function, formed by the known independent

variables (12]. It has the following general form.

(3.17)

(3.18)

Where Yi is the predicted value of the .,-th observation, Yi is the actual value of

dependent variable, and ei = Yi - Yi is the error of ith observation. xi1, ... , Xip are

the independent variables and a0 , .•. , Clp are estimated parameter, calculated by the

least squares method. This method has for criteria to choose a group of number

that minimize :Ef=1 ei2 (23].

36

Since the independent variables play an important role to build the model,

they have to be preprocessed to remove any correlation and some insignificant vari­

ables. These insignificant variables may cause interpretation to be inaccurate if they

are added to the model. Therefore, we need to choose only the significant variables

to be included in the model. The process used to determine the significant variables

is called model selection.

Among available model selection techniques, we use the stepwise regression

method. Stepwise regression is an iterative process. In each round, the process

either adds or removes variables from the model, based on the significant level of a

in F test [29].

3.6.3 Artificial Neural Network

Artificial Neural Network (ANN) applies the simulation of the organizational

process in the human brain to compute the output when the input is provided [29].

It can be classified into 2 groups, supervised-learning and unsupervised-learning

network based on learning rules [20]. In this research, we studied supervised learning

network.

When giving input to the system, supervised learning network responds with

the desired output at the instance of time. The network automatically realizes what

output should come out. We focus our study to feed forward and back propagation

supervised-learning neural networks.

37

Neural networks consists of neurons. For feed forward model, suppose we have

Xi input and kth processing elements. The elements compute sum or the weights

multiplied by its input, x; and basis, bk. The result of this computation is the

input to activation function, f (·). The output of the activation function, ok, is the

output of the neuron and the answer of the network (dependent variable) [29]. The

operation of the neuron can be described in the following equation.

where, m is the number of inputs (independent variables).

(3.19)

(3.20)

For back propagation model [19, 25, 31], the system initializes the process

with the set of random parameters, weights and basis. Training is required to

adjust these parameters [29]. At the time of training, a set of input-output pairs

are entered. When input is propagated through the network, the network calculates

the weighted sum of input vector and basis, and finally comes up with the output

from the activation function as for the feed forward model. Then, the output of

the network is compared to the expected output of the input-output pairs, and the

difference (error vector) is propagated back to train the network to minimize the

error and find the optimum weights. The training stops only when the squared error

satisfies the setting point

38

~Legend

I NFP Ncx Fault-Prone
1
1

I FP Fault-Prone

I<> Dedslon Node I
I 0 LafNode I

NFP

F!UNCUQ

.,;><:,,
~ ~

2

>49

s 15657 > 15657

f I
NFP FP

2 3

FP
4

Figure 3.4: Example of Thee model in purpose of classification

3.6.4 'Iree model

Thee model is the exploratory technique that gives the result displayed in the

form of tree based on decision rules. Beginning at the root node, the algorithm splits

a downward path in the trees, one node after another, until it reaches a leaf node.

Each node represents independent variables, each edge represents a possible result

of the decision, and the leaf node represents the final answer of either classification

or regression as an example in Figure 3.4. The parameter making the decision in

each node is called a predictor.

While building a Tree model, the data set is splitting continuously until it

reaches the point based on stop-splitting rules. The tree is binary if the parent node

39

always split into exactly two child nodes associated with the decision and the child

node is repeatedly considered as parent, then recursively behave the same way. All

tree models in this research are binary trees.

For this study, we focus on regression. The output from the tree is the pre­

dicted value for each module in the data set. Of several available tree methodologies,

we use SPL US and CART algorithm. According to binary recursive partitioning def­

inition, both approaches generate binary trees, but they have different algorithms

and rules. More details are briefly discussed in the next section.

CART is a statistical tool providing the algorithm to generate a tree model.

Cart algorithm partitions the data into bll;lary paths until reaching the terminal or

leaf node based on two rules, least square (LS) and least absolute deviation method

(LAD) (27].

• Least Squares Method (LS): This method uses the mean value computed in

a particular node as the predicted value in that node, and use mean-square

error as the standard for considering the goodness-of-split.

• Least Absolute Deviation (LAD): This method uses the median value com­

puted in a node as the predicted value in that node, and mean absolute error

is used as the rule for measuring the goodness-of-split.

40

The goodness-of-split is the criterion used to control the construction of the

tree. Since we are interested in obtaining the predicted value, we will focus only

on regression tree and ignore classification feature of tree model. For cart, when

generating the tree, the descendant node is more homogeneous (purer) than its

parent node. Pureness of the tree is determined in terms of variance, LS or LAD up

to the selected feature. The goal is to minimize the LS or LAD value in splitting

nodes . Purity condition (goodness of split) of the node is calculated after and before

split, and pureness should be increased after the split. The split stops when there

is no diversity of variance in the terminal node [27].

3.6.6 SPLUS

SPLUS is another statistical tool that can be utilized to build tree model for

prediction purpose [27]. SPL US algorithm grows the tree based on two core factors,

minsize and mindev. The input to this algorithm is a set of independent variables

and dependent variables responding in each observation.

• minsize: Abbreviated from minimum size, this value is the threshold to limit

number of observations in the leaf node. H the number of observations in a

node less than minsize, the tree stops growing.

• mindev: Abbreviated from minimum deviance, this value is also the threshold

to limit the growth of the tree. If the deviance in a node is less than mindev,

the tree stops growing. Then, that node becomes a leaf node.

41

Suppose Yi be the dependent value for observation i, p..(S) be the mean of dependent

variables over the data setS, and lSI be the number of observations in the data set

S. The deviance of 't-th observation is defined as

D(S) = (Yi- JLs) 2 (3.21)

The algorithm chooses the predictor that maximize the change in deviance, and

The cutoff value of the chosen predictor is selected based on minimizing the sum of

deviances of the left(L) and right(R) child nodes: D(SL) + D(SR)

42

Chapter 4

EXPERIMENTS

This chapter describes the experiment conducted in this study. The results

obtained from the underlying quantitative models are tabulated. We use graphical

presentation to show the performance of the module-order models.

4.1 Case Study Methodology

Before the module--order modeling is performed, we need to retrieve the pre­

dicted values of the quality factor from the underlying quantitative models. This

section summarizes our methodology to build and validate the underlying quan­

titative models in our case studies. Case studies are based on past development

projects.

1. Preprocess measurements: The raw software metrics may not be suitable as in­

puts because of some insufficient attributes such as the variety of unit measure­

ments or correlation among data. These properties degrade the interpretation

of the model. Standardizing the data to have a mean of zero and a variance

of one for each metric provides a single unit measurement for the data. In

43

addition, performing principal components analysis on the standardized data

removes the correlation among the metrics. In this study, we use two types of

data sets, PCA is the set of software metrics on which we performed principal

component analysis, and RAW is the original software metrics collected during

the software development process.

2. Choose a model validation strategy: The following strategies are used to define

the fit and test data sets for our three case studies: data splitting [4] for NT

and LNTS data, and subsequent releases [4] for LLTS data.

3. Prepare fit and test data sets: After choosing the validation strategy, we

created the fit and test data sets for the three case studies. In this study,

the dependent variable is the number of faults. The independent variables are

software product and process metrics.

4. Select significant variables: Several independent variables are measured during

the development process. This process removes the insignificant variables that

can degrade the interpretation of the model.

5. Build the model based on the underlying quantitative models: Use the opera­

tional fit data set to build the models based on different underlying techniques.

6. Evaluate the model: Apply the test data set to the built model and determine

the accuracy of each underlying methods. We used two statistical indicators,

44

AAE and ARE, to measure the accuracy.

After completing this process, we derive the predicted dependentt variable and

compute the prediction accuracy for each different underlying quanti-:tative modeL

This predicted metric is provided to a module-order model to build a :ranking. The

detail of the experiments including results from all three case studies ; are described

in the next section.

4.2 System Description

This section fully describes the three data sets used in the experSments. Each

case study has two forms of data, RAW and PCA. Specific details a.t"':e thoroughly

explained for each software systems.

4.2.1 LLTS System Description

The first experiment was applied to LLTS metrics. As stateo:d in chapter

2, LLTS (Large Legacy Telecommunication Systems) metrics were co.llected using

EMARALD. The system was written in a high level programming lamguage. The

LLTS system metrics comprises four releases of data accumulated over past projects.

We refer to them as releases 1, 2, 3 and 4. Each release has a differeot number of

observations. They are 3649, 3981, 3541 and 3978 observations respectively in each

release. An observation is associated with a module of source-codee files in the

software system. A release of LLTS metrics consists of 42 process, :Product and

45

execution metrics. In this study, we used the 24 product metrics and 4 execution

metrics (28 raw metrics) as independent variables. The dependent variable was the

number of faults inspected in a module during the past testing. The number of faults

was calculated from the sum of three metrics: CUST_pR, DES_pR and BETAYR.

These three metrics are the number of faults detected by customers, by designers

and during the beta testing period respectively. We refer to this data set of metrics

as LLTS-RAW.

In addition to the 28 raw metrics, the metrics were transformed using prin­

cipal components analysis (PCA) in order to reduce the correlation. Prior research

[29] shows that the product, process and execution groups of metrics were not much

correlated to each other. Therefore, principal components analysis process was only

conducted for proce.5s and product metrics, and execution metrics were used without

preprocessing. The detail of performing PCA on raw metrics is shown in Table 4.1.

Six principal components were extracted from twenty-four product metrics. The

table represents a 24 x 6 matrix, which 24 rows represent the 24 product metrics

and the 6 columns represents six derived principal components. The values in the

matrix show the correlation between raw metrics and principal components. Higher

values indicate a strong correlation. If the value is one, it denotes that two metrics

have the same meaning. This implies that the principal components can replace the

raw metrics as example in Table 4.1.

In Table 4.1, the highest values in each row are highlighted in bold. From

46

Table 4.1: Factor Pattern for Principal Components of Product Metrics for LLTS
data set

Metric PROD1 PROD2 PROD3 PROD4 PROD5 PROD6
CALUNQ 0.90241 0.05180 0.10442 0.23226 0.17394 0.06161
TlARUSDUQ 0.89496 0.18889 0.15268 0.17704 0.14681 0.19375
LOG 0.88610 0.28067 0.18160 0.16929 0.16431 0.14445
NDSENT 0.87966 -0.11142 0.01770 0.18394 0.10988 0.17201
STMEXE 0.86869 0.25870 0.17612 0.17324 0.26880 0.07169
STMCTL 0.86701 0.26070 0.27411 0.17258 0.08509 0.17429
NDSEXT 0.84668 0.01970 0.10855 0.20099 0.08568 0.35294
STMDEC 0.84595 0.20127 0.14148 0.14922 0.07117 0.14898
IFTH 0.84569 0.34158 0.27880 0.18162 0.10404 0.10659
NDSINT 0.84185 0.34355 0.27606 0.15248 0.18487 0.10920
CNDNOT 0.83478 0.31173 0.26233 0.15217 0.23697 0.17495
LOP 0.82816 0.10817 0.20842 0.01714 0.02129 -0.09590
VARGLBUS 0.80191 0.35962 0.20123 0.14369 0.21197 0.20453
VARUSD2 0.79088 0.44096 0.27108 0.11186 0.18082 0.12928
CAL2 0.59715 0.20418 0.07284 0.19317 0.56903 -0.05255
VARSPNSM 0.39174 0.86022 0.17718 0.10430 0.06747 0.08423
VARSPNMX 0.14039 0.83489 0.17722 0.35150 0.10357 0.09136
CNDSPNMX 0.12121 0.27629 0.75661 0.14289 0.25648 0.30600
CTRNSTMX 0.32233 0.09595 0.70922 0.42101 -0.00726 -0.01574
CNDSPNSM 0.60974 0.21553 0.64240 0.00704 0.22007 0.13087
FILINCUQ 0.39561 0.25790 0.15541 0.72651 -0.03570 0.16963
LGPATH 0.21017 0.37957 0.35793 0.63962 0.16986 -0.04151
KNT 0.21362 0.06906 0.17464 -0.00640 0.88896 0.09719
NDSPND 0.40212 0.14886 0.21690 0.07507 0.08412 0.81557
Variance 11.61638 2.82091 2.37167 1.69515 1.64281 1.23002
% Var. 48.40% 11.75% 9.88% 7.06% 6.85% 5.13%
Cum.% 48.40% 60.15% 70.03% 77.09% 83.94% 89.07%
Stopping rule: at least 89% of variance

47

the table, PROD! is highly correlated to fifteen metrics: CALUNQ, VARUSDUQ,

LOC, NDSENT, etc; PROD2 is highly correlated to VARSPNSM and VARSPNMX;

PROD3 has high correlation with CNDSPAMX, CTRNSTMX and CNDSPNS, for

instance. For LLTS data set, we used 89% of variance as stopping rule to generate

principal components. When combining six principal components from 24 product

metrics with 4 execution metrics, the 10 PCA metrics were generated. We refer to

this data set as LLTS-PCA data set.

4.2.2 NT System Description

NT metrics are collected from the network telecommunication systems. The

data splitting technique was used to generate the fit and test data sets. Two-third

of the modules (1320 observations) of the original data are impartially split into

a fit data set and the rest (660 observations) are used as a test data set. The

11 independent variables of NT include nine ·product metrics and two categorical

variables (reuse covariates). The dependent variable is the number of faults found

in software modules during the past testing phase. We refer to this 11 raw metrics

as NT-RAW data set.

Principal components analysis was performed on the original nine product

metrics. Three components were retrieved. The detail of the three principal com­

ponents extracted from the nine metrics is shown in Table 4.2. The table presents

a 9 x 3 matrix, which nine rows represent nine product metrics and three columns

48

Table 4.2: Factor Pattern for Principal Components of Design Product Metrics for
NT data set

Metric DOMAIN! DOMAIN2 DOMAIN3
SPL 0.901 0.359 0.137
LP 0.880 0.370 0.134
SPC 0.719 0.545 0.316
NL 0.683 0.593 0.334
TC 0.359 0.864 0.216
uc 0.426 0.830 0.245
VG 0.597 0.724 0.309
IFTH 0.599 0.681 0.357
MU 0.177 0.265 0.939
Eigenvalues 3.630 3.410 1.460
%Variance 40.3% 37.9% 16.2%
Cumulative % 40.3% 78.1% 94.4%
Stopping rule: at least 94% of variance

stand for the three principal components, Pl , P2, and P3. The values denote the

correlation between the raw metrics and principal components. We used 94.4% of

the variance as the stopping rule to extract the principal components. Adding these

three components with the 2 categorical variables, 5 independent variables for NT

PCA data were created. We refer to this data as the NT-PCA data set.

4.2.3 LNTS System Description

LNTS metrics is the last data set used in this study. It was collected from

a Large Network Telecommunication System. As for the NT data set, the data

splitting technique was used to create the fit and test data sets. Two-third of the

modules (4648 observations) was used as a fit data set and the remaining one-third

49

Thble 4.3: Factor Pattern for Principal Components of Software Metrics for LNTS
data set

Metric DOMAIN! DOMAIN2 DOMAIN3 DOMAIN4
PSCTOT 0.884 0.313 0.275 -0.009
NELTOT 0.853 0.362 0.335 0.012
IFTH 0.665 0.601 0.374 0.013
TCT 0.360 0.853 0.307 0.005
UCT 0.359 0.838 0.367 0.001
VG 0.617 0.632 0.416 -0.005
NL 0.290 0.407 0.841 -0.046
RLSTOT 0.418 0.316 0.827 -0.019
NDI 0.003 0.004 -0.030 0.999
Eigenvalues 2.85 2.69 2.12 1.00
%Variance 31.67% 29.89% 23.56% 11.11%
Cumulative % 31.67% 61.56% 85.12% 96.23%
Stopping rule: at least 96% of variance

(2324 observations) as a test data set. The independent variables for the raw data

set comprise nine product metrics and the dependent variable is the number of

faults found in the modules in the historical development. We refer to this data as

LNTS-RAW data set in the remaining part of this thesis.

Principal components analysis was also conducted on the LNTS data set.

The process extracted four principal components from the original nine product

metrics. They are shown in Table 4.3. The table presents a 9 x4 matrix, which

nine rows represent nine product metrics and four columns represent four principal

components, D1, D2, D3 and D4. The values in the matrix give the correlation

between raw metrics and principal components. The principal components analysis

was stopped when 96% of the variance was reached by the process. These four

50

principal components are referred to as LNTS-PCA data set.

4.3 Experiments on LLTS

The first experiment used the metrics from LLTS data set as input to the

underlying quantitative models. This section discusses the result of the experiments

conducted on the LLTS data sets, LLTS-RAW and LLTS-PCA. The experiment

results are presented in the following order.

1. The prediction results of the five underlying quantitative models are shown in

tabulated form. Those underlying quantitative models are Case-Based Rea­

soning (CBR), Multiple Linear Regression (MLR), Artificial Neural Network

(ANN), Cart and SPLUS. For the Cart algorithm, the models were built based

on two methodologies: Cart-Least square (Cart-LS) and Cart-Least Absolute

Deviation (Cart-LAD) [27].

2. The module-order modeling results are displayed in graphs. Two types of

graph are plotted to present the results.

• Alberg diagram [24] showing the curve of the perfect ranking percentage

(G(c)/Gtot) compared to the predicted ranking percentage (G(c)/Gtot),

where c represents the cutoff percentile. If the two curves are close to­

gether, the model is considered accurate.

51

Table 4.4: Example of module-order modeling result

c
0.950
0.900
0.850
0.800
0.750
0.700
0.650
0.600
0.550
0.500

G(c)/Gtot
0.419
0.631
0.751
0.822
0.884
0.925
0.942
0.963
0.983
1.000

G(c)/Gtot
0.361
0.544
0.697
0.772
0.830
0.846
0.871
0.884
0.909
0.913

¢(c)
0.861
0.862
0.928
0.939
0.939
0.915
0.925
0.918
0.924
0.913

• Performance diagram [12] showing the ratio of the predicted ranking

and the perfect ranking, (¢(c)) curves. It displays how close the model

comes to the perfect ranking. This graph represents the performance of

a module-order model. The variation in ¢(c) over a range of c indicates

the robustness of the model; small variation implies a robust model.

In this study, the range of cutoff covered at most fifty percent of the modules

starting with the most fault-prone. This is because one can hardly imagine

applying an enhancement process to more than a half of the modules.

Figure 4.1 presents the curves of a perfect and a predicted ranking of modules

according to the results in Table 4.4 and Figure 4.2 shows the ratio of the two lines

of Figure 4.1. The cumulative percentage of faults in the modules is plotted over the

percentage of modules (1-c) along the horizontal axis, where modules are ordered in

52

" ;
.f

G)
0 c: • I§
0
t
l.
'ii
'a
0
::&

100%

80%

60%

40%

20%

0%
0 10 20 30

Modules(%~

-.-Actual

--Predicted

40

Figure 4.1: Example of Alberg diagram

1 000/o

95%

90%

85%

800/o
0 10 20 30 40

Modules(~

Figure 4.2: Example of Performance diagram

50

50

the decreasing order beginning with the most fault-prone. For exa.niple, 5% of the

modules in the graph represent the cutoff percentile 0.95 in the table.

We order modules beginning with the most fault-prone, the modules with

higher ranking will have higher priority for reliability enhancement. Therefore, we

will analyze the behavior of a module-order model separated into two ranges.

• Range of higher interest (1 through 25 percentiles): We focused more on this

53

range because over the half of the faults are contained in this range. Therefore,

we used 1 percent increment of modules for observation, and referred to this

range as range I.

• Range of lower interest (26 through 50 percentiles): modules in this range

have lower priority for reliability enhancement than the first one. We used 5

percent increment of modules for observation, and referred to this range as

range II.

In addition to the two ranges, we gived a closer view on the most critical

modules in the highest ranking range (cutoff 1 through 15 percentiles) of range I.

We compared the performance of five underlying quantitative models in

graphical presentations .. However, if the curves from the five techniques were plot­

ted on the same graph, it might be difficult to clearly see the results. Therefore, we

showed the graphical presentation by using the following layout.

1. Compare the performance of module-order models based on CBR, MLR, ANN

methods, referred as group I in one graph.

2. Compare the performance based on tree-modeling methods (CART-LAD, CART­

LS and SPLUS), referred as group II in another graph.

3. Compare the performance between the two groups. We chose a representative

from group I, and plot the curve of the selected method compared to the

underlying techniques of group I I.

54

Table 4.5: Presentation outline for LLTS data

Data set Test data set Performance comparison
RAW Release 2, 3 and 4 (a) Group I

(Multiple Releases) (b) Group II
(c) Group I and II
(d) Best and worst prediction

PCA Release 2, 3 and 4 (a) Group I
(Multiple Releases) (b) Group II

(c) Group I and II
(d) Best and worst prediction

4. Compare the performance based on two underlying models having the best

and the worst AAE and ARE value for the two groups (I and II).

From this layout, we can see the comparative performance of module-order

models for both tree-modeling and non-tree-modeling groups. In addition, the hy-

pothesis that better underlying quantitative prediction does not necessarily yield

better performance in ordering modules would be obviously proved. This layout

were also be used for the remaining data sets, NT and LNTS. Table 4.5 summarizes

presentation outline for LLTS data.

4.3.1 Experim.ents on LLTS-RAW

• Com.parative results of the underlying quantitative models, LLTS-

RAW

In this case, the models were built using LLTS release 1 data set. The

dependent variable was the number of faults after unit testing. The best model was

55

Table 4.6: LLTS-RAW, Comparative accuracy of underlying quantitative models

Release 2 Release 3 Release 4
Model AAE ARE AAE ARE AAE ARE
CBR 0.904 0.543 0.917 0.530 0.903 0.533
ANN 0.946 0.584 1.016 0.620 1.249 0.749
MLR 0.890 0.571 0.960 0.602 0.926 0.584

CART-LS 0.948 0.618 0.942 0.602 1.407 0.838
CART-LAD 0.705 0.324 0.803 0.391 0.867 0.419

SPLUS 0.909 0.577 0.954 0.602 1.267 0.774

chosen to be the fitted model based on each underlying techniques. Then, upcoming

releases were used to evaluate the model. The results obtained from the five methods

are tabulated in Table 4.6 for LLTS-RAW.

Since resubstitution, using the fit as test data set, may yield over optimistic

results (quality of fit), release 1 data set was not used to compare the accuracy of

the underlying models.

For LLTS-RAW, Mahalonobis distance and Distance weighted average are

respectively used as the similarity function and solution algorithm for prediction

using CBR. Prior research [29] stated that compared to other similarity functions

and solution algorithms, Mahalonobis and distance weighted average provided the

best prediction accuracy.

Multiple Linear Regression method used seven independent variables to build

the following model [29].

56

faults - 0.0143 · F ILINCUQ- 0.0035 · CNDNOT + 0.0238 · NDSENT

-0.009 · NDSEXT + 0.017 · NDSPND + 0.0066 · NDSINT

- 0.0031· STMDEC

The preferred tree model built using the CART-LS method has 10 leaf nodes

and utilizes 7 out of 28 independent variables. For the CART-LAD method, the

selected tree has 8 leaf nodes and utilizes 7 independent variables. Using SPLUS

algorithm, the chosen tree has 23 terminal nodes and utilizes 12 independent vari­

ables [27].

From the Table 4.6, the results show that MLR gave better results than CBR

and ANN for release 2. CBR provided better prediction accuracy than neural net­

work and multiple linear regression models for release 3 and 4 for both AAE and

ARE. For tree modeling methods, CART-LAD results are better than for CART-LS

and SPLUS for all test data sets. Further, when comparing all underlying mod­

els, CART-LAD had the best prediction among all five techniques. Prior study

has shown that CART-LAD is the most effective modeling methodology for predic­

tion and should be preferred among the five underlying techniques for quantitative

prediction [27].

57

• Comparative results of module-order models, LLTS-RA W

After retrieving predicted dependent variable from the underlying quantita­

tive models. The results of module-order models are represented in the Alberg and

perfurmance diagrams.

1. LLTS-RA W, comparative results for group I

The Alberg diagrams shown in Figure 4.3, 4.6 and 4.9 provide an evidence

that CBR, MLR and ANN predict the ranking modules significantly close to

each other for all three releases. All three curves almost have the same trend

even though the prediction accuracy of the underlying quantitative models are

quite different.

Figure 4.4, 4. 7 and 4.10 give us a close view of the module-order models'

behavior for the most critical modules regarding software reliability. CBR

and ANN give slightly closer ranking to the perfect ranking than MLR for the

cutoff 1-5 percentile for all releases. Consequently, MLR does not perform as

well as the two other methods for the beginning of the cutoff range illustrated

in Figure 4.5, 4.8 and Figure 4.11. Further for release 4, ANN does not have

the best predicted ranking for the 3-10 percentile cutoff. Therefore, we see a

gap between ANN and the two other methods in the performance diagram at

those particular percentiles.

58

When analyzing the performance on range I, all three techniques perform very

close to each other over the range. The three methods only present different

performance at the beginning of the cutoff percentile. Precisely, both CBR and

ANN perform better than MLR at the beginning of the cutoff range. When

considering range I I, the three techniques also present close performance over

the range for all releases.

Since group I's techniques perform very close when module-order modeling,

we can not determine which technique presents the best performance in group

I. This depends on the particular cutoff percentile the manager will choose.

For example, MLR performs better than CBR and ANN for release 3 for the

cutoff 10-25 percentile. However, both CBR and ANN perform better than

MLR for the cutoff 1-5 percentile for the same release.

In addition, CBR provided better prediction than MLR and ANN for release

3, but did not perform as well as MLR and ANN for the main part of the

considered ranges. This confirms our hypothesis that better prediction doesn't

always yield better performance when module-order modeling. Comparative

performance of group I is illustrated in Figure 4.5, 4.8 and 4.11.

2. LLTS-RA W, Comparative Results for Group I I

In contrast to group I, the three techniques in group II present the different

predicted rankings as shown in Figure 4.12, 4.15 and 4.18.

59

100

90

80

70 - 60 ffl. -CD 50 -'3
~ 40

-Actual

-caR
-MLR

-ANN
30

20

10

0
0 10 20 30 40 50

Modules(%)

Figure 4.3: Alberg diagram for LLTS-RAW release 2: CBR, MLR, ANN

70 ~----------------------------------~

-
60

50
~
~40
~
:. 30

20

10

0 +-~~--r-~-r~--r-~-r~--r-~-r~~
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(%)

-Actual

-CBR

-MLR
-ANN

Figure 4 .4: Close view of Alberg diagram for LLTS-RAW release 2: CBR, MLR,
ANN

60

-75
"#. -CD
0 65 c ca e
0

55 'I: :.

- caR
-----MLR

-ANN

'§45
::E

35
0 10 20 30 40 50

Modules (Ok)

Figure 4 .5: Performance of LLTS-RAW release 2: CBR, MLR, ANN

100

90

80

70 - -Actual
~ 60 0 - -caR • = 50
::s ---MLR ca 40 LL -.-ANN

30

20

10

0
0 10 20 30 40 50

Modules (Oio)

Figure 4.6: Alberg diagram for LLTS-RAW release 3: CBR, MLR, ANN

61

60

50

i!"40 -• = 30 ~

{l
20

10

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(%)

-Actual

-caR
-MLR

-ANN

Figure 4.'7: Close view of Alberg diagram for LLTS-RAW release 3: CBR, MLR,
ANN

70 -'#. -8 60
c -caR CIS e -50 _,._MLR -!
CD -ANN Q.
-; 40
'8
:E

30
0 10 20 30 40 50

Modules (Ok)

Figure 4.8: Performance of LLTS-RAW release 3: CBR, MLR, ANN

62

100

90

80
70 -~ 60 0 -eft - 50 '3

tJ! 40

-Actual

-CBR

-MLR

-ANN
30
20

10
0

0 10 20 30 40 50

Modules (Ok)

Figure 4.9: Alberg diagram for LLTS-RAW release 4: CBR, MLR, ANN

60~----------------------------------~

50

~ 40
t...
~ 30
:I

tJ! 20

10

0+--r~--r-~~~--r-~~--r-~-r~--~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Modules (Of~

-Actual

-cBR

---MLR

-ANN

Figure 4.10: Close view of Alberg diagram for LLTS-RAW release 4: CBR, MLR,
ANN

63

70

-f!!.
-; 60
u c
Cll e .. 50 0

"C e a.

-caR
-MLR

-ANN ... 40 '8
::E

30
0 10 20 30 40 50

Modules(%)

Figure 4.11: Performance of LLTS-RAW release 4: CBR, MLR, ANN

The close views in Figure 4.13, 4.16 and 4.19, show that all group I I's

techniques give close predicted rankings for the first half of the critical range

(1-7 percentile). However, CART-LAD does not give a ranking closer to the

perfect ranking than the other two methods for the second half. We see that

the performance of CART-LAD declines compared to SPLUS and CART-LS

after that first half of the critical range for all releases.

When considering performances for range I , CART-LS and SPLUS perform

close to each other. However, CART-LAD performs obviously not as well as

the former two methods for all releases. This is noticeable from the big gaps

in Figure 4.14, 4.17 and 4.20.

For range II, all techniques perform completely different from each other.

64

The two CART methods present high variation of performance for this range.

CART-LS presents the best performa:nce at the end of range II. The perfor­

mance of CART-LAD is much better- compared to its performance on range

I. As a consequence, CART-LAD per-forms better than SPL US at the end of

range II. For SPLUS, the technique :performs consistently for both ranges I

and II. This infers that SPLUS has t;he least variation of ¢(c) and generates

the most robust model in group II.

Furthermore, CART-LAD had the best prediction accuracy for all releases,

but it does not present the best modmle-order modeling results compared to

the other two methods as described ab-ove for the range I. This case obviously

confirms our hypothesis.

3. LLTS-RA W, Group I and Group I I l&fodels Comparison

Since the three methods in group I pe=rform close to each other when module­

order modeling, we chose one of them to compare with the tree-modeling

group. Since CBR performs consistently over the considered ranges, we chose

it to represent group I's techniques.

We can obviously observe that CBR mas a module-ordering behavior close to

SPLUS in all releases as displayed in Figure 4.21, 4.24 and 4.27.

For the close view of the most criticai range, CBR gives the nearest ranking

to the perfect ranking at the starting cutoff range (1-3 percentile) illustrated

65

100

90

80

70
~ - 60 .,

50 :r::
:J

8! 40

30

20

10

0
0 10 20 30

Modules(%)

40 50

~Actual

-CART-LS

__,.,__CART -LAD

-tt-SPLUS

Figure 4.12: Alberg diagram for LLTS-RAW release 2: CART-LS, CART-LAD,
SPLUS

70 ~---------------------------------,

60

50

20

10

0+-~~-T~--r-~~~~~--~~~~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules (o/o)

-Actual

-cART-LS

-CART-LAD

~SPLUS

Figure 4.13: Close view of Alberg diagram for LLTS-RAW release 2: CART-LS,
CART-LAD, SPLUS

66

100 -~ 0 - 90
CD g 80
CIS e 70 -CART-LS ... -cART-LAD .@ 60 :. -sPLUS

'CD 50
'8
:e 40

30
0 10 20 30 40 50

Modules(%)

Figure 4.14: Performance of LLTS-RAW release 2: CART-LS, CART-LAD,
SPLUS

100

90

80
70 -~ 60 !..,

ctJ 50 '3
tf! 40

30

-Actual

----CART-LS
-CART-LAD

-SPLUS

20

10

0
0 10 20 30 40 50

Modules(%)

Figure 4.15: Alberg diagram for LLTS-RAW release 3: CART-LS, CART-LAD,
SPLUS

67

-

70~------------------------------~

60

50
~
~ 40
m = ;:::, 30
{f.

20

10

0+-~~~~~--~~~~~~------~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(%)

-Actual

-CART-LS

-CART-LAD

4E-SPLUS

Figure 4.16: Close view of Alberg diagram for LLTS-RAW release 3: CART-LS,
CART-LAD, SPLUS

95

-~ 0 - 85
CD 75 CJ c

! -CART-LS
65 -..-CART-LAD -2 :. 55 ~sPLUS

a;
1::$
0
:E

45

35

25
0 10 20 30 40 50

Modules{%)

Figure 4.17: Performance of LLTS-RAW release 3: CART-LS, CART-LAD,
SPLUS

68

100

90

80
70

-Actual -';fl. 60 -CART-LS -., 50 - -CART-LAD = 3! 40 -SPLUS
30

20
10

0
0 10 20 30 40 50

Modules(%)

Figure 4.18: Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD,
SPLUS

60~--~

50

-40 ';ft -~ 30
:I

af 20

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Modules(%)

-Actual

-CART-LS

-CART-LAD

~sPLUS

Figure 4.19: Close view of Alberg diagram for LLTS-RAW release 4: CART-LS,
CART-LAD, SPLUS

69

95

- 85
~ t...
G)
CJ

75
c -CART-LS CD 65 E
~ -CART-LAD .g 55

:. -SPLUS .. 45

'8 35
~

25

15
0 10 20 30 40 50

Modules(%)

Figure 4.20: Performance of LLTS-RAW release 4: CART-LS, CART-LAD,
SPLUS

in Figure 4.22, 4.25 and 4.28, so CBR performs better than all group I's

methods for the beginning cutoff range for all releases.

Figure 4.23, 4.26 and 4.29 show the comparative performance between CBR

and group ll's techniques. The diagrams show that SPLUS performs close to

CBR for all releases compared to the two CART methods. This infers that

SPLUS also performs close to all techniques in group I when module-order

modeling for LLTS-RAW data.

4. LLTS-RAW, comparative results regarding AAE and ARE

CART-LAD gave the most accurate prediction among the five modeling tech-

niques indicated by AAE and ARE values in Table 4.6. The results show that

70

100

90

80

70 -~ 0 - 60

• 50 = = tl 40

30

20

10

0
0 10 20 30

Modules(%)

40 50

-Actual

-CART-LS

_.,_CART -LAD

~SPLUS

-caR

Figure 4.21: Alberg diagram of LLTS-RAW release 2: CART-LS, CART-LAD,
SPLUS and CBR

-
70r---------------------------------~

60

50
::.!!
~ 40 • -'5 30 :.

20

10

0+-~~~~~--~~~~~~~~r-~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(%)

-+-Actual

-cART-LS

---CART-LAD

~SPLUS

-e-CBR

Figure 4.22: Close view of Alberg diagram of LLTS-RAW release 2: CART-LS,
CART-LAD, SPLUS and CBR

71

100 -'#. - 90
CD

80 u
-cART-LS c

al e 70 -CART-LAD
0

.-.-SPLUS '1: 60
CD
11. -caR
Cii 50 ,
0 40 :E

30
0 10 20 30 40 50

Modules(%}

Figure 4.23: Performance of LLTS-RAW release 2: CART-LS, CART-LAD,
SPLUS and CBR

100

90

80

70 -::.!!
~ 60 .,

50 -;
3!. 40

30

20

10

0
0 10 20 30 40

Modules(0~

50

-Actual

-CART-LS

---CART-LAD

.-.-SPLUS

-caR

Figure 4.24: Alberg diagram for LLTS-RAW release 3: CART-LS, CART-LAD,
SPLUS and CBR

72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules (%)

-Actual

-CART-LS

-CART-LAD

-M-SPLUS

~CBR

Figure 4.25: Close view of Alberg diagram for LLTS-RAW release 3: CART-LS,
CART-LAD, SPLUS and CBR

95

-:::,!! 0 - 85
G)
Q
c 75 -cART-LS • ! 65 -CART-LAD
0

-SPLUS "C
G) 55 a. -caR
~

45 '0
0
:E

35

25
0 10 20 30 40 50

Modules(%)

Figure 4.26: Performance of LLTS-RAW release 3: CART-LS, CART-LAD,
SPLUS and CBR

73

100

90

80

70 -Actual -:::!!. 0 - 60 -CART-LS .,
50 -w-CART -LAD -::. :. 40 -sPLUS

30 -cBR

20

10

0
0 10 20 30 40 50

Modules (o/o)

Figure 4.27: Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD,
SPLUS and CBR

60~------------------------------~

50

~ 40
0 -= 30 ::.
:. 20

10

0+-~~~~--~~~~~~~~--~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules (Of~

-Actual

-CART-LS

-w-CART -LAD

---M-SPLUS

-e-CBR

Figure 4.28: Close view of Alberg diagram for LLTS-RAW release 4: CART-LS,
CART-LAD, SPLUS and CBR

74

95

- 85
":R 0 - 75 • u -CART-LS c ca 65 -CART-LAD e
0 55 --sPLUS 'C • -caR Q. 45

'CD
~ 35
::!

25

15
0 10 20 30 40 50

Modules(%)

Figure 4.29: Performance of LLTS-RAW release 4: CART-LS, CART-LAD,
SPLUS and CBR

it had the best prediction accuracy for all releases of the LLTS-RAW data

set. We compare CART-LAD to the models that bring the worst prediction

accuracy for the three releases. For release 2 and 4, CART-LS had the worst

accuracy, and SPLUS had the worst accuracy for release 3.

The Alberg diagrams show that CART-LAD does not present the predicted

rankings closer to the perfect ranking than CART-LS and SPLUS. For re-

lease 2, CART-LAD and CART-LS alternatively present closer ranking to the

perfect ranking over both ranges I and I I as illustrated in Figure 4.30. For

release 3 and 4, the predicted rankings based on ANN and SPLUS are closer

to the perfect ranking than those based on CART-LS over ranges I and I I as

75

illustrated in Figure 4.33 and 4.36.

When focusing on the most critical range, the selected two techniques al­

ternatively predict closer rankings to the perfect rankings as illustrated in

Figure 4.31, 4.34 and 4.37. Therefore, we can observe that neither method

clearly outperforms the other for the most critical modules.

When considering the performance, CART -LAD does not perform better than

the other techniques with poorer prediction accuracy when module-order mod­

eling. For release 2, CART-LS performs considerably better than CART-LAD

over range I. For release 3, ANN also performs better than CART-LAD over

range I. For release 4, CART-LS almost has better performance than CART­

LAD over both ranges I and I I. The performance diagrams are shown in

Figure 4.32, 4.35 and 4.38. These cases provide more evidences that bet­

ter underlying quantitative prediction doesn't always yield better performance

when module-order modeling.

4.3.2 Experim.ent on LLTS-PCA

• Comparative results of the underlying quantitative models, LLTS-

PCA

Using the same strategy as for LLTS-RAW, release 1 was used as the fit data

set and subsequent releases were used as the test data sets. Application of the models

76

100

90

80

70 -fl. - 60 -+-Actual .,
= 50 -CART-LAD
:::s
ca

L&. 40 -CART-LS

30

20

10

0
0 10 20 30 40 50

Modules(%)

Figure 4 .30: Alberg diagram of LLTS-RAW release 2: CART-LS, CART-LAD

70

60

50 -!:. 40 ., -~ 30
{l

20

10

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(%)

-Actual

-cART-LAD

_._CART-LS

Figure 4.31: Close view of Alberg diagram for LLTS-RAW release 2: SPLUS,
CART-LAD

77

100 -":R. 0 - 90
«< 80 u c ca
E 70 -cART-LAD ...
0

-cART-LS '1: 60 :.
'CD 50
'8
:E 40

30
0 10 20 30 40 50

Modules(%)

Figure 4.32: Performance of LLTS-RAW release 2: CART-LS, CART-LAD

100

90

80

70 -":R. 0 - 60 -Actual
!! 50 :s -CART-LAD
~ 40 --ANN

30

20

10

0
0 10 20 30 40 50

Modules(~

Figure 4.33: Alberg diagram for LLTS-RAW release 3: SPLUS, CART-LAD

78

70 ,.-------------- -----,

60

50
"'0"
!5.40 .,
= ~ 30

20

10

0 +--r-.~----~.--.-,--r-~.--.~--~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(%)

-Actual

-CART-LAD

-ANN

Figure 4.34: Close view of Alberg diagram for LLTS-RAW release 3: SPLUS,
CART-LAD

95

--::R. 0 - 85

3
c: 75
• e 65 -CART-LAD
0

-ANN 't:
QJ 55 11.
1i

45 ~
0
:E

35

25
0 10 20 30 40 50

Modules(%)

Figure 4.35: Performance of LLTS-RAW release 3: SPLUS, CART-LAD

79

100

90

80
70 -*-- 60 -+-Actual ,
50 ~ -CART-LS

~

tf. 40 _._CART -LAD

30

20

10

0
0 10 20 30 40 50

Modules (o/~

Figure 4.36: Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD

60~------------------------------~

50

10

0+-~~-T~--~~~~~~~~~~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules (01~

-+-Actual

-CART-LAD

-CART-LS

Figure 4.37: Close view of Alberg diagram for LLTS-RAW release 4: SPLUS,
CART-LAD

80

95

- 85

'* - 75 CD u c
65 ..,

-CART-LS e
~ .g 55 -CART-LAD
CD
CL 45 ..
'8
:E

35

25

15
0 10 20 30 40 50

Modules(%)

Figure 4.38: Performance of LLTS-RAW release 4: CART-LS, CART-LAD

Table 4.1: LLTS-PCA, Comparative accuracy of underlying quantitative models

Release 2 Release 3 Release 4
Model AAE ARE AAE ARE AAE ARE
CBR 0.835 0.523 0 .871 0.519 0 .810 0.477
ANN 0.887 0.555 0.948 0.576 0.989 0.615
MLR 0.875 0.567 0.976 0.626 0.954 0.637

CART-LS 0.972 0.647 0.975 0.633 1.113 0.682
CART-LAD 0.727 0.344 0.823 0.408 0.860 0.456

SPLUS 0.925 0.602 0 .973 0.621 1.568 0.949

based on different underlying methodologies to the test data set of LLTS-PCA is

shown in Table 4. 7.

For LLTS-PCA, the city-block distance with distance weighted solution al-

gorithm gave the most accurate prediction for CBR [29]. MLR results used six

81

independent variables with intercept to build the following model [29].

faults = 0.7915 + 0.3745 ·USAGE+ 0.847 · P ROD1 + 0.3985 · P ROD2

+ 0.2135 · P ROD3 + 0.3082 · P ROD4 + 0.1236 · P ROD5

+ 0.1494 · P ROD6

The chosen tree using CART-LS has 7 terminal nodes and uses 3 out of 10

independent variables. The preferred tree using CART-LAD has 8 terminal nodes

and utilizes 4 out of 10 independent variables. For SPLUS, the selected tree has 26

terminal nodes and uses 9 out of 10 independent variables to build the tree [27].

According to Table 4. 7, CBR has the best prediction accuracy compared to

MLR and ANN for all three releases in group I. For group II, CART-LAD gave

significantly better results than CART-LS and SPLUS. Further, when comparing

all underlying models, CART-LAD presented the best prediction for release 2 and

3 while CBR had the best prediction for release 4.

• Comparative results of module-order models, LLTS-PCA

1. LLTS-PCA, Comparative Results for Group I

Figure 4.39 and 4.42 denote that CBR, MLR and ANN generate very close

rankings for all releases. They almost present identical predicted ranking over

ranges I and II for release 2 and 3. For release 4, the three techniques present

close ordering for range I, but MLR and ANN are closer to the perfect ranking

than CBR for range II depicted in Figure 4.45.

82

Figure 4.40, 4.43 and 4.46 give us a closer view to the most critical modules.

CBR and ANN give a closer ranking to the perfect ranking than MLR at the

beginning of the critical range (1-3 percentile) for all releases. Hence, the

performance of MLR is not as good as the two other methods at that starting

range. ANN, in contrast to MLR, gives the nearest module-order model to

the perfect ranking at that specific range for release 2 and 3. However, ANN

gives the farthest ranking from the perfect ranking at the cutoff 3-7 percentile

for release 4. The module-order models based on the three group I's methods

are very close to each other after the cutoff 7 percentile.

When analyzing the performances for the first two releases, we notice that the

models of group I perform close to each other over both ranges I and I I .

The three methods present different performances only for the beginning of

the cutoff range, 1-5 percentile, illustrated in Figure 4.41 and 4.44.

When considering release 4, MLR and ANN perform better than CBR for

the second half of range I and all over range I I even though CBR provided

the most accurate prediction in group I for this release, shown in Figure 4.47.

This case further validates the hypothesis that an underlying model with better

prediction accuracy, does not necessarily indicate a better module-order modeL

To summarize, all techniques in group I perform close to each other. They

present parallel trends of performance in both the Alberg and performance

83

100

90

80

70

* 60 -• 50 ::
:1

&t 40

--Actual

--caR
--MLR

-ANN
30

20

10

10 20 30 40 50

Modules(%)

Figure 4.39: Alberg diagram for LLTS-PCA release 2: CBR, MLR, ANN

diagrams.

2. LLTS-PCA, Comparative Results for Group I I

The Alberg diagrams illustrated in Figure 4.48, 4.51 and 4.54 show that the

tree-modeling methods do not generate similar ranking prediction. For release

2, group If's methods predict different ranking over both ranges I and II. For

the other releases, even though they predict fairly close rankings over range I,

the models diverge over range II.

For the most critical range, SPLUS obviously predicts the nearest ranking to

the perfect ranking over all the ranges for release 2 and 3. This causes the

performance of SPL US to be better than the two other techniques for the

critical range. For release 4, ranking based on CART-LS is the nearest to

84

70~------------------------------~
60

50

20

10

0+-~~~~~~~~~~~~~~~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(%)

-Actual
-cBR

-MLR
~ANN

Figure 4.40: Close view of Alberg diagram for LLTS-PCA release 2: CBR, MLR,
ANN

........ 75
~
u
~65 • e
-!ss
t
145

35
0 10 20 30

Modules(%)

40 50

--ceR
--MLR
--ANN

Figure 4.41: Performance of LLTS-PCA release 2: CBR, MLR, ANN

85

100

90

80

70

l 60

J! 50
~ • 40 ~

-Actual

--CBR
---MLR

-ANN
30

20

10

0

0 10 20 30 40 50

Modules(%)

Figure 4.42: Alberg diagram for LLTS-PCA release 3: CBR, MLR, ANN

60

50

10

o+-~~~~-r~~~~~~~r-~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(~

-Actual

--caR
---MLR
~ANN

Figure 4.43: Close view of Alberg diagram for LLTS-PCA release 3: CBR, MLR,
ANN

86

70

l
3 60
c: •
IE so
~

-e-CBR

-MLR

:: --ANN

1i40
'a
0
:E

30
0 10 20 30 40 50

Modules(%)

Figure 4.44: Performance of LLTS-PCA release 3: CBR, MLR, ANN

100

90

80

70

~ 60

= 50
:s
.:! 40

-Actual

--ceR
---MLR

-ANN
30

20

10
0

0 10 20 30 40 50

Modules~

Figure 4.45: Alberg diagram for LLTS-RAW release 4: CBR, MLR, ANN

87

50

~40 -.!!30 :;
• 11.20

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(~

-Actual

-caR
--.-MLR

-tt-ANN

Figure 4.46: Close view of Alberg diagram for LLTS-PCA release 4: CBR, MLR,
ANN

70

~
-;- 60
~ •
§ 50
'C :.
i40
:E

30
0 10 20 30 40 50

Modules(%)

Figure 4.47: Performance of LLTS-PCA release 4: CBR, MLR, ANN

88

the perfect ranking for the first half of the range. The graphs are shown in

Figure 4.49, 4.52 and 4.55.

When considering the performance for range I, SPLUS performs better than

CART-LS and CART-LAD for the majority of range I for all releases. CART­

LAD does not perform as well as other methods for the majority of this range.

The performance diagrams are shown in Figure 4.50, 4.53 and 4.56.

For range I I, the two CART methods present high variation of performances.

CART-LS always shows the best performance at the end of range II, and

CART-LAD has an inconstant trend of performance. We can observe the

varying lines of CART-LAD and CART-LS in the performance diagrams for

all releases. For SPLUS, this method shows fairly constant performance as for

the previous range.

Concisely, CART-LS and CART-LAD generate models having high variation

of ifJ(c) when module-order modeling. This implies that SPLUS provides more

robust module-order models than CART-LAD and CART-LS for all three

releases.

3. LLTS-PCA, Group I and Group II Models Comparison

The three techniques in group I present very close performances when module­

order modeling. Therefore, we select one of them from each release to compare

89

100

90

80

70

l 60

• 50 = i 40 ~

-Actual

--cART-LS

--CART-LAD
-sPLUS

30

20

10

0
0 10 20 30 40 50

Modules (".4)

Figure 4.48: Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD,
SPLUS

70~---~

60

50

l40
= ~30

20

10

-Actual

~ ~ __._ --CART·LS

-~~=-- cART-lAD
'!:::::;_.....,:::::::.:--e--.--~ -M--SPLUS

o~~~~~~~~~~~~~~~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules(~

Figure 4.49: Close view of Alberg diagram for LLTS-PCA release 2: CART-LS,
CART-LAD, SPLUS

90

95

l 85 .,
u

75 c:

I 65
--CART-LS

.g --CART -LAD

t 55 - s PLUS
~ 45
1

35 :E

25
0 10 20 30 40 50

Modules('*'J

Figure 4.50: Performance of LLTS-PCA release 2: CART-LS, CART-LAD,
SPLUS

100

90

80

70

60 -J! 50

-Actual

--cART-LS
::J • 40 ""

--CART-LAD

--sPLUS
30

20

10

0

0 10 20 30 40 50

Modules(~

Figure 4 .51: Alberg diagram for LLTS-PCA release 3: CART-LS, CART-LAD,
SPLUS

91

60

50

20

10

-Actual

--CART-LS

~:;;;~~~, ---CART~D
-tt-SPLUS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules ('iQ

Figure 4.52: Close view of Alberg diagram for LLTS-PCA release 3: CART-LS,
CART-LAD, SPLUS

100

90

l 80 • g
c: 70 • --cART-LS
!
~ 60 --cART~D

:. 50 --sPLUS

• "0 40 0
:E

30

20
0 10 20 30 40 50

Modules(%)

Figure 4.53: Performance of LLTS-PCA release 3: CART-LS, CART-LAD,
SPLUS

92

100

90

80

70

l 60

.!! 50
'"S :. 40

30

20

10

0

0 10 20 30 40

Modules(~

50

-Actual

-cART-LS
.--CART-LAO

-SPLUS

Figure 4.54: Alberg diagram for LLTS-PCA release 4: CART-LS, CART-LAD,
SPLUS

50

~40
~30 :;
• "-20

10

0+-T-T-~~~~~~~~~~~~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ModuleaN

-Actual

-cART-LS

--cART-LAO
-..-SPLUS

Figure 4.55: Close view of Alberg diagram for LLTS-PCA release 4: CART-LS,
CART-LAD, SPLUS

93

95

g 85

u 75
u
r:

--cART-LS • 65
~ --cART~D
~ 55
u -sPLUS

G. 45 ..
I 35

25

15

0 10 20 30 40 50

Modules ('*i

Figure 4.56: Performance of LLTS-PCA release 4: CART-LS, CART-LAD,
SPLUS

with group I I . Since ANN had a constant performance over the considered

ranges for all releases, we selected ANN to represent group I .

The Alberg diagrams show that ANN predicts the module-ranking close to

SPLUS, especially for release 2 and 4, illustrated in Figure 4.57 and 4.63. For

release 3, even though some gaps existed between ANN and SPLUS depicted

in Figure 4.60. ANN remains close to SPLUS compared to other techniques

in group II.

When focusing on the most critical range, ANN predicts the ranking close

to SPLUS for all releases. In addition, ANN also gave closer ranking to the

perfect ranking over all the critical range than any method within group I I ,

illustrated in Figure 4.58, 4.61 and 4.64. Consequently, ANN performs better

than any of group I I method over the critical range.

94

100

90

80

70 -Actual -fl. - 60 -cART-lS
• 50
~
If 40

-CART-LAO

-sPLUS

30 -ANN

20

10

0
0 10 20 30 50

Modules(~

Figure 4.57: Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD,
SPLUS and ANN

When considering the performance, ANN apparently performs very close to

SPLUS for release 2 and 4 over ranges I and II. For release 3, ANN performs

more consistently than SPLUS, but it still shows closer performance to SPLUS

than other group If's methods. This indicates that SPLUS preforms close to

ANN, and it also implies that SPLUS performs close to the two other group l's

methods, CBR and MLR. The performance diagrams are shown in Figure 4.59,

4.62 and 4.65.

4. LLTS-PCA, comparative results regarding AAE and ARE

CART-LAD provided the best prediction based on AAE and ARE values for

release 2 and 3, while CBR did for release 4. We compare CART-LAD to the

95

70~----------------------------~
60

so -Actual

~40 • = ::130 :.
- c ART·LS

-----..... ~~~=1 -CART·LAD
!:::~~~~~~~1 -*-s~us

20

10

0+-T-T-T-~~~~~~-r-r~~~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules~

-ANN

Figure 4.58: Close view of Alberg diagram for LLTS-PCA release 2: CART-LS,
CART-LAD, SPLUS and ANN

95

l 85
8
i 75 --c ART-LS

! 65 --c ART-L4D

~ 55 --sPLUS
G. --ANN
i 45
0

35 ::E

25
0 10 20 30 40 50

Modules(~

Figure 4.59: Performance of LLTS-PCA release 2: CART-LS, CART-LAD,
SPLUS and ANN

96

100

90

80

70 -Actual

~ 60 --cART-l.S
• :; 50 --cART-!J.D
: 40 --sPLUS

30 -ANN

20

10

0

0 10 20 30 40 50

Module a (o/o)

Figure 4.60: Alberg diagram for LLTS-PCA release 3: CART-LS, CART-LAD,
SPLUS and ANN

60

50

20

10

-Actual

-cART-t..S

~~~!;~~~, -.-CART-!J.D 
-M-SPLUS 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules~ 

~ANN 

Figure 4.61: Close view of Alberg diagram for LLTS-PCA release 3: CART-LS, 
CART-LAD, SPLUS and ANN 

97 



100 

90 

~ 80 ....... 
• ~ 70 -cART-LS • E 60 --cART-LAD 

i --sPLUS 
50 

"ii -ANN 

I 40 

30 

20 

0 10 20 30 40 50 

Figure 4.62: Performance of LLTS-PCA release 3: CART-LS, CART-LAD, 
SPLUS and ANN 

100 

90 

80 

70 -Actual 

l 60 -cART-LS 

J! 50 '3 
~ 40 

--cART-LAD 

-sPLUS 

30 -ANN 

20 

10 

0 

0 10 20 30 40 50 

Modules(~ 

Figure 4.63: Alberg diagram for LLTS-PCA release 4: CART-LS, CART-LAD, 
SPLUS and ANN 

98 



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Moclules('Q 

-Actual 

-CART-LS 

-CART-LAD 

~SPLUS 

-.-ANN 

Figure 4.64: Close view of Alberg diagram for LLTS-PCA release 4: CART-LS, 
CART-LAD, SPLUS and ANN 

95 

g 85 

tl 75 
u --cART-LS c: 

I 65 -.-CART-LAD ... 
0 55 - s PLUS 1: 
l --ANN 45 
'ii 

I 35 

25 

15 

0 10 20 30 40 50 

Modules(~ 

Figure 4.65: Perfonnance of LLTS-PCA release 4: CART-LS, CART-LAD, 
SPLUS and ANN 

99 



techniques that bring the worst prediction for the three releases. For LLTS­

PCA, CART-LS, MLR and SPLUS are the modeling techniques providing the 

worst prediction for release 2, 3 and 4 respectively. The graphs are depicted 

in Figure 4.66 - 4. 7 4. 

When considering the close view for the most critical modules, for release 2, 

CART-LAD presents closer ranking to the perfect ranking than CART-LS 

for the first half of the range (1-7 percentile). Afterwards CART-LAD does 

not predict a closer ranking to the perfect ranking than the other methods, 

illustrated in Figure 4.67. For release 3, MLR has a better ranking than CART­

LAD over the critical range, depicted in Figure 4. 70. For release 4, CBR gives 

closer ranking than SLUS before both methods gives the close ordering as 

shown in Figure 4. 73. 

When focusing on range I for all releases, a model based on CART-LAD 

apparently doesn't have as good performance compared to the other models 

for release 2 and 3, while CBR provided better performance than SPLUS for 

the first half of range I. For comparison on range II, CART-LAD and CBR 

do not perform as well as the compared models for the majority of the cutoff 

ranges, especially for release 4. The comparative performances are shown in 

Figure 4.68, 4.71 and 4.74. 

This is a noticeable evidence that even though CART-LAD and CBR had 

100 



100 

90 

80 

70 .... 
'* ...... 60 --Actual 
.!! 50 :; 
.f 40 

--cART-LAD 

---CART-LS 

30 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.66: Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD 

70 .-----------------------------~ 

60 

50 
~ -40 
! 
::J30 
.f 

20 

10 

0+-~T-~~~~~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(~ 

-Actual 

-cART-LAD 

-CART-LS 

Figure 4.67: Close view of Alberg diagram for LLTS-PCA release 2: CART-LS, 
CART-LAD 

better prediction accuracy, it did not yield better performance when module-

order modeling. 

101 



95 

l 85 
Cl 
u 
1: 75 • e 65 

-@ 
55 Cl 

~ 

,_CART 4-AD I 
--cART-LS 

c; 45 
"0 
0 35 ::E 

25 
0 10 20 30 40 50 

ModulesN 

Figure 4.68: Performance of LLTS-PCA release 2: CART-LS, CART-LAD 

100 

90 

80 

70 

# - 60 -Actual 

• 50 :i 
~ 40 

--CART-lAD 

--MLR 

30 

20 

10 

0 

0 10 20 30 40 50 

Modules(~ 

Figure 4.69: Alberg diagram for LLTS-PCA release 3: MLR, CART-LAD 

102 



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(~ 

--Actual 

-cART·LAD 

-MLR 

Figure 4. 'TO: Close view of Alberg diagram for LLTS-PCA release 3: CART-LS, 
CART-LAD 

70 

~60 .. 
~50 e 
0 
't: 
rf40 
'ii 
1 
2 30 

20 

0 10 20 30 

Modules(~ 

40 50 

Figure 4.71: Performance of LLTS-PCA release 3: MLR, CART-LAD 

103 



100 

90 

80 

70 

~ 60 --Actual 

• :: 50 --caR 
:::1 

~ 40 -SPLUS 

30 

20 

10 

0 

0 10 20 30 40 50 

Modules ('Yo+ 

Figure 4. 72: Alberg diagram for LLTS-PCA release 4: SPLUS, CBR 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(%) 

-Actual 

--caR 
--SPLUS 

Figure 4. 73: Close view of Alberg diagram for LLTS-PCA release 4: SPLUS, CBR 

104 



70 

~60 

§50 • e 
~40 
l. 
)30 

20 

10+-----~----~----~----~----4 

0 10 20 30 

Modules(~ 

40 50 

Figure 4. 7 4 : Performance of LLTS-PCA release 4: SPLUS, CBR 

Table 4.8: Presentation outline for NT data 

Data set Test data set Performance comparison 
RAW Test data set (a) Group I 

(data splitting) (b) Group II 
(c) Group I and II 
(d) Best and worst prediction 

PCA Test data set (a) Group I 
(data splitting) (b) Group II 

(c) Group I and II 
(d) Best and worst prediction 

4.4 Experiment on NT 

This section describes the module-order modeling results on the NT data 

set. We use the same result presentation structure as in the LLTS experiments. 

Table 4.5 summarizes the presentation outline for NT data. 

105 



Table 4.9: NT-RAW, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.623 0.537 
ANN 1.904 0.722 
MLR 2.062 0.974 

CART-LS 1.904 0.7618 
CART-LAD 1.765 0.4632 

SPLUS 1.745 0.645 

4.4.1 Experiment on NT-RAW 

For the NT data set, we applied the data splitting strategy to define the fit 

and test data sets. The models were built using the fit data set and validated using 

the test data set. In our study, we use test data set for module-order modeling 

evaluation. 

• Comparative results of the underlying quantitative models, NT-

RAW 

Application of the models based on the different underlying methodologies 

to the NT-RAW test data set is shown in Table 4.9. 

Case-Based Reasoning used respectively Mahalanobis distance and distance 

weighted average as case similarity function and solution algorithm for the NT-RAW 

data set (29]. 

Multiple Linear Regression used nine independent variables to build the fol-

lowing model. 

106 



faults - 0.1245 + 0.0683 · LP- 0.0114 · UC + 0.0903 · MU- 0.0023 · NL 

+ 0.0059 · SPC- 0.0055 · SPL + 0.0195 ·IFTH + 0.8363 ·ISNEW 

+ 1.2716 ·ISCHG 

The preferred tree using CART-LS has 5 terminal nodes and uses 3 out of 11 

independent variables. For CART-LAD, the tree has 8 terminal nodes and utilizes 5 

out of 11 independent variables. The selected tree by SPLUS has 28 terminal nodes 

and uses all 11 independent variables to build the tree [27]. 

For NT-RAW, the result is slightly different from the LLTS data set because 

CART-LAD did not give the best prediction accuracy. As presented in Table 4.9, 

CBR has the best prediction, regarding the least AAE and ARE values, for group I. 

For the tree-modeling group, SPLUS has the best prediction. Further, if we consider 

all techniques together, CBR has the best prediction and MLR has the worst. 

• Comparative results of module-order models, NT-RAW 

1. NT-RAW, Comparative Results for Group I 

CBR and ANN perform close to each other over ranges I and II, but MLR 

does not have a ranking as good as the two previous models as shown in 

Figure 4.75. 

For the most critical modules, ANN gives the farthest ranking from the perfect 

ranking at the beginning cutoff range (1-3 percentile). As a consequence, ANN 

107 



100 

90 

80 

70 

g 60 -Actual 

• 50 
--caR = ::a --MLR 

.f 40 
-ANN 

30 

20 

10 

0 

0 10 20 30 40 50 

Modules(%) 

Figure 4.15: Alberg diagram for NT-RAW: CBR, MLR, ANN 

does not perform as well as the two other techniques at the starting range. 

However, after that small range, CBR and ANN present the predicted rankings 

closer to the perfect ranking than MLR over the range, as shown in Figure 4. 76. 

When focusing on the performances of the three models, CBR and ANN per-

form close to each other over all the considered ranges. MLR does not present 

an as good performance as the two previous methods for both ranges I and II, 

but the difference is small. The performance diagram is shown in Figure 4. 77. 

2. NT-RAW, Comparative Results for Group II 

We can obviously see the difference between the rankings plotted in figure 4. 78. 

SPLUS presents the nearest predicted ranking to the perfect ranking within 

group II. In contrast, CARr-LS has the farthest prediction from the perfect 

108 



70 

60 
~50 
'ii'40 
:;30 
If 

20 

10 

0+-~~-r~~--~~~~~~~--~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modulea(~ 

-ActuaJ 

--caR 
--M..R 

--ANN 

Figure 4.76: Close view of Alberg diagram for NT-RAW: CBR, MLR, ANN 

90 

~80 
., 70 
~ !60 
~50 
ct40 
-.; 
130 

20 

10+-----~------~-----T------~----~ 

0 10 20 30 40 50 

Modules(%) 

--caR 
--MLR 
-ANN 

Figure 4. 77: Performance of NT-RAW: CBR, MLR, ANN 

109 



ranking. A module-order model based on CART-LAD has a ranking between 

the two previous models. 

When focusing on the most critical modules, all three methods present close 

predicted rankings for the starting cutoff interval (1-3 percentile). After that, 

SPL US apparently provides the nearest ranking to the perfect ranking followed 

by CART-LAD and CART-LS respectively. 

The performance illustrated in Figure 4.80 shows that the three techniques 

present close performances for the beginning cutoff (1-5 percentile) of range I. 

After that small range, SPLUS obviously has the best performance in group 

II followed by CART-LAD. The gap between SPLUS and CART-LAD is not 

large. However, the performance of CART-LS is considerably lower than the 

two previous models, noticeable by the large gap existing between CART-LS 

and those models. 

When ordering the modeling techniques according to the prediction accuracy, 

SPLUS had the best accuracy followed by CART-LAD and CART-LS. Here 

the performance of the module-order models vary directly with the underlying 

accuracy prediction. In this case the underlying models with the best predic­

tion accuracy also had the best performance when module-order modeling and 

so on. 

110 



100 

90 

80 

70 

~ 60 .. 50 =: • 40 ~ 

-Actual 

--CART-LS 

-.-CART-LAD 

-sPLUS 
30 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4. 78: Alberg diagram for NT-RAW: CART-LS, CART-LAD, SPLUS 

70 

60 

gso 
•40 = :1 .t30 

20 

10 

0+-~~T-T-~~~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modulea(%) 

-Actual 

--CART-LS 

--CART-lAD 

-sPLUS 

Figure 4.79: Close view of Alberg diagram for NT-RAW: CART-LS, CART-LAD, 
SPLUS 

111 



95 

at' as 
-75 
8 
iss 
E55 
i ~45 

--cART-l.S 

--CART -LAD 
-sPLUS 

135 
:E25 

• 
15 

0 10 20 30 40 50 

Modules(~ 

Figure 4.80: Performance of NT-RAW: CART-LS, CART-LAD, SPLUS 

3 . NT-RAW, Group I and Group II Models Comparison 

We select CBR to represent group I. Figure 4.81, 4.82 and 4.83 show the 

comparative results between CBR and group II. 

From the diagrams, we can observe that CBR performs close to SPLUS com-

pared to CART-LS and CART-LAD. This refers that ANN and MLR also 

perform close to SPLUS. 

4 . NT-RAW, comparative results regarding AAE and ARE 

The performance of module-order models based on CBR and MLR methods 

vary directly with the prediction accuracy. CBR has better prediction than 

MLR, and CBR performs better than MLR in module-order modeling as shown 

in Figure 4.84, 4.85 and 4.86. 

112 



100 

90 

80 

70 -Actual -~ 60 -CART-LS 
.! 
:; 50 -CART-LAD 

.f 40 -N-SPLUS 

30 -caR 
20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.81: Alberg diagram for NT-RAW: CART-LS, CART-LAD, SPLUS and 
CBR 

70 

60 

lso 
~40 
.f30 

20 

10 

o+-~~~~~~~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(~ 

-Actual 

-cART-LS 

-CART-LAD 

-N-SPLUS 

-caR 

Figure 4.82: Close view of Alberg diagram for NT-RAW: CART-LS, CART-LAD, 
SPLUS and CBR 

113 



95 

~ 85 

8 75 
c --cART-l.S • 65 

I 55 
--CART·LAD 

-sPLUS t 45 
-ceR u 

i 35 

25 

15 

0 10 20 30 40 50 

MOduJes ('IQ 

Figure 4.83: Performance of NT-RAW: CART-LS, CART-LAD, SPLUS and CBR 

100 

90 

80 

70 

~ 60 -Actual .. 50 
~ 
.f 40 

--caR 
--MLR 

30 

20 

10 

0 

0 10 20 30 40 50 

Modules(%) 

Figure 4.84: Alberg diagram for NT-RAW: CBR, MLR 

This case shows that it is possible for the technique having better prediction 

accuracy to yield better performance when module-order modeling. 

114 



70 

60 

lso 
~40 
~ 

J!30 
20 

10 

0+-~-r~~--~T-~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(~ 

-Actual 

-caR 
--M..R 

Figure 4.85: Close view of Alberg diagram for NT-RAW: CBR, MLR 

0 10 20 30 40 50 

Modules(~ 

Figure 4.86: Performance of NT-RAW: CBR, MLR 

115 



Table 4.10: NT -PCA, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.624 0.586 
ANN 1.984 0.747 
MLR 2.030 0.969 

CART-LS 1.917 0.805 
CART-LAD 1.607 0.376 

SPLUS 1.737 0.665 

4.4.2 Experiment on NT-PCA 

• Com.parative results of the underlying quantitative models, NT-

PCA 

Using the original data from NT-RAW, NT-PCA was obtained by apply-

ing principal components analysis. Application of the models based on different 

underlying methodologies to the NT-PCA's test data set is shown in Table 4.10. 

The city-block distance and distance weighted average provided the best 

result among the available case-similarity functions and solution algorithms for 

CBR [29]. Using nine independent variables for multiple linear regression, the fol-

lowing model was obtained [29]. 

faults = 1.1265 + 0.7854 ·DOMAIN!+ 0.4216 · DOMAIN2 

+ 1.8203 · DOMAIN3 + 0.8583 · ISNEW + 1.3077 · ISCHG 

The tree model built by CART-LS has 4leafnodes and uses 3 out 5 indepen-

dent variables. Using CART-LAD, the tree has 5 terminal nodes and also utilizes 

116 



3 out of 5 independent variables. For SPLUS, the tree has 18 terminal nodes and 

uses all 5 independent variables [27]. 

CBR provided the best prediction in group I while CART-LAD presented 

the best prediction in group I I. When comparing all underlying modeling methods, 

CART-LAD had the best prediction while MLR had the worst. The order from 

the best to the worst prediction for all underlying methods was CART-LAD, CBR, 

CART-LS, SPLUS, CART-LAD, ANN and MLR. 

• Comparative results of module-order models, NT-PCA 

1. NT-PCA, Comparative Results for Group I 

The Alberg diagram in Figure 4.87 shows that all three techniques in this 

group predict close ranking models for range I. When considering range II, 

CBR presents a· closer ranking model to the perfect ranking than the two 

other methods while MLR and ANN still have close rankings. However, the 

difference between CBR and the two other techniques is not large. 

For the most critical range, the three techniques generate close ranking over 

the range. ANN's ranking is not as close to the perfect ranking as the two 

other methods after the cutoff 5 percentile, but the difference is not large as 

shown in Figure 4.88. 

When focusing on the performance for range I, CBR and MLR perform rela­

tively close for the main part of this range, while ANN performs slightly lower 

117 



100 

90 

80 

70 

~ 60 

.!! 50 
"5 
If 40 

-Ac tual 

--caR 
--MLR 

-ANN 
30 

20 

10 

0 

0 10 20 30 40 50 

Modules (%) 

Figure 4.87: Alberg diagram for NT-PCA: CBR, MLR, ANN 

than the others. For range I I , CBR shows better performance than MLR 

and ANN, which present close performances along this range. Comparative 

performance of group I is illustrated in Figure 4.89. 

To summarize, module-order models based on group I perform close to each 

other even though some small gaps exist along the considered ranges. 

2 . NT-PCA, Comparative Results for Group II 

Techniques in group I I have different ranking models for almost all the con-

sidered ranges. A predicted ranking based on SPLUS is obviously closer to the 

perfect ranking for both ranges I and II. The two CART methods have close 

module-order models for the former half of range I , then CART -LAD predicts 

a better ranking than CART-LS over the remaining ranges. The comparative 

118 



70 

60 

~50 e., 
,!!40 

= .f30 

20 

10 

o+-~~~~--r-~~~-r~~--~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Modules(%) 

-Actual 

-caR 
--MLR 

-ANN 

Figure 4.88: Close view of Alberg diagram for NT-PCA: CBR, MLR, ANN 

90 

lao ., 
~ 70 
• eso 
0 

!so 
;40 
0 

:E30 

20 
0 10 20 30 

Modules(%) 

40 50 

-caR 
--MLR 
-ANN 

Figure 4.89: Performance of NT-PCA: CBR, MLR, ANN 

119 



rankings are shown in Figure 4.90. 

When considering the most critical modules, SPLUS gives the farthest ranking 

from the perfect ranking at the beginning of the cutoff range (1-3 percentile), 

but it presents the nearest ranking after that range, shown in Figure 4.91. This 

causes the performance of SPLUS to be lower than the two CART techniques 

at the starting range, but higher afterwards. 

When analyzing the performance depicted in Figure 4.92, SPLUS visibly per­

forms better than the other two methods over the majority of range I and 

over all range II even though CART-LAD had better prediction accuracy 

than SPLUS. When considering the two CART techniques, they alternatively 

have higher performance for the first half of range I before CART-LAD out­

performs CART-LS. 

This case also verifies our hypothesis because CART-LAD had better predic­

tion accuracy than SPLUS, but SPLUS presented better performance than 

CART-LAD when module-order modeling. 

3. NT-PCA, Group I and Group II Models Comparison 

Since MLR performs close to CBR and ANN for ranges I and I I respectively, 

we select MLR to represent group I. The comparative results are plotted in 

Figure 4.93 and 4.95. 

120 



100 

90 

80 

70 

~ 60 ........ .. 50 = :a 
If 40 

--Actual 

--CART-LS 

--cART-lAD 

-sPLUS 
30 

20 

10 

0 
0 10 20 30 40 50 

Modules(%} 

Figure 4.90: Alberg diagram for NT-PCA: CART-LS, CART-LAD, SPLUS 

70 

60 

.-.50 
;!!. 
-;40 = :a 
.f30 

20 

10 

-- -~ 

0+-~~~~--~~~~~~~~~~ 

0 , 2 3 4 5 6 7 8 9 10 1, 12 13 14 15 

Modules(~ 

--Actual 

--CART-LS 

---CART-lAD 

-sPLUS 

Figure 4.91: Close view of Alberg diagram for NT-PCA: CART-LS, CART-LAD, 
SPLUS 

121 



90 

~80 
3 70 
c 160 
oso 
'1: 
Cl 
!40 
41 

130 
~ 

20 

10 

0 10 20 30 
Modules(~ 

40 

--CART-LS 

--cART-lAD 

-sPLUS 

50 

Figure 4.92: Performance of NT-PCA: CART-LS, CART-LAD, SPLUS 

The Alberg diagram in Figure 4.93 shows that MLR presents predicted ranking 

closer to the perfect ranking than all techniques in group II. When comparing 

MLR with group II methods, a module-order model based on MLR is close to 

SPLUS. This implies that SPLUS also has a close ranking compared to CBR 

and ANN. In addition, the three techniques in group I predicts the ranking 

closer to the perfect ranking than all group II methods. 

For the close view of the most critical modules, MLR presents closer ranking 

to the perfect ranking than all group II methods except for the first cutoff 

percentile, illustrated in Figure 4.94. As a consequence, MLR's performance is 

lower than CART-LS's only for the first percentile, but obviously higher than 

all methods of group II afterwards. 

For the performances, it is observed that MLR performs better than all group 

Il's methods over range I and II. When comparing MLR's performance with 

122 



100 

90 

80 

70 -Actual 

~ 60 -CART-LS 
.!! 50 
"5 
If 40 

-..--CART-LAD 

-sPLUS 

30 -MLR 

20 

10 

0 
0 10 20 30 40 50 

Modules {0.4) 

Figure 4.93: Alberg diagram for NT-PCA: CART-LS, CART-LAD, SPLUS and 
MLR 

group II, MLR performs close to SPLUS over the main part of the considered 

ranges I and I I compared to the two CART methods. This infers that group 

I's methods also have higher performance than all group If's techniques for 

the majority of the ranges even though CART-LAD had a better prediction 

accuracy than all group l's methods. 

4. NT-PCA, comparative results regarding AAE, ARE 

CART-LAD and MLR had the best and the worst quantitative prediction. 

However, the graphs illustrated in Figure 4.96, 4.97 and 4.98 apparently 

present that MLR provides a closer predicted ranking to the perfect rank-

ing than CART-LAD and has a higher performance than CART-LAD when 

123 



70 

60 

20 

10 

__ '!"
1
-Actual 

Jr"~"-• -CART-LS 

-cART-lAD 

-.-SPLUS 

-MLR 

0 +-~ ........................... ....--.-...-~..,.........--.....-....,.--.-.....--1 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(%) 

Figure 4.94: Close view of Alberg diagram for NT-PCA: CART-LS, CART-LAD, 
SPLUS and MLR 

100 

90 

l 80 
Q 
u 70 --CART-LS c: 
I 60 ---CART -LAD ... 
0 -SPLUS t 50 ., 

-MLR G. 40 .... 
1 
:IE 

20 

10 

0 10 20 30 40 50 
Modules (~ 

Figure 4.95: Performance of NT-PCA: CART-LS, CART-LAD, SPLUS and MLR 

124 



100 

90 

80 

70 

l 60 --Actual 
s 50 
'5 • 40 1&. 

--cART-LAD 
--MLR 

30 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.96: Alberg diagram of NT-PCA: MLR, CART-LAD 

70 

60 

20 

10 

0 +-~~~~~~~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Modules(%J 

-Actual 

-cART-LAD 
--MLR 

Figure 4.97: Close view of Alberg diagram for NT-PCA: MLR, CART-LAD 

module-order modeling over all the considered ranges. This repeatedly con-

firms our hypothesis like most of the previous cases. 

4.5 Experiment on LNTS 

Table 4.11 summarizes the presentation outline for LNTS data. 

125 



95,-------------------------~ 
..... 85 
~ 
_. 75 
B 
~ 65 

! 55 
-@ 
1.45 
i 35 

:E 25 

15~--~~--~----~----~--~ 

0 10 20 30 40 50 
Moclulea ('lQ 

Figure 4.98: Performance of NT-PCA: MLR, CART-LAD 

Table 4.11: Presentation outline for LNTS data 

Data set Test data set Performance comparison 
RAW Test data set (a) Group I 

(data splitting) (b) Group II 
(c) Group I and II 
(d) Best and worst prediction 

PCA Test data set (a) Group I 
(data splitting) (b) Group II 

(c) Group I and II 
(d) Best and worst prediction 

4.5.1 Experiment on LNTS-RAW 

LNTS data also used the data splitting technique to define the fit and test 

data sets as done in NT data. As usual, the fit data set is used to build the model 

using five different underlying quantitative methodologies. The test data set is used 

to validate and compare the accuracy of the prediction models. In addition, it is 

also used to validate the module-order models. 

126 



Table 4.12: LNTS-RAW, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.169 0.546 
ANN 1.284 0.665 
MLR 1.263 0.667 

CART-LS 1.2894 0.6853 
CART-LAD 1.131 0.376 

SPLUS 1.2889 0.6845 

• Comparative results of the underlying quantitative models, LNTS-

RAW 

We applied the test data to the underlying methods, the results are shown 

in Table 4.12. 

Case-Based Reasoning used the Mahalonobis distance and distance weighted 

average as similarity function and solution algorithm since they provided the best 

accuracy for LNTS-RAW [29]. 

After using stepwise selection (5% significance level), 5 out of 9 independent 

variables were chosen to build the following Multiple Linear Regression model [29]. 

faults = 0.60812866 - 0.00110394 · TGT + 0.01106293 · VG - 0.01854467 · N L 

+ 0.00082968 · IFTH- 0.0017737 · NELTOT 

The tree built using CART-LS has 3 terminal nodes and uses 3 out of 9 

independent variables. The tree built using CART-LAD has 4 leaf nodes and uses 

2 out of 9 independent variables. The tree built using SPLUS has 16 leaf [27]. 

127 



When comparing group I models, CBR has better prediction accuracy than 

MLR and ANN. For the tree modeling group, CART-LAD gave better prediction 

than CART-LS and SPLUS. The accuracy of CART-LS and SPLUS are almost 

identical. Further, when comparing all five underlying quantitative models, the 

order from the best to the worst prediction is CART-LAD, CBR, MLR, ANN, 

SPLUS and CART-LS. 

• Comparative results of module-order models, LNTS-RA W 

1. LNTS-RA W, Comparative Results for Group I 

Module-order models based on the three techniques are very close to each 

other over all the considered ranges as shown in Figure 4.99 and 4.100. 

When considering performance for range I, the three methods present very 

close performances. MLR only performs slightly better than the other methods 

in the cutoff range, 5-20. When focusing on range I I, CBR has a slightly better 

performance than the other two methods at the cutoff 35-50, while MLR and 

ANN perform very close to each other. The comparative performance are 

plotted in Figure 4.101. 

2. LNTS-RAW, Comparotive Results for Group II 

The Alberg diagram in Figure 4.102 shows that SPL US predicts the ranking 

closer to the perfect ranking than the two other methods over most of range 

I. For range II, CART-LAD and SPLUS have very close predicted rankings, 

128 



100 

90 

80 

70 

- 60 -Actual 
~ 
• 50 

--caR = ~ -w-MLR 
.1! 40 -ANN 

30 

20 

10 

0 
0 10 20 30 40 50 

Modulea(%) 

Figure 4 .99: Alberg diagram for LNTS-RAW: CBR, MLR, ANN 

70 T---------------------------------~ 

60 

50 

l40 
J! 
'330 
~ 

20 

10 

0 +-~~-r~~~~~~~~~~---~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Module•(%) 

-Actual 

--caR . 
__._M.,R 

-ANN 

Figure 4.100: Close view of Alberg diagram for LNTS-RAW: CBR, MLR, ANN 

129 



--caR 
--M..A 

-mN 

~+-----~----~----~----~----~ 
0 10 20 30 40 50 

Modules(0~ 

Figure 4.101: Performance of LNTS-RAW: CBR, MLR, ANN 

while CART-LS does not predict the ranking as close to the perfect ranking as 

the other techniques for the first half of range II. However, CART-LS provides 

the predicted ranking visibly closer to the perfect ranking than CART -LAD 

and SPLUS in the second half of range II. 

When focusing on the most critical modules, SPLUS presents closer ranking 

to the perfect ranking than the two CART techniques except at the first cutoff 

percentile and at the end of the critical range as shown in Figure 4.103. 

The module-order modeling performance using SPLUS is better than for the 

two CART techniques for range I, except for a small interval of cutoff (12-16 

percentile) , while the two CART methods have high variation of 4>( c) compared 

to SPLUS for range I . When considering range II, SPLUS and CART-LAD 

have close performances, while CART -LS has an inconstant trend of perfor-

mance along this range. CART-LS performs visibly not as good as the other 

130 



100 

90 

so 
70 

~ 60 ...... 
• 50 = :1 • 40 Ll.. 

-Actual 

--cART-LS 

--CART-LAD 

-sPLUS 
30 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.102: Alberg diagram for LNTS-RAW: CART-LS, CART-LAD, SPLUS 

two methods for the first half, but it evidently has higher performance for 

the second half of range I I. The comparative performance is depicted in 

Figure 4.104. 

To summarize, SPLUS seems to have less variation of tf>(c) than the other 

models over both ranges. This states that a module-order model based on 

SPLUS is more robust than those based on the two CART techniques. 

3 . LNTS-RAW, Group I and Group II Models Comparison 

We chose CBR to be a representative of group I. The Alberg diagram in Fig-

ure 4 .105 denotes that CBR predicts the ranking model very close to SPLUS 

over all the considered ranges. Both methods almost predict identical rank-

ing models over range I , and the two models have some small difference over 

131 



70r-----------------------------~ 
60 

50 

~ -40 = ~ 30 

20 

10 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(%) 

-Actual 

--CART-LS 
--CART-lAD 

-sPLUS 

Figure 4.103: Close view of Alberg diagram for LNTS-RAW: CART-LS, CART­
LAD, SPLUS 

95 

l 85 

• 75 u c --CART-l.S • 65 e --cART-lAD 
~ 55 
t -SPLUS 

45 .. 
I 35 

25 

15 

0 10 20 30 40 50 

Modules(%) 

Figure 4.104: Performance of LNTS-RAW: CART-LS, CART-LAD, SPLUS 

132 



100 

90 

80 

70 

l 60 
.! 50 
"5 
If 40 

30 

20 

10 

0 
0 to 20 30 40 

Modules(%) 

50 

-Actual 
--cART-LS 

--CART-LAD 
..._SPLUS 

-caR 

Figure 4.105: Alberg diagram for LNTS-RAW: CART-LS, CART-LAD, SPLUS 
and CBR 

range I I . The same results are noticed when we take a close view to the most 

critical range as shown in Figure 4.106. 

When focusing on the performances shown in Figure 4.107, SPLUS almost 

has the same performance as CBR over range I . Considering range I I , they 

still perform close to each other compared to other methods. This means that 

SPLUS also perform close to MLR and ANN. 

4 . LNTS-RA W, comparative results regarding AAE, ARE 

CART-LAD and CART-LS provided the best and the worst underlying pre-

diction regarding AAE and ARE values. 

The models based on these two techniques alternatively have closer ranking to 

the perfect ranking along both ranges I and II as illustrated in Figure 4.108. 

133 



60 

50 

20 

10 

0~~~~~~~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules('!Q 

-Actual 

-cART-LS 

-cART-LAD 

~SPLUS 

-caR 

Figure 4.106: Close view of Alberg diagram for LNTS-RAW: CART-LS, CART­
LAD, SPLUS and CBR 

95 

l 85 
Q 

75 g 
--cART-LS c: 

I 65 --CART-LAD 

i! 55 -sPLUS :. 45 -caR 

i 35 
0 

25 2 
15 

0 10 20 30 40 50 

Modules ('!Q 

Figure 4.107: Performance of LNTS-RAW: CART-LS, CART-LAD, SPLUS and 
CBR 

134 



For the most critical modules, CART-LS presents the predicted ranking closer 

to the perfect ranking than CART-LAD over the critical range as shown in 

Figure 4.109. 

When focusing on performance, both techniques present unstable performance 

along the considered ranges. Considering range I, a ranking model based 

on CART-LS has higher performance for the former half of the range, while 

CART-LAD performs better than CART-LS for the later half of the range. 

However, the former half of range I would be more interesting than the later 

half because more faults are contained in the modules of the former half. 

For range II, CART-LAD performs apparently better than CART-LS for the 

first half of the range. However, CART -LS visibly performs better than CART­

LAD for the second half of range I I. 

Concisely, CART -LAD may have better prediction accuracy than CART -LS, 

but this doesn't mean that CART-LAD would perform better than CART-LS 

over all the cutoff ranges. 

4.5.2 Experiment on LNTS-PCA 

• Comparative results of the underlying quantitative models, LNTS-

PCA 

After conducting the principal components analysis, LNTS-PCA was ob­

tained from LNTS-RAW data set. After the models were built using the fit data 

135 



100 

90 

80 

70 -~ 60 --Actual 

! 50 ---CART-LAD 
i 
~ 40 --CART-LS 

30 

20 

10 

0 

0 10 20 30 40 50 

Modules ("-') 

Figure 4.108: Alberg diagram for LNTS-RAW: CART-LS, CART-LAD 

70~-------------------------------~ 

60 

50 

~40 
.! 
'530 : 

20 

10 

o+-~~~~~~~~-r~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Module•(~ 

-Actual 

--cART-LAD 
--cART·LS 

Figure 4.109: Close view of Alberg diagram for LNTS-RAW: CART-LS, CART­
LAD 

136 



95 

~ - 85 

I 75 

• 65 -CART-LAO ! 
~ 55 --cART-LS 
:. 45 
'ii 
1 35 
:E 

25 

15 

0 10 20 30 40 50 

Modules~ 

Figure 4.110: Performance of LNTS-RAW: CART-LS, CART-LAD 

Table 4.13: LNTS-PCA, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.231 0.624 
ANN 1.291 0.682 
MLR 1.254 0.671 

CART-LS 1.304 0.694 
CART-LAD 1.160 0.424 

SPLUS 1.276 0.671 

set, the test data set was applied. The results are shown in Table 4.13. 

For case-based reasoning, the city-block distance and distance weighted av-

erage provided the best result among all available similarity functions and solution 

algorithms for LNTS-PCA (29]. 

Stepwise model selection {5% significance level) with LNTS-PCA data se-

lected 3 out of 4 independent variables applied to Multiple Linear Regression. The 

137 



following model was obtained [29]. 

faults = 1.24178336 + 0.75727622 ·DOMAIN!+ 0.0.58507056 · DOMAIJN2 

+ 0.34032970 · DO M AI N3 

When using CART-LS, the tree has 5 terminal nodes and uses 2 out ·of 4 

independent variables. The tree built using CART-LAD has 4 leaf nodes and -uses 

3 out of 4 independent variables. For SPLUS, the preferred tree has 14 temninal 

nodes and uses 3 out of 4 independent variables [27]. 

CBR gave better prediction accuracy than MLR and ANN within grorup I. 

For group II, CART-LAD provided better prediction than CART-LS and SPLUS. 

Comparing all the underlying quantitative models, the order from the best to• the 

worst accuracy is CART-LAD, CBR, .MLR, SPLUS, ANN and CART-LS. 

• Comparative results of module-order models, LNTS-PCA 

1. LNTS-PCA, Comparative Results for Group I 

The results of module-order models based on group I are illustrated in Fig­

ure 4.111, 4.112 and 4.113. The Alberg diagram and the close view oE the 

most critical modules show that the three methods give very close predi•_cted 

ranking models along both ranges I and II. When analyzing performances, 

the three techniques in group I also perform really close over all the consid•_ered 

ranges. 

138 



100 

90 

80 

70 

l 60 

• 50 = :I 

af 40 

--Actual 

-caR 
--MLR 
-ANN 

30 

20 

10 

0 

0 10 20 30 40 50 

Modules(%) 

Figure 4.111: Alberg diagram for LNTS-PCA: CBR, MLR, ANN 

70 T-------------------------------~ 

60 

50 

l40 
::= 
::I3Q : 

20 

10 

o~~--~~--~~~~~~~~----~ 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(%) 

Figure 4.112: Close view of Alberg diagram for LNTS-PCA: CBR, MLR, AL~N 

139 



-caR 
--M..R 
-I'HN 

0 10 20 30 40 50 

Modules(~ 

Figure 4.113: Performance of LNTS-PCA: CBR, MLR, ANN 

2. LNTS-PCA, Comparative Results for Group II 

The Alberg diagram in Figure 4.114 denotes that SPLUS seems to present 

closer predicted ranking to the perfect ranking than the two CART techniques 

over range I. However, ranking models using CART-LS and CART-LAD are 

closer to a perfect model than a model using SPL US for some intervals of 

range II. 

For the most critical modules, SPLUS presents the nearest ranking to the 

perfect ranking, and CART-LAD gives the farthest ranking from the perfect 

ranking as illustrated in Figure 4.115. 

When analyzing performances for range I , SPLUS performs better than the 

other two methods. CART-LS presents lower performance than SPLUS. How-

ever, CART-LAD has considerably lower performance than both SPLUS and 

CART-LS for this range. 

140 



100 

90 

80 

70 

l 60 
• 50 i 
.f 40 

-Actual 
- c ART-lS 

-CART-lAD 
__.s PLUS 

30 

20 

10 

0 
0 10 20 30 40 50 

Modules (0
-"} 

Figure 4.114: Alberg diagram for LNTS-PCA: CART-LS, CART-LAD, SPLUS 

When considering performances over range I I , both CART techniques per-

form better than SPLUS over range II. CART-LS has an increasing trend of 

performance, while CART-LAD presents varying trend of performance along 

this range. The performance diagram is shown in Figure 4.116. 

CART-LAD has the best accuracy prediction within group II , but it presents 

considerably lower module-order modeling performance than others for the 

high interesting range, range I . This is one of several evidences that bet-

ter prediction does not always yield better performance when module-order 

modeling. 

3. LNTS-PCA, Group I and Group I I Models Comparison 

CBR is selected to represent all group I 's methods. The comparative results 

are illustrated in Figure 4.117, 4.118 and 4.119. We can easily notice again 

141 



60 

50 

l40 • = ::130 
~ 

20 

10 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(~ 

--Actual 
--.CART-LS 

---CART-LAO 

-sPLUS 

Figure 4.115: Close view of Alberg diagram for LNTS-PCA: CART-LS, CART­
LAD, SPLUS 

95 

l 85 

8 75 
c: --cART·LS • 65 ! --CART-LAO 

~ 55 -sPLUS 
ct 4S 
'ii 35 

I 25 

15 

0 10 20 30 40 50 
Modules(%l 

Figure 4.116: Performance of LNTS-PCA: CART-LS, CART-LAD, SPLUS 

142 



100 

90 

80 

70 

g 60 

J! 50 
"S 
.f 40 

30 

20 

10 

0 
0 10 20 30 40 

Module•~ 

50 

-Actual 

-cART-tS 
-cART-LAD 
~SPLUS 

-caR 

Figure 4.117: Alberg diagram for LNTS-PCA: CART-LS, CART-LAD, SPLUS 
and CBR 

that CBR performs close to SPLUS. This yields that SPLUS also performs 

close to the other models in group I. 

4. LNTS-PCA, comparative results regarding AAE and ARE 

CART-LAD and CART-LS provided the best and the worst prediction. How-

ever, CART-LAD doesn't perform better than CART-LS. When focusing on 

range I, CART-LS performs considerably better than CART-LAD. We can 

easily notice the large gap existing between the two curves. For range II, 

CART-LAD presents better performance for some intervals of the range, but 

at the end of range I I, it doesn't perform as well as CART-LS. For the most 

critical ranges, CART-LS obviously presents closer ranking to the perfect rank-

ing than CART-LAD. The graphical presentation is shown in Figure 4.120, 

143 



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules~ 

-Actual 

-cART-LS 

- cART-LAO 

~SPLUS 

-caR 

Figure 4.118: Close view of Alberg diagram for LNTS-PCA: CART-LS, CART­
LAD, SPLUS and CBR 

95 

l 85 

8 c:: 75 --cART·LS 

I 65 --cART-LAD 
~ 55 -sPLUS 
t 45 -caR 
'ii 35 "0 
0 

25 :IE 
15 

0 10 20 30 40 50 

Nodules~ 

Figure 4.119: Performance of LNTS-PCA: CART-LS, CART-LAD, SPLUS and 
CBR 

144 



100 

90 

80 

70 

l 60 -Actual 

.I 50 -CART-LAD 
~ 

.f 40 --cART-t.S 
30 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.120: Alberg diagram for LNTS-PCA: CART-LS, CART-LAD 

70.-----------------------------~ 

60 

50 

~40 .. 
= ::130 
.f 

20 

10 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(~ 

-Actual 

-cART-LAD 

-CART·LS 

Figure 4.121: Close view of Alberg diagram for LNTS-PCA: CART-LS, CART­
LAD 

145 



95 

~ 85 

Cl 75 
~ • 65 -cART-lAO ! 
~ 55 --CART-1..5 
:. 45 
~ 

I 35 

25 

15 

0 10 20 30 40 50 

Modules ('IQ 

Figure 4.122: Performance of LNTS-PCA: CART-LS, CART-LAD 

4.121 and 4.122. 

4.6 Comparing module-order models based on RAW and PCA metrics 

Prior research stated that the use of principal components analysis does not 

improve the prediction accuracy for tree-modeling (27]. For non tree-modeling tech-

niques (CBR, MLR, ANN), when comparing the prediction accuracy using PCA and 

RAW metrics (29], PCA gave better accuracy than RAW for the LLTS case study. 

However, RAW presented better accuracy than PCA for NT and LNTS. Therefore, 

we can conclude that PCA did not improve the prediction accuracy for tree models 

and didn't systematically improve the prediction accuracy for the other models. 

For our research, we investigate the benefits of using principal components 

analysis in module-order modeling. We will compare the module-order models built 

using the RAW metrics and their principal components. 

146 



100 

90 

80 

70 - 60 ::::t !.,... 
CBR 

• = 50 -Actual 
:a : 40 -PCA 

30 -RAw 

20 

10 

0 10 20 30 40 50 

Modules(O~ 

Figure 4.123: Alberg diagram for LLTS PCA and RAW comparison release 4: 
CBR 

4.6.1 Comparing module-order models for LLTS 

1. Comparative Results for Group I 

For LLTS data, the module-order models built using RAW metrics are very 

close to the ones built using PCA metrics for all methods in group I . We can 

see the obvious examples in Figure 4.123, 4.124 and 4.125. 

2. Comparative Results for Group II 

When considering CART-LS, the module-order models built using RAW met-

rics give closer ranking to the perfect ranking than the ones using PCA metrics 

for all releases. We show an example of the comparison in Figure 4.126 

For CART-LAD, the results are similar to CART-LS. The ordering models 

built using RAW metrics presents closer ranking to the perfect ranking than 

147 



100 

90 

80 

70 

~ 60 MLR 

• 50 ::: 
:I 

.f 40 
-Actual 

--PeA 
30 --RAW 
20 

10 

0 

0 10 20 30 40 50 

Madulea(%) 

Figure 4.124: Alberg diagram for LLTS PCA and RAW comparison release 2: 
MLR 

100 

90 

80 

70 ....... 
~ 60 ANN 

• 50 ::: 
::1 
.f 40 

--Actual 

--PeA 
30 --RAW 
20 

10 

0 

0 10 20 30 40 50 

Madulea(%) 

Figure 4.125: Alberg diagram for LLTS PCA and RAW comparison release 2: 
ANN 

148 



100 

90 

80 

70 
CART-LS -~ 60 

~ 50 -Actual 
::I 

-PCA ~ 40 

30 ---RAw 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.126: Alberg diagram for LLTS PCA and RAW comparison release 2: 
CART-LS 

the ones using PCA metrics for release 2 and 4. For release 3, the two models 

alternatively have closer ranking to the perfect ranking, but the one built 

using RAW metrics present closer ranking for the most critical modules. The 

example of release 2 and 3 are shown in Figure 4.127 and 4.128. 

SPLUS presents similar results to the group I techniques. The module-order 

models built using RAW metrics are very close to the ones built using PCA 

metrics as shown in Figure 4.129. 

Concisely, It was observed that when comparing PCA and RAW for the 

three group l's methods, the module-order models are very close. For group II, 

RAW metrics give better models than PCA for the two CART techniques. No 

improvement was observed for SPLUS. Therefore, the use of principal components 

149 



100 

90 

80 

70 
CART-LAD .-. e 60 

• = 50 -Actual 
:I 

~ 40 --PCA 

30 --RAw 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.127: Alberg diagram for LLTS PCA and RAW comparison release 2: 
CART-LAD 

100 

90 

80 

70 

g 60 CART-LAD 

~ 50 
:I -Actual 
.:! 40 --PCA 

30 --RAw 
20 

10 

0 
0 10 20 30 40 50 

Modules(~ 

Figure 4.128: Alberg diagram for LLTS PCA and RAW comparison release 3: 
CART-LAD 

150 



100 

90 

80 

70 

~ 60 
SPLUS 

..... 

.!! 50 "5 
af 40 

--Actual 

--PCA 

30 --RAw 
20 

10 

0 
0 10 20 30 40 5() 

Modules(~ 

Figure 4.129: Alberg diagram for LLTS PCA and RAW comparison release 4: 
SPLUS 

analysis does not yield any improvement when module-order modeling for the LLTS 

case study. 

4.6.2 Comparing module-order models of NT 

1. Comparative Results for Group I 

The module-order models of group I built using RAW and PCA metrics are 

very close to each other. When using PCA metrics fo:r CBR, the model is very 

close to the one using RAW metrics as illustrated in Figure 4.130. 

For MLR, the predicted ranking using PCA is closer to the perfect ranking 

than the one using RAW over range I, but the difference is not large, and 

both predicted rankings become close to each other <>ver range I I as shown in 

Figure 4.131. 

151 



100 

90 

80 

70 

~ - 60 CBR .. = 50 --Actual 
:::J 

.t 40 --PCA 

30 --RAW 

20 

10 

0 
0 10 20 30 40 50 

Modules(o/,. 

Figure 4 .130: Alberg diagram for NT PCA and RAW comparison: CBR 

For ANN, the model built using RAW is slightly closer to the the perfect 

ranking than the one using PCA metrics as shown in Figure 4.132. 

2 . Comparative Results for Group II 

T he module-order model using PCA is visibly better than the one using RAW 

metrics for CART-LS. We obviously see the considerable difference between 

PCA and RAW over range I . Figure 4.133 shows the comparative results for 

CART-LS. 

For CART-LAD, the model built using RAW is better than the one using 

PCA metrics over the considered ranges. The two models are very close to 

each other for the beginning of the cutoff range I . Afterwards, the model using 

RAW presents a closer ranking to the perfect ranking than the one using PCA 

152 



100 

90 

80 

70 

~ - 60 MLR 
., 

50 -Actual ~ 
&t 40 --PCA 

30 
_._ RAw 

20 

10 

0 

0 10 20 30 40 50 

Modules(%) 

Figure 4.131: Alberg diagram for NT PCA and RAW comparison: MLR 

100 

90 

80 

70 

g 60 ANN 

« 50 

• 40 &&. 

-Actual 

--PCA 

30 
--RAW 

20 

10 

0 
0 10 20 30 40 50 

ModuleaN 

Figure 4.132: Alberg diagram for NT PCA and RAW comparison: ANN 

153 



100 

90 

eo 
70 -~ 60 CART-LS 

• 50 = ::s 
If 40 

-Actual 

--PCA 

30 --RAW 

20 

10 

0 
0 10 20 30 40 50 

Modules(%} 

Figure 4.133: Alberg diagram for NT PCA and RAW comparison: CART-LS 

as shown in Figure 4.134. The same result is also seen for SPLUS as illustrated 

in Figure 4.135. 

To summarize, using PCA metrics improves the module-order models for 

MLR and CART-LS. However, for the other techniques in group I, the models using 

PCA are very close to the ones using RAW metrics. For the other methods in group 

II, using RAW metrics yielded better results than using PCA when module-order 

modeling. 

4.6.3 Comparing module-order models for LNTS 

1. Comparative Results for Group I 

The module-order models using RAW metrics are very close to the ones using 

PCA metrics for all group l's methods as shown in Figure 4.136, 4.137 and 

4.138. 

154 



100 

90 

80 

70 

l 60 
CART-LAD 

~ 50 -Actual 
= 
~ 40 --PCA 

30 --RAw 

20 

10 

0 
0 10 20 30 40 50 

Module8(%) 

Figure 4.134: Alberg diagram for NT PCA and RAW comparison: CART-LAD 

100 

90 

80 

70 

~ 60 ....... 
SPLUS 

.. 50 
~ 
~ 40 

-Actual 

--PCA 

30 ---RAW 

20 
10 

0 
0 10 20 30 40 50 

Module.(%) 

Figure 4.135: Alberg diagram for NT PCA and RAW comparison: SPLUS 

155 



100 

90 

80 

70 
CBR 

g 60 

• 50 = ::a 
~ 40 

-Actual 

--PCA 

--RAw 
30 

20 

10 

0 
0 10 20 30 40 50 

Modules(~ 

Figure 4.136: Alberg diagram for LNTS PCA a.nd RAW comparison: CBR 

100 

90 

80 

70 
MLR 

g 60 -Actual 
J 
::a 

50 --PeA 
~ 40 --RAW 

30 

20 

10 

0 
0 10 20 30 

Modules('Q 

Figure 4.137: Alberg diagram for LNTS PCA and RAW comparison: MLR 

156 



100 

g) 

80 

70 
ANN 

# 60 -• 50 = ::I 

&% 40 

--Actual 
--PCA 

--RAw 
30 

20 

10 

0 
0 10 20 30 40 50 

Modules~ 

Figure 4.138: Alberg diagram for LNTS PCA and RAW comparison: ANN 

100 

90 

80 

70 
CART-LS 

l 60 --Actual 
lit 50 = ::I : 40 

--PCA 
--RAw 

30 

20 

10 

0 
0 10 20 30 40 50 

Modules~ 

Figure 4.139: Alberg diagram for LNTS P CA and RAW comparison: CART-LS 

157 



100 

90 

80 

70 
CART-LAD 

~ 60 ....... .. 50 = ::I 

-Actual 

--PCA 
:. 40 --RAW 

30 

20 

10 

0 
0 10 20 30 40 50 

ModulesN 

Figure 4.140: Alberg diagram for LNTS PCA and RAW comparison: CART-LAD 

100 

90 

80 
SPLUS 

70 

g 60 -Actual 
~ 50 --PCA ::1 :. 40 --RAW 

30 

20 

10 

0 
0 10 20 30 40 50 

Modules~ 

Figure 4.141: Alberg diagram for LNTS PCA and RAW comparison: SPLUS 

158 



2. comparative Results for Group I I 

When comparing PCA with RAW for CART-LS, the two models are very 

close for range I, but they alternatively present closer ranking to the perfect 

ranking for range II as shown in Figure 4.139. 

For CART-LAD, the model using RAW is considerably better than the one 

using PCA metrics over range I, but they alternatively present closer ranking 

to the perfect ranking over range II as shown in Figure 4.140. 

For SPLUS, the model using PCA is very close models to one using RAW 

metrics over the considered ranges as shown in Figure 4.141 

To summarize, the module-order models using PCA are very close to ones 

using RAW metrics for three group I's methods and SPLUS. For the two CART 

methods, the models using PCA are not better than ones using RAW metrics for 

the range of higher interest. Therefore, the use of principal components analysis 

does not yield any benefit when module-order modeling for the LNTS case study. 

159 



Chapter 5 

CONCLUSIONS 

In this chapter, we present our conclusions based on the results of experiments 

on module-order modeling. 

5.1 Overview 

A module-order model predict the rank-order of modules based on a quanti­

tative quality factor. In this research, we used number of faults as a quality factor. 

An empirical study based on various underlying quantitative software quality pre­

diction methods was performed. Those underlying quantitative prediction models 

are Case-base Reasoning (CBR), Multiple Linear Regression (MLR), Artificial In­

telligent Networks (ANN), CART Least Square (CART-LS), CART Least Absolute 

Deviation (CART-LAD) and SPLUS algorithms. 

Three case studies of full-scale industrial software systems were used to com­

pare the module-order modeling performance of the different underlying techniques. 

160 



Both original RAW data and preprocessed PCA data set were applied to the ex­

periments. We will conclude with the lessons learned from this study following the 

three objectives discussed in the introduction of this thesis. 

The first objective is to study the behavior of module-order models based on 

five different underlying techniques. The conclusion can be grouped as the following. 

1. When considering CBR, MLR, and ANN the performances remained very close 

to each other when module-order modeling. 

2. For tree-modeling group, CART-LS, CART-LAD and SPLUS, the tree tech­

niques present different module-order models for all three case studies. The 

models based on the two CART methods present varying behaviors and per­

formances along the considered range. SPLUS provided better performances 

than the CART methods. In addition SPLUS provides the most robust model 

due to the least variation of ¢(c) in this group. The diagram presented the 

performance from these tree-modeling techniques have different trend of path. 

3. When comparing non tree-modeling with tree-modeling group, CBR, MLR 

and ANN perform close to SPLUS when module-order modeling compared to 

CART techniques. 

4. We can not conclude which underlying technique has the best performance 

when module-order modeling. This depends on the particular cutoff percentile 

the manager wants to select. For example in the experiments, CART-LS 

161 



performs considerably better than other underlying techniques around the 

40-50 percentile for all case studies, however it frequently provides poorer 

performances than other techniques around the beginning of the considered 

range. 

For the second objective, we investigated the benefits of using principal com­

ponents analysis when module-order modeling. When considering the non tree­

modeling group, the models built using PCA remained very close to the ones built 

using RAW. For the tree-modeling group, RAW metrics usually yielded better mod­

els than PCA metrics for all three case studies. This leads us to the conclusion that 

the use of PCA doesn't yield better results when module-order modeling. 

For the third objective, we have verified that better prediction accuracy, 

doesn't always yield better performance when module-order modeling. We can see 

several evidences according to the comparative results. Prior research [27] stated 

that CART-LAD had better prediction accuracy than other techniques. However, 

CART-LAD did not perform better than the other techniques when module-order 

modeling for all three case studies. 

Overall, any underlying quantitative method can be applied to module-order 

modeling. The performance of a rank-order models may be differ from one algorithm 

to another and from one case study to another. In addition, AAE and ARE value 

seem not to be good indicators to define a good prediction model for module-order 

modeling. 

162 



5.2 Future Work 

Module-order modeling can be further investigated by using different under­

lying quantitative techniques and applying it to a wide variety of systems other than 

a telecommunications system. 

163 



BIBLIOGRAPHY 

[1] B. Beizer. Software Testing Techniques. Van Nostand Reinhold, New York, 
2d edition, 1990. 

[2] Y. Berkovich. Software quality prediction using case-based reasoning. Mas­
ter's thesis, Florida Atlantic University, Boca Raton, FL USA, Aug. 2000. 
Advised by Taghi M. Khoshgoftaar. 

[3] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing interpretable 
models with optimized set reduction for identifying high-risk software compo­
nents. IEEE Transactions on Software Engineering, 19(11):1028-1044, 1993. 

[4] W. R. Dillon and M. Goldstein. Multivariate Analysis: Methods and Appli­
cations. John Wiley & Sons, New York, 1984. 

[5] N. E. Fenton and S. L. Pfleeger. Software Metrics. PWS Publishing Com­
pany, New York, 2d edition, 1997. 

[6] J.P. Hudepohl, S. J. And, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand. 
EMERALD: Software metrics and models on the desktop. IEEE Software, 
13(5):56-60, Sept. 1996. 

[7] J.P. Hudepohl, S. J. And, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand. 
EMERALD: Software metrics and models on the desktop. In Proceedings of 
the Fourth International Symposium on Assessment of Software Tools, pages 
111-112, Toronto, May 1996. IEEE Computer Society. Extended abstract of 
[6]. 

[8] W. D. Jones, J. P. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen. Ap­
plication of a usage profile in software quality models. In Proceedings of 

164 



the Third European Conference on Software Maintenance and Reengineer­
ing, pages 148-157, Amsterdam, Netherlands, Mar. 1999. IEEE Computer 
Society. 

[9] T. M. Khoshgoftaar and E. B. Allen. A practical classification rule for soft­
ware quality models. Technical Report TR-CSE-97-56, Florida Atlantic Uni­
versity, Boca Raton, Florida USA, Nov. 1997. 

[10] T. M. Khoshgoftaar and E. B. Allen. Ordering fault-prone software modules. 
Technical Report TR-CSE-98-9, Florida Atlantic University, Boca Raton, 
Florida USA, Feb. 1998. 

[11] T. M. Khoshgoftaar and E. B. Allen. Predicting the order of fault-prone mod­
ules in legacy software. In Proceeding of the Ninth International Symposium 
on Software Reliability Engineering, pages 344-353, Paderborn, Germany, 
Nov. 1998. IEEE Computer Society. 

[12] T. M. Khoshgoftaar and E. B. Allen. A comparative study of ordering and 
classification of fault-prone software modules. Empirical Software Engineer­
ing, 4:159-186, 1999. 

[13] T. M. Khoshgoftaar and E. B. Allen. Software quality modeling: The soft­
ware measurement analysis and reliablity tookit. In Proceeding of the Twelfth 
IEEE International Conference on Tools with Artificial Intelligence, pages 
54-61. IEEE Computer Society, Nov. 2000. 

[14] T. M. Khoshgoftaar, E. B. Allen, N. Gael, A. Nandi, and J. McMullan. De­
tection of software modules with high debug code churn in a very large legacy 
system. In Proceedings of the Seventh International Symposium on Software 
Reliability Engineering, pages 364-371, White Plains, NY, Oct. 1996. IEEE 
Computer Society. 

[15] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Accu­
racy of software quality models over multiple releases. Annals of Software 
Engineering, 9:103-116, 2000. 

[16] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Gael. Early 
quality prediction: A case study in telecommunications. IEEE Software, 
13(1):65-71, Jan. 1996. 

165 



[17] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and G. D. Richard­
son. Predictive modeling techniques of software quality from software mea­
sures. IEEE Transactions on Software Engineering, 18(11):979-987, Nov. 
1992. 

[18] K. E. E. L. C. Briand and S. Morasca. On the application of measurement 
theory in software engineering. Empirical Software Engineering: An Inter­
national Journal, 1(1):61-88, 1996. 

[19] Y. LeCun. A learning procedure for asymmetric network. Cognitiva, 85:599-
604, 1985. 

[20] C. T. Lin and C. S. G. Lee. Neural Fuzzy Sytems: A Neuro-Fuzzy Synergism 
to Intelligent Systems. Prentice Hall, Inc., Upper Saddle River, New Jersey, 
1996. 

[21] J. Maryrand and F. Coallier. System acquisition based on software product 
assessment. In Proceeding of the 18th International Conference on Software 
Engineering, pages 210-219, Berlin, Germany, Mar. 1996. IEEE Computer 
Society. 

[22] J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone pro­
grams. IEEE Transactions on Software Engineering, 18(5):423-433, 1992 . 

. 
[23] R. H. Myers. Classical and Modern Regression with Applications. PWS-

KENT Publishing Company, Boston, 1990. Duxbury Series. 

[24] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in tele­
phone switches. IEEE Transaction on Software Engineering, 22(12) :886-894, 
1996. 

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel Distributed 
Procesing, volume 1, chapter 8. MIT Press, Cambridge, MA, 1986. 

[26] N. F. Schneidewind. Methodology for validating software metrics. IEEE 
Transaction on Software Engineering, 18(5):410-422, May 1992. 

166 



[27] N. Seliya. Software fault prediction using tree based modeling. Master's 
thesis, Florida Atlantic University, Boca Raton, FL USA, Aug. 2001. Advised 
by Taghi M. Khoshgoftaar. 

[28] R. Shan. Modeling software quality with classification trees using princi­
pal components analysis. Master's thesis, Florida Atlantic University, Boca 
Raton, FL USA, Dec. 1999. Advised by Taghi M. Khoshgoftaar. 

[29] N. Sundaresh. An empirical study of analogy based software fault prediction. 
Master's thesis, Florida Atlantic University, Boca Raton, FL USA, May 2001. 
Advised by Taghi M. Khoshgoftaar. 

[30] L. G. Votta and A. A. Porter. Experimental software engineering: Are­
port on the state of the art. In Proceeding of the Seventeenth International 
Conference on Software Engineering, pages 277-279, Seattle, WA, Apr. 1995. 
IEEE Computer Society. 

[31] M. C. Yovitz, G. T. Jacobi, and G. Goldstein. Self Organizing Systems. 
Spartan Books, Washington, DC, 1962. 

167 




