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Most software reliability approaches classify modules as fault-prone or not 

fault-prone by way of a predetermined threshold. However, it may not be practical 

to predefine a threshold because the amount of resources for reliability enhancement 

may be unknown. Therefore, a module-order model (MOM) predicting the rank­

order of modules can be used to solve this problem. The objective of this research is 

to make an empirical study of MOMs based on five different underlying quantitative 

software quality models. We examine the benefits of principal components analysis 

with MOM and demonstrate that better accuracy of underlying techniques does not 

always yield better performance with MOM. Three case studies of large industrial 

software systems were conducted. The results confirm that MOM can create efficient 

models using different underlying techniques that provide various accuracy when 

predicting a quantitative software quality factor over the data sets. 
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Chapter 1 

INTRODUCTION 

The importance of software engineering has been increasing in industrials, 

businesses and organization all over the world. High assurance of software quality 

is required because of the large amount of monetary loss or even unassessed cost to 

human lives due to a potential software failure. Consequently, reliability becomes 

an undeniable ingredient while developing software products. However, a reliability 

process involves time consumption, budget and quality standards. The limited time 

and high cost reduces the quality of software testing, which is the essential process in 

the software development cycle. To solve the problem, we may focus on the modules 

that are most likely to be faulty and apply reliability-enhancement activities to 

them [6]. A software fault is a defect in an operational product causing the software 

failure [5]. 

While performing the reliability enhancement process, a software quality 

model is created to help to predict the number of faults in modules early in the 

life cycle. Numerous researches have focused on classification models to identify 

fault-prone and not fault-prone modules early in the life cycle [3, 14, 16, 22]. To 
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define the fault-prone or not fault-prone modules, we have to determine a threshold 

before modeling. However, it's hard to define the threshold at the time of modeling 

because of the unspecified amount of resources for the reliability-improvement effort. 

Therefore, a module-order model (MOM) predicting the rank-order of modules has 

been proposed to alleviate the problem of classifying fault-prone or not fault-prone 

modules [10]. 

A module-order model (MOM) predicts the rank-order of modules based on 

a software quality factor such as number of faults, and uses the selected cutoff rank 

for reliability enhancement. The modules above the cutoff point are classified as 

fault-prone modules, otherwise the modules are not fault-prone. A module-order 

model consists ?f an underlying quantitative model that produces a prediction of 

the quality factor and an or~ering of the modules by using the predicted quality 

factor. The product and process metrics are used as inputs to the underlying quan­

titative models. Then, a module-order model retrieves the predicted variable from 

the underlying techniques as input. 

Preliminary research [10] gave the definition of the module-order model and 

a method to build and evaluate the modeL Multiple Linear Regression was the 

underlying quantitative model. Another study [12] observed the comparative result 

of module-order model with non parametric discriminant analysis for the purpose of 

classification . The underlying quantitative model applied in this study was also 

Multiple Linear Regression. The study used module-order modeling to build the 
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rank-order of modules based on the number of faults. Then, the defined threshold 

was provided to compute the misclassification rates. This result Wa.s compared 

to other misclassification rates obtained by applying nonparametric discriminant 

analysis. 

Both researches used the same two empirical case studies to evaluate the 

performance of module-order models. The conclusion from these two researches 

demonstrated that module-order modeling is very useful to use when the thresh­

old can not be appropriately defined at the time of modeling. The results were 

consistently effective and robust in the two different projects, and MOM even per­

forms better than nonparametric discriminant analysis in view of classification. In 

addition, a module-order model presented good performances even though the un­

derlying quantitative model produced the predicted dependent quality factor with 

poor accuracy. 

As previously described, the prior studies were only based on one underlying 

technique. However, any underlying quantitative model can be applied to module­

order modeling as long as it uses at least an ordinal scale [18]. Therefore, our study 

will complete prior research about module-order modeling based on a variety of un­

derlying quantitative models. The main objectives of this thesis can be summarized 

as the following items. 

• Study the impact of different underlying quantitative models on module-order 

modeling. In this study, we focus on the following five different underlying 

3 



techniques: Case-Based Reasoning (CBR), Multiple Linear Regression (MLR), 

Artificial Neural Network (ANN), CART-Least ~quare (CART-LS), CART­

Least Absolute Deviation (CART-LAD) and SPLUS. 

• Study whether principal components analysis can give the benefits when module­

order modeling. 

• Verify the hypothesis that better accuracy of underlying techniques does not 

ensure better performance in module-order modeling. 

The first scope of our research is to perform a case study of module-order 

modeling using different underlying techniques. A module-order model can use any 

method to retrieve the predicted quality factor. We used graphical presentation to 

observe the behaviors and performances of the different module-order models. It was 

found that the module-order models based on CBR, MLR and ANN had very similar 

behaviors and performances. The diagrams show the very close trend of lines along 

the considered ranges. In contrast, the tree modeling techniques, CART-LS, CART­

LAD and SPLUS, present different results. The graphs illustrated the separately 

trend of lines, especially for the two CART methods. They present the varying 

behavior and performance along the considered range. Further, when comparing 

tree-modeling with non tree-modeling methods, we found that SPLUS performs 

close to CBR, MLR and ANN when module-order modeling. 
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The second scope investigates the benefits of using principal components 

analysis [28] when module-order modeling. We compared the module-order models 

built using PCA with ones using RAW metrics. It was observed that the module­

order models using PCA had very close behaviors to the ones using RAW metrics for 

CBR, MLR and ANN. For tree-modeling techniques, the models built using RAW 

are usually better than the ones using PCA metrics. Therefore, it was concluded 

that the use of principal components analysis did not improve the module-order 

models. 

The third scope of our research is to verity that better prediction accuracy 

does not guarantee better performance when module-order modeling. In prior re­

searches [12, 10], two different data sets were used to build the model. The results of 

the underlying quantitative prediction used for module-order modeling were differ­

ent. The accuracy of the predicted quality factor from one data set was much better 

than one from the other. However, the performance of module-order models were 

about the same. In this study, the variation of fundamental quantitative models and 

incremental case studies were added. The accuracy of each underlying quantitative 

model in each data set was compared before applying module-order modeling. After 

conducting the experiments, we found several evidences to confirm our hypothesis. 

The techniques with the best prediction didn't yield better performances than the 

other underlying models when module-order modeling. 

This study used three large data sets as materials for the case studies. The 

5 



first case is a very large legacy telecommunications system written in a high level 

language similar to PASCAL. The second one is a large network telecommunications 

system, and the last one is also a network telecommunications system. All of these 

three software systems have the complete characteristics making them suitable for 

a case study based on the software engineering community standard [30]. The 

experiment was conducted on both raw and principal component metrics for all 

three data sets. The tool used in this thesis is the Software Measurement Analysis 

Reliability Toolkit, SMART, developed at the Empirical Software Engineering Lab 

(ESEL), Florida Atlantic University [13]. 

Looking through the layout of this study. This thesis consists of five chap­

ters. Chapter 1, introduction, describes the objectives and history of previous re­

searches in the area of interest. Chapter 2, Software metrics, gives the details of 

different me tries used in this study. Chapter 3, methodology, discusses the various 

methodologies involved in this study. Module-order modeling is explained in deep 

detail. Other underlying modeling techniques and some algorithms are also briefly 

described. Chapter 4, experiment, presents the case study experiments and their 

results. Chapter 5, conclusion, analyzes the result and concludes with the lesson 

learned in this study. 
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Chapter 2 

SOFTWARE METRICS 

This Chapter explains the definition and the importance of software met­

tics, including the information about the metrics used in the three systems in this 

study. Those three systems are the large legacy telecommunications system (LLTS), 

the network telecommunications (NT), and the large network telecommunications 

system (LNTS). 

2.1 Introduction 

Software metrics are the results of software measurement activities used to 

evaluate the performance, reliability and quality of the software processes and prod­

ucts. The attributes of software metrics are distinguished into 2 groups, internal 

and external attributes [5]. 

• Internal attributes are defined as attributes that can be measured by observing 

the characteristic of the process and product separated from the system's en­

vironment such as size (line of codes), complexity (number of decision points) 
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• External attributes are measured to determine how the process and product 

interacts with its environment. These attributes can be measured only when 

the code is executed, for example, the number of failure experienced by users. 

For software metrics, there is no definite conclusion on how to group the 

metrics_ In this study, software metrics can be categorized into 3 classes: process, 

product and execution [5]. 

Process metrics are the collections of software development activities associ­

ated with time. The activities in the particular process are arranged according to a 

time schedule. This means one activity cannot begin unless the previous activity is 

finished. Therefore, process metrics measure the attributes during the development 

process_ Examples of this kind of metric can be any activity in the development 

period such as history of faults discovered and corrections, time used to fix errors 

or even the records of programmers, etc. 

Product metrics are the artifact or document observed at the present time on 

the software product. The program's source code is classified in this group. Product 

metrics are not concerned with the development process. In contrast, they focus on 

the structure of the software. Example of product metrics are program size, number 

of calls to other modules, number of loops, etc. 

Execution metrics are the gathered information when the software is exe­

cuting in the real operating environment. Examples of execution metrics are the 

duration of operation and deployment of the product. 
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Standard software metric should reach following requirements [1]: 

• It can be calculated, uniquely, for all programs to which we apply it. 

• It doesn't need to be calculated for programs that change size dynamically or 

programs that, in principle, cannot be debugged 

• Adding something to a program (e.g., instructions, storage, processing time) 

will never decrease the measured complexity. 

The first requirement assures a usable and objective measure. The second 

guarantees that the metrics are applied to the reasonable programs and the third is 

the intuitive understanding. 

2.2 Software Metrics Used in This Study 

The following items are brief description of the three data sets used in this 

research. 

• Large Legacy Telecommunications System (LLTS): LLTS consists of four re­

leases with a large amount of software metrics, approximately 3500 to 4000 

modules from several million lines of code in each release. 

• Network Telecommunications (NT): NT was collected from a network telecom­

munication systems, which has about 1.3 million lines of code. It is written in 

a high level programming language, PASCAL. 
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• Large Network Telecommunications System (LNTS): LNTS was collected from 

another large network telecommunications system. It has about 13 million 

lines of code, written by another high level programming language, PROTEL. 

2.3 LLTS metrics 

Metrics for the Large Legacy Telecommunications System (LLTS) were col­

lected using the Enhanced Measurement for Early Risk Assessment of Latent Defects 

(EMERALD) system, a decision support system that facilitates software measure­

ment and software quality models [7]. EMARALD utilizes the Datrix software an­

alyzer developed by Bell Canada [21] to measure the static attributes of the source 

code. The measurement by EM_.t\.RALD is done periodically on the latest source 

code. The basic unit that Datrix measures is a procedure: a function or subrou­

tine. Then, EMERALD gathers metrics that Datrix provides from the module level. 

We classified the metric collected from EMERALD into 3 classes as mentioned. Ta­

ble 2.1lists the names and descriptions of twenty-four product metrics of LLTS data. 

Table 2.2 and Table 2.3 lists fourteen process metrics and four execution metrics of 

LLTS data respectively [15]. 

2.3.1 LLTS product Metrics 

Product metrics for LLTS can be further organized into three main groups: 

call graph metrics, control How graph metrics and statement metrics. Call graph 

metrics give the call relation among the procedures. Control How graph metrics 
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Table 2.1: Software Product Metrics of LLTS data 

Symbol Description 
Call Graph Metrics 
CALUNQ Number of distinct procedure calls to others. 
CAL2 Number of second and following calls to others. 

CAL2 = CAL- CALUNQ where CAL is the total number of 
calls. 

Control Flow Graph Metrics 
CNDNOT Number of arcs that are not conditional arcs. 
IFTH Number of non-loop conditional arcs (i.e., if-then constructs). 
LOP Number of loop constructs. 
CNDSP NSM Total span of branches of conditional arcs. The unit of measure 

CNDSPNMX 
CTRNSTMX 
KNT 

NDSINT 

is arcs. 
Maximum span of branches of conditional arcs. 
Maximum control structure nesting. 
Number of knots. A "knot" in a control How graph is where 
arcs cross due to a violation of structured programming prin­
ciples. 
Number of internal nodes (i.e., not an entry, exit, or pending 
node). 

NDSENT Number of entry nodes. 
NDSEXT Number of exit nodes. 
NDSPND Number of pending nodes (i.e., dead code segments). 
LGPATH Base 2 logarithm of the number of independent paths. 
Statement Metrics 
FILINCUQ Number of distinct include files. 
LOG Number of lines of code. 
STMCTL Number of control statements. 
STMDEC Number of declarative statements. 
STMEXE Number of executable statements. 
VARGLBUS Number of global variables used. 
VARSPNSM Total span of variables. 
VARSPNMX Maximum span of variables. 
VARUSDUQ Number of distinct variables used. 
VARUSD2 Number of second and following uses of variables. 

VARUSD2 = VARUSD- VARUSDUQ where VARUSD is the 
total number of variable uses. 
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Symbol 
DES_pR 
BETA_pR 
DES ...FIX 
BETA...FIX 

GUST ...FIX 

REQ_UPD 
TOT_UPD 
REQ 

SRC_GRO 
SRC_MOD 
UNQJJES 
VLO_UPD 

LO_UPD 

UPD_CAR 

Table 2.2: Software Process Metrics of LLTS data 

Description 
Number of problems found by designers. 
Number of problems found during beta testing. 
Number of problems fixed that were found by designers. 
Number of problems fixed that were found by beta testing in 
the prior release. 
Number of problems fixed that were found by customers in the 
prior release. 
Number of changes to the code due to new requirements. 
Total number of changes to the code for any reason. 
Number of distinct requirements that caused changes to the 
module. 
Net increase in lines of code. 
Net new and changed lines of code. 
Number of different designers making changes. 
Number of updates to this module by designers who had 10 or 
less total updates in entire company career. 
Number of updates to this module by designers who had be-
tween 11 and 20 total updates in entire company career. 
Number .of updates that designers had in their company ca-
reers. 

Table 2.3: Software Execution Metrics of LLTS data 

Symbol 
USAGE 
RESCPU 

BUSCPU 

TANCPU 

Description 
Deployment percentage of the module. 
Execution time (microseconds) of an average transaction on a 
system serving consumers. 
Execution time (microseconds) of an average transaction on a 
system serving businesses. 
Execution time (microseconds) of an average transaction on a 
tandem system. 
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indicates the flow of control from one statement to another in the software system. 

Statement metrics measure the properties of the program text, regardless of the 

meaning of the text or the order of the text in the program [5]. 

Call graph is a directed graph that represents the trace of the procedures in a 

program module. A call graph gives a layout of the procedure and subroutine calls. 

It ignores details and shows the abstract model of software design. In general, the 

main procedure is denoted by a root node. A call is represented by an edge, and 

child nodes represent the called procedure or subroutines. Some examples of metrics 

collected from call graphs are the number of distinct procedure calls, CALUNQ, and 

the number of second and following calls, CAL2. These metrics can be collected in 

the early high level design phase of the development process. 

Control Flow Graph is the di.l"ected graph that shows the flow of control from 

one statement to another. Its structure consists of a start node, a stop node, and 

the inner nodes lying on several paths. Examples of control flow graph metrics are 

number of nodes and number of arcs in the graph, the out-degree and in-degree of 

a node, or conditional and unconditional arcs that create paths. Control flow graph 

metrics can be measured when the detailed design of the algorithm is completed. 

Statement metrics can be collected when the program is in the non execut­

ing state. These metrics measure some properties of the source code without any 

interpretation. They only provide the quantity of a particular feature of the source 
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code. Therefore, this metrics will not be changed when the text is rearranged. Ex­

amples of statement metrics are lines of code (LOC), number of statements, number 

of unique operators and operands, total number of keyword appearances and total 

number of tokens [5]. For LOC, the treatment blank line and comment has to be 

described. In this study, we exclude blank lines, but includes comment lines. 

2.3.2 LLTS Process Metrics 

Process metrics give the detail of software-development activities. Prior re­

search has shown that process metrics play a significant role in software quality 

prediction [2]. The discussion about process metrics can be divided in terms of in­

ternal and external process attributes as earlier mentioned. Internal attributes are 

the components that can be collected directly from the process development with­

out executing the software, for example, the number of requirement reviews, number 

of requirement errors found during inspection, or even the number of programmers 

working on the project. For external attributes, they are only measured with respect 

to how the process relates to its environment. Examples of external attributes are 

cost, controllability and stability. Frequently, external attributes are measured in 

terms of internal attributes such as effectiveness of code maintenance, defined as the 

average number of faults discovered per thousand lines of code. Table 2.2 lists the 

available process metrics in LLTS data. However, process metrics are not applied in 

this study because the prediction of number of faults in a program was done early 
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in the software life cycle. 

2.3.3 LLTS Execution Metrics 

The execution metrics are collected from the real operation of the program 

in prior releases such as time or deployment. In this study, the execution met­

tics are USAGE and three time laboratory measurements, RESCPU, BUSCPU, 

and TANCPU. USAGE was calculated from deployment records in the previous re­

leases [8). The current releases are assumed to be similar to the prior ones because 

they were all deployed by the same users. Previous work [2] demonstrated that 

USAGE was a very important variable and played a significant role in the software 

quality model. Obviously, when the system has more users, The probability of users 

finding new faults is higher. 

2.4 ~T ~etrics 

Network Telecommunications (NT) data is a network telecommunications 

system created by professional programmers. From 12 million lines of code, a large 

sample of modules, approximately 1.3 million lines of code, was used to collect 

software metrics. Table 2.4 gives the description of the NT system profile. NT 

metrics include lines of code, control-flow graph edges, and other non-declaration 

statements. There are 11 variables in the NT system metrics. For each module, 

nine static metrics were observed and recorded by using a software metrics analyzer 

package. Static metrics can be measured during the detailed design phase or later 
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Table 2.4: NT System Profile 

Application Telecommunications 
Language Pascal-like 
Lines of Code 1.3 million 
Executable Statements 1.0 million 
Control Flow Graph Edges 364.0 thousand 
Source Files 25.0 thousand 
Functional Modules 2.0 thousand 
Product Metrics 9 
PC A Domain Metrics 5 
Reuse Covariates 2 
Quality Metric Number of faults 

from code. Besides these nine static metrics, NT metrics include two categorical 

variables, IS NEW and ISCHG. 

{ 

1 a module did not exist in the prior release 
ISNEW= O 

otherwise 

ISCHG= {: 
a module was modified from prior release 

otherwise 

The detail of NT product metrics are shown in table 2.5. For apparent understand-

ing, McCabe cyclomatic complexity is calculated from 

VG = Arcs- Vertices+ Entrypoints + Exitpoints. 

2.5 LNTS metrics 

Large Network Telecommunications System (LNTS) metrics were collected 

using the Datrix software analyzer mentioned earlier in the EMERALD project. The 
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Table 2.5: NT Product Metrics 

Symbol Description 
Call Graph Metrics 

MU Number of modules used. 
TC Total calls to other modules. 
uc Unique calls to other modules. 

Control Flow Graph Metrics 
IFTH H-Then conditional arcs. 
LP Number of loops. 
NL Nesting level. 
SPC Span of conditional arcs. 
SPL Span of loops. 
VG McCabe cyclomatic complexity. 

system profile of LNTS data is summarized in table 2.6 . Starting with 13 million 

lines of code, LNTS metrics were created from a subset of the entire software system. 

This subset covered only the modules modified during the development process. For 

the rest, modules were considered reliable because they remained unchanged. The 

subset consists of about 7 million lines of code, 180000 thousand source files,and ap-

proximately 7000 modified modules. The metrics structure is similar to NT metrics 

structure. The detail of LNTS product metrics can be found in table 2.7. 
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Table 2.6: LNTS System Profile 

Application Telecommunications 
Language PROTEL 
Lines of Code 7.0 million 
Executable Statements 6.0 million 
Control Flow Graph Edges 2.0 million 
Source Files 18.0 thousand 
Changed Modules 7.0 thousand 
Design Metrics 9 
PC A Domain Metrics 4 
Quality Metric Number of faults 

Table 2. 7: LNTS Product Metrics 

Symbol Description 
Call Graph Metrics 

UCT Unique procedure calls 
TCT Total calls to others 
NDI Distinct files included 

Control Flow Graph Metrics 
VG McCabe's cyclomatic complexity 
NL Number of loops 
IFTH Number of if-then structures 
NELTOT Total nesting level 
PSCTOT Total number of vertices within the 

span of loops or if-then structures 
RLSTOT Total edges plus vertices within loop 

structures 
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Chapter 3 

METHODOLOGY 

This chapter discusses Module-Order Modeling (MOM) in detail, and the 

methodologies used in this study. It also gives an overview of principal components 

analysis (PCA), underlying quantitative models and how to use these methodologies 

in our research. 

3.1 Module-Order Modeling 

Software quality modeling is mainly used to predict the quality of modules 

to perform cost-effective enhancements before the software becomes operational. 

However, defining such modules to be fault-prone requires a specific threshold before 

modeling. This is frequently not suitable because of the undetermined amount of 

reliability enhancement effort. Therefore, predicting the rank-order of modules is 

often more useful. The module-order modeling ranks the modules according to the 

predicted quality factor, and gives management more flexible reliability enhancement 

strategies than classification models [12]. 
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Module-order model uses the product and process metrics to predict the rank­

order of quality factor such as number of faults or code churn. The goal is to develop 

a suitable model that predicts the ranking of modules, according to a quality factor 

from the most to the least fault-prone. An efficient model can help the engineers to 

focus on, and enhance the modules that possibly bring the greatest payoff when the 

product is released. 

A module-order model consists of the following components (12]. 

1. An underlying quantitative software quality prediction model 

2. A ranking of modules according to a quality measure predicted by the under­

lying model 

3. A procedure for evaluating the accuracy of a model's ranking 

In this study, the underlying quantitative software quality models are Case­

Based Reasoning, Multiple Linear Regression, Artificial Neural Network, SPLUS 

and CART algorithms for tree modeling. All techniques use different means to 

predict the dependent variables. The inputs to these modeling methods are the 

process and product metrics collected during the development process. 

There are two kinds of input data sets provided to the underlying quantitative 

models: fit and test data sets . In general, we use the fit data set to build the models 

based on different techniques and use the test data set to evaluate the models. 

When evaluating the model, the accuracy of the result is measured by the difference 
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Figure 3.1: Module-order model operation 

Ranking 
modules 

between actual a.nd predicted dependent variables. Two statistical values, AAE a.nd 

ARE, a.re used to represent the accuracy of the prediction. Small AAE and ARE 

values indicate an accurate modeL 

The input to the module-order models is the actual quality factor (dependent 

variable) measured during the development process a.nd the predicted quality factor. 

The output of the module-order model is the ranking of the modules based on the 

predicted quality factor of each module. Our goal is to compare the performance of 

module-order models based on different underlying quantitative models and relate 

the performance of MOM to the accuracy of the underlying models. In this study 

module-order modeling is applied to the test data set . The concise scope of module-

order model operation is shown in Figure 3.1 

Since the quality factor we are interested in this study is the number of faults, 

the predicted quality factor must have at least a.n ordinal scale (1,2,3, ... ) [18]. In 
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contrast, the quality factor of classification models has a nominal scale, fault-prone 

or not fault-prone modules. 

Building the software quality model uses the following steps [26]. 

L Build a model using data from past projects: The fit data set is used to build 

the modeL In some methodologies, many models can be built by varying the 

main parameter in the algorithm. The model, which has the best accuracy 

will be chosen. 

2. Evaluate the model using distinguished historical data: After building the 

model, the test data set is used to evaluate the model and test the quality of 

fit. 

3. Use the model on the current project's data: The acceptable model is applied 

to the actual project's data we want tl;le dependent variable predicted for. 

According to the modeling technique, the underlying quantitative model is 

built. Suppose a quantitative model has an actual dependent variable represented 

by Fi, and f(xi) is an ideal function of independent variables, the vector Xi-

(3.1) 

Then, suppose F( xi) be the predicted dependent variable of .Fi estimated by 

a fitted quantitative model, j(xi)-

F(xi) =/(xi) 
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All independent variables are chosen by the selection method included in the 

modeling technique. 

Spearman correlation [24)was proposed to evaluate the accuracy between ac­

tual and predicted ranking of a module-order modeL It represents the over all 

ranking accuracy over the entire data set, but it does not give a measure of robust­

ness. In our case, we do not care about the accuracy over the entire data set, but 

we want to see the performance of a module-order model in terms of robustness (ex­

plained later in this section). Therefore, spearman correlation is not appropriated 

for evaluation of a module-order model [10). 

For module-order modeling, the accuracy of the predicted dependent variable 

is not the goal. However, we concentrate on the ability of the model to approximate 

an ordering starting with the most fault-prone to a certain percentile. Therefore, 

we use the following method to evaluate how a module-order model performs. 

Let ~ be the percentile rank of observation i in a perfect ranking, R. Let 

R(xi) be the percentile rank of observation i in a predicted ranking, R. 

1. Determine the perfect ranking of modules in the test data set, R, by ordering 

modules according to Fi (actual software quality factor). 

2. Determine the predicted ranking, R, by ordering modules according to F(xi) 

(predicted software quality factor) from the least to the most fault-prone. 
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3. After applying module-order modeling, modules are ordered for reliability im-

provement beginning with the most fault-prone module and ending with the 

least fault-prone modules at the highest considered percentage. A cutoff point, 

c, is the percentile indicating the last module included in the enhancement 

process. 

Management will choose to enhance the module in priority order according to 

the ranking. However, since the rank of the last module enhanced is unknown 

at the time of modeling, we choose a range of pe-rcentiles, C, that might be 

in the interest of the manager to consider. In this research, we covered the 

50 percent of the entire modules. In general, there is no project where more 

than 50 percent of the modules will be reviewed. Other projects may choose 

different percentiles. 

For each cutoff percentile value of interest, c E C: 

• Calculate the sum of actual number offaults, G(c), in modules above the 

cutoff percentile for perfect ranking, R 

G(c) = L Fi (3.3) 
i:Ri~c 

• Calculate the sum of actual number of faults in modules above the cutoff 

percentile G(c) for predicted ranking, R 

G(c) = L Fi (3.4) 
i:R(:z:i);?:c 
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4. Let Gtot be the total number of actual faults. Calculate the per-centage of 

faults of two rankings rationalized by the Gtot, G(c)/Gtot and GfttGtot· This 

value shows us the benefit of using the model at the cutoff point, c 

5. Calculate the performance of the model, ¢(c) , representing how closely the 

faults in predicted ranking match those in the perfect ranking. 

""( ) = G(c) 
'P c G(c) 

Higher c implies the more fault-prone modules. 

(3.5) 

The ratio of the actual faults at c, ¢(c), determines the performamce of the 

model's ranking at the given cutoff c compared to the perfect ra.nJiting. The 

variation of if>( c) shows the robustness of the modeL If the variation otf ¢(c) over 

the range Cis small, it refers that the model is robust. Due to the uncertain 

resources for reliability enhancement, we prefer to see the consistemcy of the 

accuracy over a range of c. 

All modules above the selected cutoff point would be considered to be reviewed 

in the same way, and those below the cutoff point would be considered to be 

acceptable. Therefore, the difference between the model's ranking amd perfect 

ranking is not a suitable measure of the model's accuracy. The ac:::curacy of 

the rank-order within the enhanced group (above the selected c), ne.or within 

the non-enhanced group (below the selected c) are relevant. However-, the high 
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accuracy, ¢(c), at the selected cutoff point cis preferred because the model's 

accuracy at the cutoff point c is only interested for management view. 

3.2 Classification 

We can also use module-order modeling to classify modules [11]. The mod­

ules above the cutoff percentile c are considered as fault-prone, and the other below 

are considered as not fault-prone. 

Classification can be performed when the threshold value is determined. 

This number depends on the project specification. Different projects have differ­

ent threshold. When the threshold number is given, we can classify the modules. 

The accuracy of classification is measured by means of misclassification rates. As in 

general, the same mathematical method for classification is applied to module-order 

model. The defined threshold is translated to a corresponding c cutoff percentile of 

modules. Type I misclassification is when we specify the module to be fault-prone, 

but it's actually not fault-prone. On the other hand, Type II misclassification is 

when the module is determined to be not fault-prone, but it's actually fault-prone. 

Obviously, Type II misclassification is more severe than Type I because the actual 

fault-prone modules are not reviewed, and are more expensive to fix when faults are 

found by the customer [12]. 

In management aspect, misclassification rates are not appropriate. Conse­

quently, we use effectiveness and efficiency, which are more relevant to management 
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view [10, 9]. Effectiveness is defined as the proportion of fault-prone modules cor­

rectly identified. If we review a not fault-prone module, we waste the time because 

the module is already in an acceptable condition. Efficiency is the proportion of 

reliability enhancement effort that is not wasted. Effectiveness is maximized by 

minimizing Type II misclassification, and efficiency is maximized by minimizing 

Type I misclassification. This shows that effectiveness and efficiency have the same 

variation as Type I and Type II misclassification. When the one increases, the other 

decreases. It is the same tradeoff as effectiveness and efficiency. Further details are 

shown in Table 3.1 . 

3.3 SMART 

The section briefly introduces SMART, the Software Measurement Analysis 

and Reliability Toolkit, and how we used SMART in our study. 

Currently, SMART handles four types of models, case-based reasoning (CBR), 

CBR with two data clustering, CBR with three data clustering and module-order 

model [13]. Since our study concentrates on module-order model (MOM), we will 

only explain the feature of MOM in SMART. 

SMART architecture can be grouped into 3 main parts shown in Figure 3.2. 

• Data manager: This part operates the input data, fit and test data set. Fit 

data set is used to build the model, and test data set is used to validate the 

modeL 
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G1 
G2 
Classi 
Class(x;) 

1r't 

1r'2 

Pr{lll} 

Pr{212} 
Pr{2ll} 
Pr{ll2} 
etiectiveness 

efiiciency · 

Table 3.1: Effectiveness and efficiency 

Not fault-prone group (class) 
Fault-prone group (class) 
Actual class of module i 
Predicted class of module i based on vector of independent 
variable, Xi 

Expected proportion of not fault-prone modules 
Expected proportion of fault-prone modules 
Rate of correct classifications of not fault-prone modules 

Pr{lll} = Pr{Class(xi) = G1 IClassi = Gt} 

Rate of correct classifications of fault-prone modules 
Type I misclassification rate 
Type IT misclassification rate 
Proportion of fault-prone modules that received reliability 
enhancement treatment out of all the fault-prone modules 

effectiveness = Pr{212} = 1 - Pr{ll2} 

Proportion -of fault-prone modules that received reliability 
enhancement treatment out of all modules that received it. 

fli · Pr{212}1r2 
e CleilCy = Pr{211}11't+Pr{212}1r2 

• User Interface: Using dialog-based property sheet, graphical interface helps 

the user to control the tool comfortably. 

• Data analysis: Using the input from data manager, four types of models are 

chosen to analyze the data according to the user's purpose. 
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Figure 3.2: Smart Architecture 

Usually, module-order model in SMART is designed to have multiple lin-

ear regression (MLR) as underlying quantitative models. The weights used in this 

technique are provided by the user. When the input data set is entered, MLR au-

tomatically performs its operations a.nd estimates the predicted dependent variable. 

After that MOM ca.n build the model by using that given variables_ 

Based on the contribution of this research, the goal is to study the perfor-

ma.nce of MOM based on different underlying quantitative software models. There-

fore, we input predicted variables from the different techniques we previously men-

tioned. In the latest updated version, MOM allows the user to input a set of 

predicted variables obtained from other modeling techniques besides MLR in the 

"Using Input Prediction" console as shown in the Figure 3.3. 

The statistical result from MOM are labelled Cl through C8. 

• Cl: Percentage of G(c) based on sum of dependent values in all modules 

• C2: Percentage of G(c) based on sum of dependent values in all modules 
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Figure 3.3: MOM page in SMART 

• C3: Percentage of the model's accuracy at the given cutoff, if>( c) : Cl/C2 

• C4: Model's inefficiency, !-efficiency 

• C5: Type I misclassification rate at the specific cutoff 

• C6: Type II misclassification rate at the specific cutoff 

• C7: Model's effectiveness 

• C8: Model's efficiency 
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where, G(c) is sum of the actual dependent variable values above the cutoff 

under a perfect ranking, and G(c) is the sum of actual dependent vanable values 

above the cutoff under the predicted ranking. 

3.4 Principal Components Analysis 

Most independent variables have a high correlation among each other. This 

causes degradation of software quality models because a slight change in the fit data 

set makes the models very unstable. Principal components analysis is used to solve 

this problem. 

Principal components analysis is the technique used to remove the correla­

tion among all independent variables. It transforms the raw data set into principal 

component data set, reducing the number of variables, but without losing the sig­

nificant variation. In principal components form, the independent variables are not 

correlated. They are a set of orthogonal vectors. 

Consider a data set that has n modules and each module has m independent 

variables. This produces the metric n x m dimensions where all variables in all 

columns are standardized, having a mean of zero and a variance of one. We called 

this Z metric. The principal components are the linear combinations of m standard­

ized random variables, Z1 , ... , Zm· Then, proceeding the following steps will obtain 

the principal components. 

L Calculate the covariance matrix, E, of Z 
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2. Calculate the eigenvalues,>-.;, and eigenvectors, ej, j = l , .. . ,m. Each eigenvalue 

is the variance of the corresponding principal component. 

3. Because the eigenvalues series are decreasing, ).1 > ... > ).2 , the dimension-

ality of the data can be reduced without losing the significant variance by 

considering only the first p components, p «: m . 

We want to achieve at least 90% of variance of the original standardized met-

rics, so we choose the minimum p such that E~=l >-.;/m > 0.90. 

4. Calculate the m x p standardized transformation matrix, T, whose each col-

umn, tj, is defined as 

ej £ . 1 tj = ~ or J = , . .. ,p 
v>..j 

(3.6) 

5. Calculate domain metrics, D;, for each module. Dis ann x p matrix with D; 

values for each column, j = l, ... ,p. 

(3.7) 

D=ZT (3.8) 

The principal component variables are uncorrelated and suitable to build 

software quality models. Each component has a mean of zero and a variance of one. 
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3.5 Model Performance Evaluation 

The accuracy of quantitative software quality models can be evaluated by 

calculating the error values. Two common statistics for evaluating predictions are 

average absolute error, AAE, and average relative error, ARE. 

(3.9) 

(3.10) 

In the equation, n is the number of modules in the data set. Yi is the actual 

dependent variable and Yi is the predicted dependent variable from the quantitative 

modeL For ARE, the denominator has one added to avoid division by zero [17]. 

3.6 Underlying quantitative models 

In this study, we input the predicted value from 5 quantitative prediction 

models to a module-order model (MOM) and observe the performance of MOM. We 

want to compare the result of MOM based on different quantitative models. This 

section covers the brief description of these 5 methodologies. 

3.6.1 Case-Based Reasoning 

Case-Based Reasoning, CBR, is the technique for predicting the software 

quality factors by using the historical data [29]. Thus the data stored in the database 

are the cases in a case library. Applying CBR to the system, when the new data is 
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obtained, the system measures the difference between the new data and the cases. 

The algorithm chooses the most similar cases and generates the solution to the new 

input data. 

The difference between the retrievied data and cases is measured in the form 

of a "distance". To compute an efficient similarity (or distance), several similarity 

functions are used. 

• Case Similarity Function 

Suppose the test data set is the i x k dimensional matrix. Let Xi be the vector 

of metrics of the ith module (row) from the new input, test data set, and there 

are k metrics (column) in each module. Xilc represents the kth component in 

the .,-th module. For the data in the case library, suppose the case or fit data set 

is the j x k dimensional matrix. Let c; be the vector of the jth module (row) 

in the case, fit data set. The case library has the same number of metrics for 

each module then the test data, so c;1c stands for the kth (column) component 

in the ih module. 

- Euclidean Distance 

(3.11) 

where, m is the number of variables and w; is weighted in each jth vari-

able, approved by the user. 
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- Absolute Distance 

m 

dii = E w~~: lc;~~:- Xi~~: I (3.12) 
k=l 

- Mahalonobis Distance 

This algorithm is used when the variables in the data set are highly 

correlated. 

(3.13) 

S is the covariance matrix of the variables for all modules im the case 

library. s-1 is the inverse of S. Prime (1) means transpose. 

The smaller distance presents the more similarity of new input ;and cases. 

After the most similar cases are selected, the system determines the answer 

by using a solution algorithm. 

• Solution Algorithm. 

The most similar cc:.ses are represented by the nearestneighbors. Let N be 

the complete set of nearest neighbors, which are the most similar cases in the 

fit data set to the case in the test data set. The number of nearest neighbors, 

nN is defined by the user. 

- Unweighted Average 

(3.14) 
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where iii is the predicted dependent variable and Y; is an actual dependent 

variable from module j in the case library. 

-Weighted Average 

Yi = L ai;Y; 
jEN 

(3.15) 

(3.16) 

The output of solution algorithm is the predicted result created by Case-Based 

Reasoning methodology. More detail in CBR approach can be found in [29]. 

3.6.2 Multiple Linear Regression 

Multiple Linear Regression is one of the instrument widely used to define the 

dependent variable by using a statistical function, formed by the known independent 

variables (12]. It has the following general form. 

(3.17) 

(3.18) 

Where Yi is the predicted value of the .,-th observation, Yi is the actual value of 

dependent variable, and ei = Yi - Yi is the error of ith observation. xi1, ... , Xip are 

the independent variables and a0 , .•. , Clp are estimated parameter, calculated by the 

least squares method. This method has for criteria to choose a group of number 

that minimize :Ef=1 ei2 (23]. 
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Since the independent variables play an important role to build the model, 

they have to be preprocessed to remove any correlation and some insignificant vari­

ables. These insignificant variables may cause interpretation to be inaccurate if they 

are added to the model. Therefore, we need to choose only the significant variables 

to be included in the model. The process used to determine the significant variables 

is called model selection. 

Among available model selection techniques, we use the stepwise regression 

method. Stepwise regression is an iterative process. In each round, the process 

either adds or removes variables from the model, based on the significant level of a 

in F test [29]. 

3.6.3 Artificial Neural Network 

Artificial Neural Network (ANN) applies the simulation of the organizational 

process in the human brain to compute the output when the input is provided [29]. 

It can be classified into 2 groups, supervised-learning and unsupervised-learning 

network based on learning rules [20]. In this research, we studied supervised learning 

network. 

When giving input to the system, supervised learning network responds with 

the desired output at the instance of time. The network automatically realizes what 

output should come out. We focus our study to feed forward and back propagation 

supervised-learning neural networks. 
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Neural networks consists of neurons. For feed forward model, suppose we have 

Xi input and kth processing elements. The elements compute sum or the weights 

multiplied by its input, x; and basis, bk. The result of this computation is the 

input to activation function, f ( ·). The output of the activation function, ok, is the 

output of the neuron and the answer of the network (dependent variable) [29]. The 

operation of the neuron can be described in the following equation. 

where, m is the number of inputs (independent variables). 

(3.19) 

(3.20) 

For back propagation model [19, 25, 31], the system initializes the process 

with the set of random parameters, weights and basis. Training is required to 

adjust these parameters [29]. At the time of training, a set of input-output pairs 

are entered. When input is propagated through the network, the network calculates 

the weighted sum of input vector and basis, and finally comes up with the output 

from the activation function as for the feed forward model. Then, the output of 

the network is compared to the expected output of the input-output pairs, and the 

difference (error vector) is propagated back to train the network to minimize the 

error and find the optimum weights. The training stops only when the squared error 

satisfies the setting point 
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Figure 3.4: Example of Thee model in purpose of classification 

3.6.4 'Iree model 

Thee model is the exploratory technique that gives the result displayed in the 

form of tree based on decision rules. Beginning at the root node, the algorithm splits 

a downward path in the trees, one node after another, until it reaches a leaf node. 

Each node represents independent variables, each edge represents a possible result 

of the decision, and the leaf node represents the final answer of either classification 

or regression as an example in Figure 3.4. The parameter making the decision in 

each node is called a predictor. 

While building a Tree model, the data set is splitting continuously until it 

reaches the point based on stop-splitting rules. The tree is binary if the parent node 

39 



always split into exactly two child nodes associated with the decision and the child 

node is repeatedly considered as parent, then recursively behave the same way. All 

tree models in this research are binary trees. 

For this study, we focus on regression. The output from the tree is the pre­

dicted value for each module in the data set. Of several available tree methodologies, 

we use SPL US and CART algorithm. According to binary recursive partitioning def­

inition, both approaches generate binary trees, but they have different algorithms 

and rules. More details are briefly discussed in the next section. 

CART is a statistical tool providing the algorithm to generate a tree model. 

Cart algorithm partitions the data into bll;lary paths until reaching the terminal or 

leaf node based on two rules, least square (LS) and least absolute deviation method 

(LAD) (27]. 

• Least Squares Method (LS): This method uses the mean value computed in 

a particular node as the predicted value in that node, and use mean-square 

error as the standard for considering the goodness-of-split. 

• Least Absolute Deviation (LAD): This method uses the median value com­

puted in a node as the predicted value in that node, and mean absolute error 

is used as the rule for measuring the goodness-of-split. 
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The goodness-of-split is the criterion used to control the construction of the 

tree. Since we are interested in obtaining the predicted value, we will focus only 

on regression tree and ignore classification feature of tree model. For cart, when 

generating the tree, the descendant node is more homogeneous (purer) than its 

parent node. Pureness of the tree is determined in terms of variance, LS or LAD up 

to the selected feature. The goal is to minimize the LS or LAD value in splitting 

nodes . Purity condition (goodness of split) of the node is calculated after and before 

split, and pureness should be increased after the split. The split stops when there 

is no diversity of variance in the terminal node [27]. 

3.6.6 SPLUS 

SPLUS is another statistical tool that can be utilized to build tree model for 

prediction purpose [27]. SPL US algorithm grows the tree based on two core factors, 

minsize and mindev. The input to this algorithm is a set of independent variables 

and dependent variables responding in each observation. 

• minsize: Abbreviated from minimum size, this value is the threshold to limit 

number of observations in the leaf node. H the number of observations in a 

node less than minsize, the tree stops growing. 

• mindev: Abbreviated from minimum deviance, this value is also the threshold 

to limit the growth of the tree. If the deviance in a node is less than mindev, 

the tree stops growing. Then, that node becomes a leaf node. 
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Suppose Yi be the dependent value for observation i, p..(S) be the mean of dependent 

variables over the data setS, and lSI be the number of observations in the data set 

S. The deviance of 't-th observation is defined as 

D(S) = (Yi- JLs) 2 (3.21) 

The algorithm chooses the predictor that maximize the change in deviance, and 

The cutoff value of the chosen predictor is selected based on minimizing the sum of 

deviances of the left(L) and right(R) child nodes: D(SL) + D(SR) 
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Chapter 4 

EXPERIMENTS 

This chapter describes the experiment conducted in this study. The results 

obtained from the underlying quantitative models are tabulated. We use graphical 

presentation to show the performance of the module-order models. 

4.1 Case Study Methodology 

Before the module--order modeling is performed, we need to retrieve the pre­

dicted values of the quality factor from the underlying quantitative models. This 

section summarizes our methodology to build and validate the underlying quan­

titative models in our case studies. Case studies are based on past development 

projects. 

1. Preprocess measurements: The raw software metrics may not be suitable as in­

puts because of some insufficient attributes such as the variety of unit measure­

ments or correlation among data. These properties degrade the interpretation 

of the model. Standardizing the data to have a mean of zero and a variance 

of one for each metric provides a single unit measurement for the data. In 

43 



addition, performing principal components analysis on the standardized data 

removes the correlation among the metrics. In this study, we use two types of 

data sets, PCA is the set of software metrics on which we performed principal 

component analysis, and RAW is the original software metrics collected during 

the software development process. 

2. Choose a model validation strategy: The following strategies are used to define 

the fit and test data sets for our three case studies: data splitting [4] for NT 

and LNTS data, and subsequent releases [4] for LLTS data. 

3. Prepare fit and test data sets: After choosing the validation strategy, we 

created the fit and test data sets for the three case studies. In this study, 

the dependent variable is the number of faults. The independent variables are 

software product and process metrics. 

4. Select significant variables: Several independent variables are measured during 

the development process. This process removes the insignificant variables that 

can degrade the interpretation of the model. 

5. Build the model based on the underlying quantitative models: Use the opera­

tional fit data set to build the models based on different underlying techniques. 

6. Evaluate the model: Apply the test data set to the built model and determine 

the accuracy of each underlying methods. We used two statistical indicators, 
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AAE and ARE, to measure the accuracy. 

After completing this process, we derive the predicted dependentt variable and 

compute the prediction accuracy for each different underlying quanti-:tative modeL 

This predicted metric is provided to a module-order model to build a :ranking. The 

detail of the experiments including results from all three case studies ; are described 

in the next section. 

4.2 System Description 

This section fully describes the three data sets used in the experSments. Each 

case study has two forms of data, RAW and PCA. Specific details a.t"':e thoroughly 

explained for each software systems. 

4.2.1 LLTS System Description 

The first experiment was applied to LLTS metrics. As stateo:d in chapter 

2, LLTS (Large Legacy Telecommunication Systems) metrics were co.llected using 

EMARALD. The system was written in a high level programming lamguage. The 

LLTS system metrics comprises four releases of data accumulated over past projects. 

We refer to them as releases 1, 2, 3 and 4. Each release has a differeot number of 

observations. They are 3649, 3981, 3541 and 3978 observations respectively in each 

release. An observation is associated with a module of source-codee files in the 

software system. A release of LLTS metrics consists of 42 process, :Product and 
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execution metrics. In this study, we used the 24 product metrics and 4 execution 

metrics (28 raw metrics) as independent variables. The dependent variable was the 

number of faults inspected in a module during the past testing. The number of faults 

was calculated from the sum of three metrics: CUST_pR, DES_pR and BETAYR. 

These three metrics are the number of faults detected by customers, by designers 

and during the beta testing period respectively. We refer to this data set of metrics 

as LLTS-RAW. 

In addition to the 28 raw metrics, the metrics were transformed using prin­

cipal components analysis (PCA) in order to reduce the correlation. Prior research 

[29] shows that the product, process and execution groups of metrics were not much 

correlated to each other. Therefore, principal components analysis process was only 

conducted for proce.5s and product metrics, and execution metrics were used without 

preprocessing. The detail of performing PCA on raw metrics is shown in Table 4.1. 

Six principal components were extracted from twenty-four product metrics. The 

table represents a 24 x 6 matrix, which 24 rows represent the 24 product metrics 

and the 6 columns represents six derived principal components. The values in the 

matrix show the correlation between raw metrics and principal components. Higher 

values indicate a strong correlation. If the value is one, it denotes that two metrics 

have the same meaning. This implies that the principal components can replace the 

raw metrics as example in Table 4.1. 

In Table 4.1, the highest values in each row are highlighted in bold. From 
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Table 4.1: Factor Pattern for Principal Components of Product Metrics for LLTS 
data set 

Metric PROD1 PROD2 PROD3 PROD4 PROD5 PROD6 
CALUNQ 0.90241 0.05180 0.10442 0.23226 0.17394 0.06161 
TlARUSDUQ 0.89496 0.18889 0.15268 0.17704 0.14681 0.19375 
LOG 0.88610 0.28067 0.18160 0.16929 0.16431 0.14445 
NDSENT 0.87966 -0.11142 0.01770 0.18394 0.10988 0.17201 
STMEXE 0.86869 0.25870 0.17612 0.17324 0.26880 0.07169 
STMCTL 0.86701 0.26070 0.27411 0.17258 0.08509 0.17429 
NDSEXT 0.84668 0.01970 0.10855 0.20099 0.08568 0.35294 
STMDEC 0.84595 0.20127 0.14148 0.14922 0.07117 0.14898 
IFTH 0.84569 0.34158 0.27880 0.18162 0.10404 0.10659 
NDSINT 0.84185 0.34355 0.27606 0.15248 0.18487 0.10920 
CNDNOT 0.83478 0.31173 0.26233 0.15217 0.23697 0.17495 
LOP 0.82816 0.10817 0.20842 0.01714 0.02129 -0.09590 
VARGLBUS 0.80191 0.35962 0.20123 0.14369 0.21197 0.20453 
VARUSD2 0.79088 0.44096 0.27108 0.11186 0.18082 0.12928 
CAL2 0.59715 0.20418 0.07284 0.19317 0.56903 -0.05255 
VARSPNSM 0.39174 0.86022 0.17718 0.10430 0.06747 0.08423 
VARSPNMX 0.14039 0.83489 0.17722 0.35150 0.10357 0.09136 
CNDSPNMX 0.12121 0.27629 0.75661 0.14289 0.25648 0.30600 
CTRNSTMX 0.32233 0.09595 0.70922 0.42101 -0.00726 -0.01574 
CNDSPNSM 0.60974 0.21553 0.64240 0.00704 0.22007 0.13087 
FILINCUQ 0.39561 0.25790 0.15541 0.72651 -0.03570 0.16963 
LGPATH 0.21017 0.37957 0.35793 0.63962 0.16986 -0.04151 
KNT 0.21362 0.06906 0.17464 -0.00640 0.88896 0.09719 
NDSPND 0.40212 0.14886 0.21690 0.07507 0.08412 0.81557 
Variance 11.61638 2.82091 2.37167 1.69515 1.64281 1.23002 
% Var. 48.40% 11.75% 9.88% 7.06% 6.85% 5.13% 
Cum.% 48.40% 60.15% 70.03% 77.09% 83.94% 89.07% 
Stopping rule: at least 89% of variance 
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the table, PROD! is highly correlated to fifteen metrics: CALUNQ, VARUSDUQ, 

LOC, NDSENT, etc; PROD2 is highly correlated to VARSPNSM and VARSPNMX; 

PROD3 has high correlation with CNDSPAMX, CTRNSTMX and CNDSPNS, for 

instance. For LLTS data set, we used 89% of variance as stopping rule to generate 

principal components. When combining six principal components from 24 product 

metrics with 4 execution metrics, the 10 PCA metrics were generated. We refer to 

this data set as LLTS-PCA data set. 

4.2.2 NT System Description 

NT metrics are collected from the network telecommunication systems. The 

data splitting technique was used to generate the fit and test data sets. Two-third 

of the modules (1320 observations) of the original data are impartially split into 

a fit data set and the rest (660 observations) are used as a test data set. The 

11 independent variables of NT include nine ·product metrics and two categorical 

variables (reuse covariates). The dependent variable is the number of faults found 

in software modules during the past testing phase. We refer to this 11 raw metrics 

as NT-RAW data set. 

Principal components analysis was performed on the original nine product 

metrics. Three components were retrieved. The detail of the three principal com­

ponents extracted from the nine metrics is shown in Table 4.2. The table presents 

a 9 x 3 matrix, which nine rows represent nine product metrics and three columns 
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Table 4.2: Factor Pattern for Principal Components of Design Product Metrics for 
NT data set 

Metric DOMAIN! DOMAIN2 DOMAIN3 
SPL 0.901 0.359 0.137 
LP 0.880 0.370 0.134 
SPC 0.719 0.545 0.316 
NL 0.683 0.593 0.334 
TC 0.359 0.864 0.216 
uc 0.426 0.830 0.245 
VG 0.597 0.724 0.309 
IFTH 0.599 0.681 0.357 
MU 0.177 0.265 0.939 
Eigenvalues 3.630 3.410 1.460 
%Variance 40.3% 37.9% 16.2% 
Cumulative % 40.3% 78.1% 94.4% 
Stopping rule: at least 94% of variance 

stand for the three principal components, Pl , P2, and P3. The values denote the 

correlation between the raw metrics and principal components. We used 94.4% of 

the variance as the stopping rule to extract the principal components. Adding these 

three components with the 2 categorical variables, 5 independent variables for NT 

PCA data were created. We refer to this data as the NT-PCA data set. 

4.2.3 LNTS System Description 

LNTS metrics is the last data set used in this study. It was collected from 

a Large Network Telecommunication System. As for the NT data set, the data 

splitting technique was used to create the fit and test data sets. Two-third of the 

modules ( 4648 observations) was used as a fit data set and the remaining one-third 
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Thble 4.3: Factor Pattern for Principal Components of Software Metrics for LNTS 
data set 

Metric DOMAIN! DOMAIN2 DOMAIN3 DOMAIN4 
PSCTOT 0.884 0.313 0.275 -0.009 
NELTOT 0.853 0.362 0.335 0.012 
IFTH 0.665 0.601 0.374 0.013 
TCT 0.360 0.853 0.307 0.005 
UCT 0.359 0.838 0.367 0.001 
VG 0.617 0.632 0.416 -0.005 
NL 0.290 0.407 0.841 -0.046 
RLSTOT 0.418 0.316 0.827 -0.019 
NDI 0.003 0.004 -0.030 0.999 
Eigenvalues 2.85 2.69 2.12 1.00 
%Variance 31.67% 29.89% 23.56% 11.11% 
Cumulative % 31.67% 61.56% 85.12% 96.23% 
Stopping rule: at least 96% of variance 

(2324 observations) as a test data set. The independent variables for the raw data 

set comprise nine product metrics and the dependent variable is the number of 

faults found in the modules in the historical development. We refer to this data as 

LNTS-RAW data set in the remaining part of this thesis. 

Principal components analysis was also conducted on the LNTS data set. 

The process extracted four principal components from the original nine product 

metrics. They are shown in Table 4.3. The table presents a 9 x4 matrix, which 

nine rows represent nine product metrics and four columns represent four principal 

components, D1, D2, D3 and D4. The values in the matrix give the correlation 

between raw metrics and principal components. The principal components analysis 

was stopped when 96% of the variance was reached by the process. These four 
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principal components are referred to as LNTS-PCA data set. 

4.3 Experiments on LLTS 

The first experiment used the metrics from LLTS data set as input to the 

underlying quantitative models. This section discusses the result of the experiments 

conducted on the LLTS data sets, LLTS-RAW and LLTS-PCA. The experiment 

results are presented in the following order. 

1. The prediction results of the five underlying quantitative models are shown in 

tabulated form. Those underlying quantitative models are Case-Based Rea­

soning (CBR), Multiple Linear Regression (MLR), Artificial Neural Network 

(ANN), Cart and SPLUS. For the Cart algorithm, the models were built based 

on two methodologies: Cart-Least square (Cart-LS) and Cart-Least Absolute 

Deviation (Cart-LAD) [27]. 

2. The module-order modeling results are displayed in graphs. Two types of 

graph are plotted to present the results. 

• Alberg diagram [24] showing the curve of the perfect ranking percentage 

(G(c)/Gtot) compared to the predicted ranking percentage (G(c)/Gtot), 

where c represents the cutoff percentile. If the two curves are close to­

gether, the model is considered accurate. 
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Table 4.4: Example of module-order modeling result 

c 
0.950 
0.900 
0.850 
0.800 
0.750 
0.700 
0.650 
0.600 
0.550 
0.500 

G(c)/Gtot 
0.419 
0.631 
0.751 
0.822 
0.884 
0.925 
0.942 
0.963 
0.983 
1.000 

G(c)/Gtot 
0.361 
0.544 
0.697 
0.772 
0.830 
0.846 
0.871 
0.884 
0.909 
0.913 

¢(c) 
0.861 
0.862 
0.928 
0.939 
0.939 
0.915 
0.925 
0.918 
0.924 
0.913 

• Performance diagram [12] showing the ratio of the predicted ranking 

and the perfect ranking, (¢(c)) curves. It displays how close the model 

comes to the perfect ranking. This graph represents the performance of 

a module-order model. The variation in ¢(c) over a range of c indicates 

the robustness of the model; small variation implies a robust model. 

In this study, the range of cutoff covered at most fifty percent of the modules 

starting with the most fault-prone. This is because one can hardly imagine 

applying an enhancement process to more than a half of the modules. 

Figure 4.1 presents the curves of a perfect and a predicted ranking of modules 

according to the results in Table 4.4 and Figure 4.2 shows the ratio of the two lines 

of Figure 4.1. The cumulative percentage of faults in the modules is plotted over the 

percentage of modules (1-c) along the horizontal axis, where modules are ordered in 
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the decreasing order beginning with the most fault-prone. For exa.niple, 5% of the 

modules in the graph represent the cutoff percentile 0.95 in the table. 

We order modules beginning with the most fault-prone, the modules with 

higher ranking will have higher priority for reliability enhancement. Therefore, we 

will analyze the behavior of a module-order model separated into two ranges. 

• Range of higher interest (1 through 25 percentiles): We focused more on this 
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range because over the half of the faults are contained in this range. Therefore, 

we used 1 percent increment of modules for observation, and referred to this 

range as range I. 

• Range of lower interest (26 through 50 percentiles): modules in this range 

have lower priority for reliability enhancement than the first one. We used 5 

percent increment of modules for observation, and referred to this range as 

range II. 

In addition to the two ranges, we gived a closer view on the most critical 

modules in the highest ranking range (cutoff 1 through 15 percentiles) of range I. 

We compared the performance of five underlying quantitative models in 

graphical presentations .. However, if the curves from the five techniques were plot­

ted on the same graph, it might be difficult to clearly see the results. Therefore, we 

showed the graphical presentation by using the following layout. 

1. Compare the performance of module-order models based on CBR, MLR, ANN 

methods, referred as group I in one graph. 

2. Compare the performance based on tree-modeling methods (CART-LAD, CART­

LS and SPLUS), referred as group II in another graph. 

3. Compare the performance between the two groups. We chose a representative 

from group I, and plot the curve of the selected method compared to the 

underlying techniques of group I I. 
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Table 4.5: Presentation outline for LLTS data 

Data set Test data set Performance comparison 
RAW Release 2, 3 and 4 (a) Group I 

(Multiple Releases) (b) Group II 
(c) Group I and II 
(d) Best and worst prediction 

PCA Release 2, 3 and 4 (a) Group I 
(Multiple Releases) (b) Group II 

(c) Group I and II 
(d) Best and worst prediction 

4. Compare the performance based on two underlying models having the best 

and the worst AAE and ARE value for the two groups (I and II). 

From this layout, we can see the comparative performance of module-order 

models for both tree-modeling and non-tree-modeling groups. In addition, the hy-

pothesis that better underlying quantitative prediction does not necessarily yield 

better performance in ordering modules would be obviously proved. This layout 

were also be used for the remaining data sets, NT and LNTS. Table 4.5 summarizes 

presentation outline for LLTS data. 

4.3.1 Experim.ents on LLTS-RAW 

• Com.parative results of the underlying quantitative models, LLTS-

RAW 

In this case, the models were built using LLTS release 1 data set. The 

dependent variable was the number of faults after unit testing. The best model was 
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Table 4.6: LLTS-RAW, Comparative accuracy of underlying quantitative models 

Release 2 Release 3 Release 4 
Model AAE ARE AAE ARE AAE ARE 
CBR 0.904 0.543 0.917 0.530 0.903 0.533 
ANN 0.946 0.584 1.016 0.620 1.249 0.749 
MLR 0.890 0.571 0.960 0.602 0.926 0.584 

CART-LS 0.948 0.618 0.942 0.602 1.407 0.838 
CART-LAD 0.705 0.324 0.803 0.391 0.867 0.419 

SPLUS 0.909 0.577 0.954 0.602 1.267 0.774 

chosen to be the fitted model based on each underlying techniques. Then, upcoming 

releases were used to evaluate the model. The results obtained from the five methods 

are tabulated in Table 4.6 for LLTS-RAW. 

Since resubstitution, using the fit as test data set, may yield over optimistic 

results (quality of fit), release 1 data set was not used to compare the accuracy of 

the underlying models. 

For LLTS-RAW, Mahalonobis distance and Distance weighted average are 

respectively used as the similarity function and solution algorithm for prediction 

using CBR. Prior research [29] stated that compared to other similarity functions 

and solution algorithms, Mahalonobis and distance weighted average provided the 

best prediction accuracy. 

Multiple Linear Regression method used seven independent variables to build 

the following model [29]. 
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faults - 0.0143 · F ILINCUQ- 0.0035 · CNDNOT + 0.0238 · NDSENT 

-0.009 · NDSEXT + 0.017 · NDSPND + 0.0066 · NDSINT 

- 0.0031· STMDEC 

The preferred tree model built using the CART-LS method has 10 leaf nodes 

and utilizes 7 out of 28 independent variables. For the CART-LAD method, the 

selected tree has 8 leaf nodes and utilizes 7 independent variables. Using SPLUS 

algorithm, the chosen tree has 23 terminal nodes and utilizes 12 independent vari­

ables [27]. 

From the Table 4.6, the results show that MLR gave better results than CBR 

and ANN for release 2. CBR provided better prediction accuracy than neural net­

work and multiple linear regression models for release 3 and 4 for both AAE and 

ARE. For tree modeling methods, CART-LAD results are better than for CART-LS 

and SPLUS for all test data sets. Further, when comparing all underlying mod­

els, CART-LAD had the best prediction among all five techniques. Prior study 

has shown that CART-LAD is the most effective modeling methodology for predic­

tion and should be preferred among the five underlying techniques for quantitative 

prediction [27]. 
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• Comparative results of module-order models, LLTS-RA W 

After retrieving predicted dependent variable from the underlying quantita­

tive models. The results of module-order models are represented in the Alberg and 

perfurmance diagrams. 

1. LLTS-RA W, comparative results for group I 

The Alberg diagrams shown in Figure 4.3, 4.6 and 4.9 provide an evidence 

that CBR, MLR and ANN predict the ranking modules significantly close to 

each other for all three releases. All three curves almost have the same trend 

even though the prediction accuracy of the underlying quantitative models are 

quite different. 

Figure 4.4, 4. 7 and 4.10 give us a close view of the module-order models' 

behavior for the most critical modules regarding software reliability. CBR 

and ANN give slightly closer ranking to the perfect ranking than MLR for the 

cutoff 1-5 percentile for all releases. Consequently, MLR does not perform as 

well as the two other methods for the beginning of the cutoff range illustrated 

in Figure 4.5, 4.8 and Figure 4.11. Further for release 4, ANN does not have 

the best predicted ranking for the 3-10 percentile cutoff. Therefore, we see a 

gap between ANN and the two other methods in the performance diagram at 

those particular percentiles. 
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When analyzing the performance on range I, all three techniques perform very 

close to each other over the range. The three methods only present different 

performance at the beginning of the cutoff percentile. Precisely, both CBR and 

ANN perform better than MLR at the beginning of the cutoff range. When 

considering range I I, the three techniques also present close performance over 

the range for all releases. 

Since group I's techniques perform very close when module-order modeling, 

we can not determine which technique presents the best performance in group 

I. This depends on the particular cutoff percentile the manager will choose. 

For example, MLR performs better than CBR and ANN for release 3 for the 

cutoff 10-25 percentile. However, both CBR and ANN perform better than 

MLR for the cutoff 1-5 percentile for the same release. 

In addition, CBR provided better prediction than MLR and ANN for release 

3, but did not perform as well as MLR and ANN for the main part of the 

considered ranges. This confirms our hypothesis that better prediction doesn't 

always yield better performance when module-order modeling. Comparative 

performance of group I is illustrated in Figure 4.5, 4.8 and 4.11. 

2. LLTS-RA W, Comparative Results for Group I I 

In contrast to group I, the three techniques in group II present the different 

predicted rankings as shown in Figure 4.12, 4.15 and 4.18. 
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Figure 4.3: Alberg diagram for LLTS-RAW release 2: CBR, MLR, ANN 
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Figure 4.6: Alberg diagram for LLTS-RAW release 3: CBR, MLR, ANN 
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Figure 4.8: Performance of LLTS-RAW release 3: CBR, MLR, ANN 
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Figure 4.9: Alberg diagram for LLTS-RAW release 4: CBR, MLR, ANN 
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Figure 4.10: Close view of Alberg diagram for LLTS-RAW release 4: CBR, MLR, 
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Figure 4.11: Performance of LLTS-RAW release 4: CBR, MLR, ANN 

The close views in Figure 4.13, 4.16 and 4.19, show that all group I I's 

techniques give close predicted rankings for the first half of the critical range 

(1-7 percentile). However, CART-LAD does not give a ranking closer to the 

perfect ranking than the other two methods for the second half. We see that 

the performance of CART-LAD declines compared to SPLUS and CART-LS 

after that first half of the critical range for all releases. 

When considering performances for range I , CART-LS and SPLUS perform 

close to each other. However, CART-LAD performs obviously not as well as 

the former two methods for all releases. This is noticeable from the big gaps 

in Figure 4.14, 4.17 and 4.20. 

For range II, all techniques perform completely different from each other. 
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The two CART methods present high variation of performance for this range. 

CART-LS presents the best performa:nce at the end of range II. The perfor­

mance of CART-LAD is much better- compared to its performance on range 

I. As a consequence, CART-LAD per-forms better than SPL US at the end of 

range II. For SPLUS, the technique :performs consistently for both ranges I 

and II. This infers that SPLUS has t;he least variation of ¢(c) and generates 

the most robust model in group II. 

Furthermore, CART-LAD had the best prediction accuracy for all releases, 

but it does not present the best modmle-order modeling results compared to 

the other two methods as described ab-ove for the range I. This case obviously 

confirms our hypothesis. 

3. LLTS-RA W, Group I and Group I I l&fodels Comparison 

Since the three methods in group I pe=rform close to each other when module­

order modeling, we chose one of them to compare with the tree-modeling 

group. Since CBR performs consistently over the considered ranges, we chose 

it to represent group I's techniques. 

We can obviously observe that CBR mas a module-ordering behavior close to 

SPLUS in all releases as displayed in Figure 4.21, 4.24 and 4.27. 

For the close view of the most criticai range, CBR gives the nearest ranking 

to the perfect ranking at the starting cutoff range (1-3 percentile) illustrated 
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Figure 4.13: Close view of Alberg diagram for LLTS-RAW release 2: CART-LS, 
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Figure 4.15: Alberg diagram for LLTS-RAW release 3: CART-LS, CART-LAD, 
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Figure 4.16: Close view of Alberg diagram for LLTS-RAW release 3: CART-LS, 
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Figure 4.17: Performance of LLTS-RAW release 3: CART-LS, CART-LAD, 
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Figure 4.18: Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD, 
SPLUS 
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Figure 4.19: Close view of Alberg diagram for LLTS-RAW release 4: CART-LS, 
CART-LAD, SPLUS 
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Figure 4.20: Performance of LLTS-RAW release 4: CART-LS, CART-LAD, 
SPLUS 

in Figure 4.22, 4.25 and 4.28, so CBR performs better than all group I's 

methods for the beginning cutoff range for all releases. 

Figure 4.23, 4.26 and 4.29 show the comparative performance between CBR 

and group ll's techniques. The diagrams show that SPLUS performs close to 

CBR for all releases compared to the two CART methods. This infers that 

SPLUS also performs close to all techniques in group I when module-order 

modeling for LLTS-RAW data. 

4. LLTS-RAW, comparative results regarding AAE and ARE 

CART-LAD gave the most accurate prediction among the five modeling tech-

niques indicated by AAE and ARE values in Table 4.6. The results show that 

70 



100 

90 

80 

70 -~ 0 - 60 

• 50 = = tl 40 

30 

20 

10 

0 
0 10 20 30 

Modules(%) 

40 50 

-Actual 

-CART-LS 

_.,_CART -LAD 

~SPLUS 

-caR 

Figure 4.21: Alberg diagram of LLTS-RAW release 2: CART-LS, CART-LAD, 
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Figure 4.22: Close view of Alberg diagram of LLTS-RAW release 2: CART-LS, 
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Figure 4.23: Performance of LLTS-RAW release 2: CART-LS, CART-LAD, 
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Figure 4.24: Alberg diagram for LLTS-RAW release 3: CART-LS, CART-LAD, 
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Figure 4.25: Close view of Alberg diagram for LLTS-RAW release 3: CART-LS, 
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Figure 4.26: Performance of LLTS-RAW release 3: CART-LS, CART-LAD, 
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Figure 4.27: Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD, 
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Figure 4.28: Close view of Alberg diagram for LLTS-RAW release 4: CART-LS, 
CART-LAD, SPLUS and CBR 
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Figure 4.29: Performance of LLTS-RAW release 4: CART-LS, CART-LAD, 
SPLUS and CBR 

it had the best prediction accuracy for all releases of the LLTS-RAW data 

set. We compare CART-LAD to the models that bring the worst prediction 

accuracy for the three releases. For release 2 and 4, CART-LS had the worst 

accuracy, and SPLUS had the worst accuracy for release 3. 

The Alberg diagrams show that CART-LAD does not present the predicted 

rankings closer to the perfect ranking than CART-LS and SPLUS. For re-

lease 2, CART-LAD and CART-LS alternatively present closer ranking to the 

perfect ranking over both ranges I and I I as illustrated in Figure 4.30. For 

release 3 and 4, the predicted rankings based on ANN and SPLUS are closer 

to the perfect ranking than those based on CART-LS over ranges I and I I as 
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illustrated in Figure 4.33 and 4.36. 

When focusing on the most critical range, the selected two techniques al­

ternatively predict closer rankings to the perfect rankings as illustrated in 

Figure 4.31, 4.34 and 4.37. Therefore, we can observe that neither method 

clearly outperforms the other for the most critical modules. 

When considering the performance, CART -LAD does not perform better than 

the other techniques with poorer prediction accuracy when module-order mod­

eling. For release 2, CART-LS performs considerably better than CART-LAD 

over range I. For release 3, ANN also performs better than CART-LAD over 

range I. For release 4, CART-LS almost has better performance than CART­

LAD over both ranges I and I I. The performance diagrams are shown in 

Figure 4.32, 4.35 and 4.38. These cases provide more evidences that bet­

ter underlying quantitative prediction doesn't always yield better performance 

when module-order modeling. 

4.3.2 Experim.ent on LLTS-PCA 

• Comparative results of the underlying quantitative models, LLTS-

PCA 

Using the same strategy as for LLTS-RAW, release 1 was used as the fit data 

set and subsequent releases were used as the test data sets. Application of the models 
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Figure 4 .30: Alberg diagram of LLTS-RAW release 2: CART-LS, CART-LAD 
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Figure 4.32: Performance of LLTS-RAW release 2: CART-LS, CART-LAD 
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Figure 4.33: Alberg diagram for LLTS-RAW release 3: SPLUS, CART-LAD 
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Figure 4.35: Performance of LLTS-RAW release 3: SPLUS, CART-LAD 
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Figure 4.36: Alberg diagram for LLTS-RAW release 4: CART-LS, CART-LAD 
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Figure 4.37: Close view of Alberg diagram for LLTS-RAW release 4: SPLUS, 
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Figure 4.38: Performance of LLTS-RAW release 4: CART-LS, CART-LAD 

Table 4.1: LLTS-PCA, Comparative accuracy of underlying quantitative models 

Release 2 Release 3 Release 4 
Model AAE ARE AAE ARE AAE ARE 
CBR 0.835 0.523 0 .871 0.519 0 .810 0.477 
ANN 0.887 0.555 0.948 0.576 0.989 0.615 
MLR 0.875 0.567 0.976 0.626 0.954 0.637 

CART-LS 0.972 0.647 0.975 0.633 1.113 0.682 
CART-LAD 0.727 0.344 0.823 0.408 0.860 0.456 

SPLUS 0.925 0.602 0 .973 0.621 1.568 0.949 

based on different underlying methodologies to the test data set of LLTS-PCA is 

shown in Table 4. 7. 

For LLTS-PCA, the city-block distance with distance weighted solution al-

gorithm gave the most accurate prediction for CBR [29]. MLR results used six 
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independent variables with intercept to build the following model [29]. 

faults = 0.7915 + 0.3745 ·USAGE+ 0.847 · P ROD1 + 0.3985 · P ROD2 

+ 0.2135 · P ROD3 + 0.3082 · P ROD4 + 0.1236 · P ROD5 

+ 0.1494 · P ROD6 

The chosen tree using CART-LS has 7 terminal nodes and uses 3 out of 10 

independent variables. The preferred tree using CART-LAD has 8 terminal nodes 

and utilizes 4 out of 10 independent variables. For SPLUS, the selected tree has 26 

terminal nodes and uses 9 out of 10 independent variables to build the tree [27]. 

According to Table 4. 7, CBR has the best prediction accuracy compared to 

MLR and ANN for all three releases in group I. For group II, CART-LAD gave 

significantly better results than CART-LS and SPLUS. Further, when comparing 

all underlying models, CART-LAD presented the best prediction for release 2 and 

3 while CBR had the best prediction for release 4. 

• Comparative results of module-order models, LLTS-PCA 

1. LLTS-PCA, Comparative Results for Group I 

Figure 4.39 and 4.42 denote that CBR, MLR and ANN generate very close 

rankings for all releases. They almost present identical predicted ranking over 

ranges I and II for release 2 and 3. For release 4, the three techniques present 

close ordering for range I, but MLR and ANN are closer to the perfect ranking 

than CBR for range II depicted in Figure 4.45. 
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Figure 4.40, 4.43 and 4.46 give us a closer view to the most critical modules. 

CBR and ANN give a closer ranking to the perfect ranking than MLR at the 

beginning of the critical range (1-3 percentile) for all releases. Hence, the 

performance of MLR is not as good as the two other methods at that starting 

range. ANN, in contrast to MLR, gives the nearest module-order model to 

the perfect ranking at that specific range for release 2 and 3. However, ANN 

gives the farthest ranking from the perfect ranking at the cutoff 3-7 percentile 

for release 4. The module-order models based on the three group I's methods 

are very close to each other after the cutoff 7 percentile. 

When analyzing the performances for the first two releases, we notice that the 

models of group I perform close to each other over both ranges I and I I . 

The three methods present different performances only for the beginning of 

the cutoff range, 1-5 percentile, illustrated in Figure 4.41 and 4.44. 

When considering release 4, MLR and ANN perform better than CBR for 

the second half of range I and all over range I I even though CBR provided 

the most accurate prediction in group I for this release, shown in Figure 4.47. 

This case further validates the hypothesis that an underlying model with better 

prediction accuracy, does not necessarily indicate a better module-order modeL 

To summarize, all techniques in group I perform close to each other. They 

present parallel trends of performance in both the Alberg and performance 
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Figure 4.39: Alberg diagram for LLTS-PCA release 2: CBR, MLR, ANN 

diagrams. 

2. LLTS-PCA, Comparative Results for Group I I 

The Alberg diagrams illustrated in Figure 4.48, 4.51 and 4.54 show that the 

tree-modeling methods do not generate similar ranking prediction. For release 

2, group If's methods predict different ranking over both ranges I and II. For 

the other releases, even though they predict fairly close rankings over range I, 

the models diverge over range II. 

For the most critical range, SPLUS obviously predicts the nearest ranking to 

the perfect ranking over all the ranges for release 2 and 3. This causes the 

performance of SPL US to be better than the two other techniques for the 

critical range. For release 4, ranking based on CART-LS is the nearest to 

84 



70~------------------------------~ 
60 

50 

20 

10 

0+-~~~~~~~~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(%) 

-Actual 
-cBR 

-MLR 
~ANN 

Figure 4.40: Close view of Alberg diagram for LLTS-PCA release 2: CBR, MLR, 
ANN 

........ 75 
~ 
u 
~65 • e 
-!ss 
t 
145 

35 
0 10 20 30 

Modules(%) 

40 50 

--ceR 
--MLR 
--ANN 

Figure 4.41: Performance of LLTS-PCA release 2: CBR, MLR, ANN 
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Figure 4.42: Alberg diagram for LLTS-PCA release 3: CBR, MLR, ANN 
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Figure 4.43: Close view of Alberg diagram for LLTS-PCA release 3: CBR, MLR, 
ANN 
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Figure 4.44: Performance of LLTS-PCA release 3: CBR, MLR, ANN 
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Figure 4.45: Alberg diagram for LLTS-RAW release 4: CBR, MLR, ANN 
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Figure 4.46: Close view of Alberg diagram for LLTS-PCA release 4: CBR, MLR, 
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Figure 4.47: Performance of LLTS-PCA release 4: CBR, MLR, ANN 
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the perfect ranking for the first half of the range. The graphs are shown in 

Figure 4.49, 4.52 and 4.55. 

When considering the performance for range I, SPLUS performs better than 

CART-LS and CART-LAD for the majority of range I for all releases. CART­

LAD does not perform as well as other methods for the majority of this range. 

The performance diagrams are shown in Figure 4.50, 4.53 and 4.56. 

For range I I, the two CART methods present high variation of performances. 

CART-LS always shows the best performance at the end of range II, and 

CART-LAD has an inconstant trend of performance. We can observe the 

varying lines of CART-LAD and CART-LS in the performance diagrams for 

all releases. For SPLUS, this method shows fairly constant performance as for 

the previous range. 

Concisely, CART-LS and CART-LAD generate models having high variation 

of ifJ(c) when module-order modeling. This implies that SPLUS provides more 

robust module-order models than CART-LAD and CART-LS for all three 

releases. 

3. LLTS-PCA, Group I and Group II Models Comparison 

The three techniques in group I present very close performances when module­

order modeling. Therefore, we select one of them from each release to compare 
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Figure 4.48: Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD, 
SPLUS 
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Figure 4.49: Close view of Alberg diagram for LLTS-PCA release 2: CART-LS, 
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Figure 4 .51: Alberg diagram for LLTS-PCA release 3: CART-LS, CART-LAD, 
SPLUS 
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Figure 4.52: Close view of Alberg diagram for LLTS-PCA release 3: CART-LS, 
CART-LAD, SPLUS 
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Figure 4.53: Performance of LLTS-PCA release 3: CART-LS, CART-LAD, 
SPLUS 
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Figure 4.54: Alberg diagram for LLTS-PCA release 4: CART-LS, CART-LAD, 
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Figure 4.55: Close view of Alberg diagram for LLTS-PCA release 4: CART-LS, 
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Figure 4.56: Performance of LLTS-PCA release 4: CART-LS, CART-LAD, 
SPLUS 

with group I I . Since ANN had a constant performance over the considered 

ranges for all releases, we selected ANN to represent group I . 

The Alberg diagrams show that ANN predicts the module-ranking close to 

SPLUS, especially for release 2 and 4, illustrated in Figure 4.57 and 4.63. For 

release 3, even though some gaps existed between ANN and SPLUS depicted 

in Figure 4.60. ANN remains close to SPLUS compared to other techniques 

in group II. 

When focusing on the most critical range, ANN predicts the ranking close 

to SPLUS for all releases. In addition, ANN also gave closer ranking to the 

perfect ranking over all the critical range than any method within group I I , 

illustrated in Figure 4.58, 4.61 and 4.64. Consequently, ANN performs better 

than any of group I I method over the critical range. 
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Figure 4.57: Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD, 
SPLUS and ANN 

When considering the performance, ANN apparently performs very close to 

SPLUS for release 2 and 4 over ranges I and II. For release 3, ANN performs 

more consistently than SPLUS, but it still shows closer performance to SPLUS 

than other group If's methods. This indicates that SPLUS preforms close to 

ANN, and it also implies that SPLUS performs close to the two other group l's 

methods, CBR and MLR. The performance diagrams are shown in Figure 4.59, 

4.62 and 4.65. 

4. LLTS-PCA, comparative results regarding AAE and ARE 

CART-LAD provided the best prediction based on AAE and ARE values for 

release 2 and 3, while CBR did for release 4. We compare CART-LAD to the 
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Figure 4.59: Performance of LLTS-PCA release 2: CART-LS, CART-LAD, 
SPLUS and ANN 
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Figure 4.61: Close view of Alberg diagram for LLTS-PCA release 3: CART-LS, 
CART-LAD, SPLUS and ANN 
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Figure 4.63: Alberg diagram for LLTS-PCA release 4: CART-LS, CART-LAD, 
SPLUS and ANN 
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Figure 4.64: Close view of Alberg diagram for LLTS-PCA release 4: CART-LS, 
CART-LAD, SPLUS and ANN 
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Figure 4.65: Perfonnance of LLTS-PCA release 4: CART-LS, CART-LAD, 
SPLUS and ANN 
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techniques that bring the worst prediction for the three releases. For LLTS­

PCA, CART-LS, MLR and SPLUS are the modeling techniques providing the 

worst prediction for release 2, 3 and 4 respectively. The graphs are depicted 

in Figure 4.66 - 4. 7 4. 

When considering the close view for the most critical modules, for release 2, 

CART-LAD presents closer ranking to the perfect ranking than CART-LS 

for the first half of the range (1-7 percentile). Afterwards CART-LAD does 

not predict a closer ranking to the perfect ranking than the other methods, 

illustrated in Figure 4.67. For release 3, MLR has a better ranking than CART­

LAD over the critical range, depicted in Figure 4. 70. For release 4, CBR gives 

closer ranking than SLUS before both methods gives the close ordering as 

shown in Figure 4. 73. 

When focusing on range I for all releases, a model based on CART-LAD 

apparently doesn't have as good performance compared to the other models 

for release 2 and 3, while CBR provided better performance than SPLUS for 

the first half of range I. For comparison on range II, CART-LAD and CBR 

do not perform as well as the compared models for the majority of the cutoff 

ranges, especially for release 4. The comparative performances are shown in 

Figure 4.68, 4.71 and 4.74. 

This is a noticeable evidence that even though CART-LAD and CBR had 
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Figure 4.66: Alberg diagram for LLTS-PCA release 2: CART-LS, CART-LAD 
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Figure 4.67: Close view of Alberg diagram for LLTS-PCA release 2: CART-LS, 
CART-LAD 

better prediction accuracy, it did not yield better performance when module-

order modeling. 
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Figure 4.68: Performance of LLTS-PCA release 2: CART-LS, CART-LAD 
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Figure 4.69: Alberg diagram for LLTS-PCA release 3: MLR, CART-LAD 
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Figure 4.71: Performance of LLTS-PCA release 3: MLR, CART-LAD 
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Figure 4. 72: Alberg diagram for LLTS-PCA release 4: SPLUS, CBR 
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Table 4.8: Presentation outline for NT data 

Data set Test data set Performance comparison 
RAW Test data set (a) Group I 

(data splitting) (b) Group II 
(c) Group I and II 
(d) Best and worst prediction 

PCA Test data set (a) Group I 
(data splitting) (b) Group II 

(c) Group I and II 
(d) Best and worst prediction 

4.4 Experiment on NT 

This section describes the module-order modeling results on the NT data 

set. We use the same result presentation structure as in the LLTS experiments. 

Table 4.5 summarizes the presentation outline for NT data. 
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Table 4.9: NT-RAW, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.623 0.537 
ANN 1.904 0.722 
MLR 2.062 0.974 

CART-LS 1.904 0.7618 
CART-LAD 1.765 0.4632 

SPLUS 1.745 0.645 

4.4.1 Experiment on NT-RAW 

For the NT data set, we applied the data splitting strategy to define the fit 

and test data sets. The models were built using the fit data set and validated using 

the test data set. In our study, we use test data set for module-order modeling 

evaluation. 

• Comparative results of the underlying quantitative models, NT-

RAW 

Application of the models based on the different underlying methodologies 

to the NT-RAW test data set is shown in Table 4.9. 

Case-Based Reasoning used respectively Mahalanobis distance and distance 

weighted average as case similarity function and solution algorithm for the NT-RAW 

data set (29]. 

Multiple Linear Regression used nine independent variables to build the fol-

lowing model. 
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faults - 0.1245 + 0.0683 · LP- 0.0114 · UC + 0.0903 · MU- 0.0023 · NL 

+ 0.0059 · SPC- 0.0055 · SPL + 0.0195 ·IFTH + 0.8363 ·ISNEW 

+ 1.2716 ·ISCHG 

The preferred tree using CART-LS has 5 terminal nodes and uses 3 out of 11 

independent variables. For CART-LAD, the tree has 8 terminal nodes and utilizes 5 

out of 11 independent variables. The selected tree by SPLUS has 28 terminal nodes 

and uses all 11 independent variables to build the tree [27]. 

For NT-RAW, the result is slightly different from the LLTS data set because 

CART-LAD did not give the best prediction accuracy. As presented in Table 4.9, 

CBR has the best prediction, regarding the least AAE and ARE values, for group I. 

For the tree-modeling group, SPLUS has the best prediction. Further, if we consider 

all techniques together, CBR has the best prediction and MLR has the worst. 

• Comparative results of module-order models, NT-RAW 

1. NT-RAW, Comparative Results for Group I 

CBR and ANN perform close to each other over ranges I and II, but MLR 

does not have a ranking as good as the two previous models as shown in 

Figure 4.75. 

For the most critical modules, ANN gives the farthest ranking from the perfect 

ranking at the beginning cutoff range (1-3 percentile). As a consequence, ANN 
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Figure 4.15: Alberg diagram for NT-RAW: CBR, MLR, ANN 

does not perform as well as the two other techniques at the starting range. 

However, after that small range, CBR and ANN present the predicted rankings 

closer to the perfect ranking than MLR over the range, as shown in Figure 4. 76. 

When focusing on the performances of the three models, CBR and ANN per-

form close to each other over all the considered ranges. MLR does not present 

an as good performance as the two previous methods for both ranges I and II, 

but the difference is small. The performance diagram is shown in Figure 4. 77. 

2. NT-RAW, Comparative Results for Group II 

We can obviously see the difference between the rankings plotted in figure 4. 78. 

SPLUS presents the nearest predicted ranking to the perfect ranking within 

group II. In contrast, CARr-LS has the farthest prediction from the perfect 
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ranking. A module-order model based on CART-LAD has a ranking between 

the two previous models. 

When focusing on the most critical modules, all three methods present close 

predicted rankings for the starting cutoff interval (1-3 percentile). After that, 

SPL US apparently provides the nearest ranking to the perfect ranking followed 

by CART-LAD and CART-LS respectively. 

The performance illustrated in Figure 4.80 shows that the three techniques 

present close performances for the beginning cutoff (1-5 percentile) of range I. 

After that small range, SPLUS obviously has the best performance in group 

II followed by CART-LAD. The gap between SPLUS and CART-LAD is not 

large. However, the performance of CART-LS is considerably lower than the 

two previous models, noticeable by the large gap existing between CART-LS 

and those models. 

When ordering the modeling techniques according to the prediction accuracy, 

SPLUS had the best accuracy followed by CART-LAD and CART-LS. Here 

the performance of the module-order models vary directly with the underlying 

accuracy prediction. In this case the underlying models with the best predic­

tion accuracy also had the best performance when module-order modeling and 

so on. 
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3 . NT-RAW, Group I and Group II Models Comparison 

We select CBR to represent group I. Figure 4.81, 4.82 and 4.83 show the 

comparative results between CBR and group II. 

From the diagrams, we can observe that CBR performs close to SPLUS com-

pared to CART-LS and CART-LAD. This refers that ANN and MLR also 

perform close to SPLUS. 

4 . NT-RAW, comparative results regarding AAE and ARE 

The performance of module-order models based on CBR and MLR methods 

vary directly with the prediction accuracy. CBR has better prediction than 

MLR, and CBR performs better than MLR in module-order modeling as shown 

in Figure 4.84, 4.85 and 4.86. 

112 



100 

90 

80 

70 -Actual -~ 60 -CART-LS 
.! 
:; 50 -CART-LAD 

.f 40 -N-SPLUS 

30 -caR 
20 

10 

0 
0 10 20 30 40 50 

Modules(%) 

Figure 4.81: Alberg diagram for NT-RAW: CART-LS, CART-LAD, SPLUS and 
CBR 

70 

60 

lso 
~40 
.f30 

20 

10 

o+-~~~~~~~~~~~~~~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(~ 

-Actual 

-cART-LS 

-CART-LAD 

-N-SPLUS 

-caR 

Figure 4.82: Close view of Alberg diagram for NT-RAW: CART-LS, CART-LAD, 
SPLUS and CBR 

113 



95 

~ 85 

8 75 
c --cART-l.S • 65 

I 55 
--CART·LAD 

-sPLUS t 45 
-ceR u 

i 35 

25 

15 

0 10 20 30 40 50 

MOduJes ('IQ 
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Figure 4.84: Alberg diagram for NT-RAW: CBR, MLR 

This case shows that it is possible for the technique having better prediction 

accuracy to yield better performance when module-order modeling. 
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Table 4.10: NT -PCA, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.624 0.586 
ANN 1.984 0.747 
MLR 2.030 0.969 

CART-LS 1.917 0.805 
CART-LAD 1.607 0.376 

SPLUS 1.737 0.665 

4.4.2 Experiment on NT-PCA 

• Com.parative results of the underlying quantitative models, NT-

PCA 

Using the original data from NT-RAW, NT-PCA was obtained by apply-

ing principal components analysis. Application of the models based on different 

underlying methodologies to the NT-PCA's test data set is shown in Table 4.10. 

The city-block distance and distance weighted average provided the best 

result among the available case-similarity functions and solution algorithms for 

CBR [29]. Using nine independent variables for multiple linear regression, the fol-

lowing model was obtained [29]. 

faults = 1.1265 + 0.7854 ·DOMAIN!+ 0.4216 · DOMAIN2 

+ 1.8203 · DOMAIN3 + 0.8583 · ISNEW + 1.3077 · ISCHG 

The tree model built by CART-LS has 4leafnodes and uses 3 out 5 indepen-

dent variables. Using CART-LAD, the tree has 5 terminal nodes and also utilizes 
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3 out of 5 independent variables. For SPLUS, the tree has 18 terminal nodes and 

uses all 5 independent variables [27]. 

CBR provided the best prediction in group I while CART-LAD presented 

the best prediction in group I I. When comparing all underlying modeling methods, 

CART-LAD had the best prediction while MLR had the worst. The order from 

the best to the worst prediction for all underlying methods was CART-LAD, CBR, 

CART-LS, SPLUS, CART-LAD, ANN and MLR. 

• Comparative results of module-order models, NT-PCA 

1. NT-PCA, Comparative Results for Group I 

The Alberg diagram in Figure 4.87 shows that all three techniques in this 

group predict close ranking models for range I. When considering range II, 

CBR presents a· closer ranking model to the perfect ranking than the two 

other methods while MLR and ANN still have close rankings. However, the 

difference between CBR and the two other techniques is not large. 

For the most critical range, the three techniques generate close ranking over 

the range. ANN's ranking is not as close to the perfect ranking as the two 

other methods after the cutoff 5 percentile, but the difference is not large as 

shown in Figure 4.88. 

When focusing on the performance for range I, CBR and MLR perform rela­

tively close for the main part of this range, while ANN performs slightly lower 
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Figure 4.87: Alberg diagram for NT-PCA: CBR, MLR, ANN 

than the others. For range I I , CBR shows better performance than MLR 

and ANN, which present close performances along this range. Comparative 

performance of group I is illustrated in Figure 4.89. 

To summarize, module-order models based on group I perform close to each 

other even though some small gaps exist along the considered ranges. 

2 . NT-PCA, Comparative Results for Group II 

Techniques in group I I have different ranking models for almost all the con-

sidered ranges. A predicted ranking based on SPLUS is obviously closer to the 

perfect ranking for both ranges I and II. The two CART methods have close 

module-order models for the former half of range I , then CART -LAD predicts 

a better ranking than CART-LS over the remaining ranges. The comparative 
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rankings are shown in Figure 4.90. 

When considering the most critical modules, SPLUS gives the farthest ranking 

from the perfect ranking at the beginning of the cutoff range (1-3 percentile), 

but it presents the nearest ranking after that range, shown in Figure 4.91. This 

causes the performance of SPLUS to be lower than the two CART techniques 

at the starting range, but higher afterwards. 

When analyzing the performance depicted in Figure 4.92, SPLUS visibly per­

forms better than the other two methods over the majority of range I and 

over all range II even though CART-LAD had better prediction accuracy 

than SPLUS. When considering the two CART techniques, they alternatively 

have higher performance for the first half of range I before CART-LAD out­

performs CART-LS. 

This case also verifies our hypothesis because CART-LAD had better predic­

tion accuracy than SPLUS, but SPLUS presented better performance than 

CART-LAD when module-order modeling. 

3. NT-PCA, Group I and Group II Models Comparison 

Since MLR performs close to CBR and ANN for ranges I and I I respectively, 

we select MLR to represent group I. The comparative results are plotted in 

Figure 4.93 and 4.95. 
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The Alberg diagram in Figure 4.93 shows that MLR presents predicted ranking 

closer to the perfect ranking than all techniques in group II. When comparing 

MLR with group II methods, a module-order model based on MLR is close to 

SPLUS. This implies that SPLUS also has a close ranking compared to CBR 

and ANN. In addition, the three techniques in group I predicts the ranking 

closer to the perfect ranking than all group II methods. 

For the close view of the most critical modules, MLR presents closer ranking 

to the perfect ranking than all group II methods except for the first cutoff 

percentile, illustrated in Figure 4.94. As a consequence, MLR's performance is 

lower than CART-LS's only for the first percentile, but obviously higher than 

all methods of group II afterwards. 

For the performances, it is observed that MLR performs better than all group 

Il's methods over range I and II. When comparing MLR's performance with 
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Figure 4.93: Alberg diagram for NT-PCA: CART-LS, CART-LAD, SPLUS and 
MLR 

group II, MLR performs close to SPLUS over the main part of the considered 

ranges I and I I compared to the two CART methods. This infers that group 

I's methods also have higher performance than all group If's techniques for 

the majority of the ranges even though CART-LAD had a better prediction 

accuracy than all group l's methods. 

4. NT-PCA, comparative results regarding AAE, ARE 

CART-LAD and MLR had the best and the worst quantitative prediction. 

However, the graphs illustrated in Figure 4.96, 4.97 and 4.98 apparently 

present that MLR provides a closer predicted ranking to the perfect rank-

ing than CART-LAD and has a higher performance than CART-LAD when 

123 



70 

60 

20 

10 

__ '!"
1
-Actual 

Jr"~"-• -CART-LS 

-cART-lAD 

-.-SPLUS 

-MLR 

0 +-~ ........................... ....--.-...-~..,.........--.....-....,.--.-.....--1 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Modules(%) 

Figure 4.94: Close view of Alberg diagram for NT-PCA: CART-LS, CART-LAD, 
SPLUS and MLR 

100 

90 

l 80 
Q 
u 70 --CART-LS c: 
I 60 ---CART -LAD ... 
0 -SPLUS t 50 ., 

-MLR G. 40 .... 
1 
:IE 

20 

10 

0 10 20 30 40 50 
Modules (~ 

Figure 4.95: Performance of NT-PCA: CART-LS, CART-LAD, SPLUS and MLR 

124 



100 

90 

80 

70 

l 60 --Actual 
s 50 
'5 • 40 1&. 

--cART-LAD 
--MLR 

30 

20 

10 

0 
0 10 20 30 40 50 

Modules(%) 
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Figure 4.97: Close view of Alberg diagram for NT-PCA: MLR, CART-LAD 

module-order modeling over all the considered ranges. This repeatedly con-

firms our hypothesis like most of the previous cases. 

4.5 Experiment on LNTS 

Table 4.11 summarizes the presentation outline for LNTS data. 
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Table 4.11: Presentation outline for LNTS data 

Data set Test data set Performance comparison 
RAW Test data set (a) Group I 

(data splitting) (b) Group II 
(c) Group I and II 
(d) Best and worst prediction 

PCA Test data set (a) Group I 
(data splitting) (b) Group II 

(c) Group I and II 
(d) Best and worst prediction 

4.5.1 Experiment on LNTS-RAW 

LNTS data also used the data splitting technique to define the fit and test 

data sets as done in NT data. As usual, the fit data set is used to build the model 

using five different underlying quantitative methodologies. The test data set is used 

to validate and compare the accuracy of the prediction models. In addition, it is 

also used to validate the module-order models. 
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Table 4.12: LNTS-RAW, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.169 0.546 
ANN 1.284 0.665 
MLR 1.263 0.667 

CART-LS 1.2894 0.6853 
CART-LAD 1.131 0.376 

SPLUS 1.2889 0.6845 

• Comparative results of the underlying quantitative models, LNTS-

RAW 

We applied the test data to the underlying methods, the results are shown 

in Table 4.12. 

Case-Based Reasoning used the Mahalonobis distance and distance weighted 

average as similarity function and solution algorithm since they provided the best 

accuracy for LNTS-RAW [29]. 

After using stepwise selection (5% significance level), 5 out of 9 independent 

variables were chosen to build the following Multiple Linear Regression model [29]. 

faults = 0.60812866 - 0.00110394 · TGT + 0.01106293 · VG - 0.01854467 · N L 

+ 0.00082968 · IFTH- 0.0017737 · NELTOT 

The tree built using CART-LS has 3 terminal nodes and uses 3 out of 9 

independent variables. The tree built using CART-LAD has 4 leaf nodes and uses 

2 out of 9 independent variables. The tree built using SPLUS has 16 leaf [27]. 
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When comparing group I models, CBR has better prediction accuracy than 

MLR and ANN. For the tree modeling group, CART-LAD gave better prediction 

than CART-LS and SPLUS. The accuracy of CART-LS and SPLUS are almost 

identical. Further, when comparing all five underlying quantitative models, the 

order from the best to the worst prediction is CART-LAD, CBR, MLR, ANN, 

SPLUS and CART-LS. 

• Comparative results of module-order models, LNTS-RA W 

1. LNTS-RA W, Comparative Results for Group I 

Module-order models based on the three techniques are very close to each 

other over all the considered ranges as shown in Figure 4.99 and 4.100. 

When considering performance for range I, the three methods present very 

close performances. MLR only performs slightly better than the other methods 

in the cutoff range, 5-20. When focusing on range I I, CBR has a slightly better 

performance than the other two methods at the cutoff 35-50, while MLR and 

ANN perform very close to each other. The comparative performance are 

plotted in Figure 4.101. 

2. LNTS-RAW, Comparotive Results for Group II 

The Alberg diagram in Figure 4.102 shows that SPL US predicts the ranking 

closer to the perfect ranking than the two other methods over most of range 

I. For range II, CART-LAD and SPLUS have very close predicted rankings, 
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Figure 4 .99: Alberg diagram for LNTS-RAW: CBR, MLR, ANN 

70 T---------------------------------~ 

60 

50 

l40 
J! 
'330 
~ 

20 

10 

0 +-~~-r~~~~~~~~~~---~~ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Module•(%) 

-Actual 

--caR . 
__._M.,R 

-ANN 

Figure 4.100: Close view of Alberg diagram for LNTS-RAW: CBR, MLR, ANN 
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Figure 4.101: Performance of LNTS-RAW: CBR, MLR, ANN 

while CART-LS does not predict the ranking as close to the perfect ranking as 

the other techniques for the first half of range II. However, CART-LS provides 

the predicted ranking visibly closer to the perfect ranking than CART -LAD 

and SPLUS in the second half of range II. 

When focusing on the most critical modules, SPLUS presents closer ranking 

to the perfect ranking than the two CART techniques except at the first cutoff 

percentile and at the end of the critical range as shown in Figure 4.103. 

The module-order modeling performance using SPLUS is better than for the 

two CART techniques for range I, except for a small interval of cutoff (12-16 

percentile) , while the two CART methods have high variation of 4>( c) compared 

to SPLUS for range I . When considering range II, SPLUS and CART-LAD 

have close performances, while CART -LS has an inconstant trend of perfor-

mance along this range. CART-LS performs visibly not as good as the other 
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Figure 4.102: Alberg diagram for LNTS-RAW: CART-LS, CART-LAD, SPLUS 

two methods for the first half, but it evidently has higher performance for 

the second half of range I I. The comparative performance is depicted in 

Figure 4.104. 

To summarize, SPLUS seems to have less variation of tf>(c) than the other 

models over both ranges. This states that a module-order model based on 

SPLUS is more robust than those based on the two CART techniques. 

3 . LNTS-RAW, Group I and Group II Models Comparison 

We chose CBR to be a representative of group I. The Alberg diagram in Fig-

ure 4 .105 denotes that CBR predicts the ranking model very close to SPLUS 

over all the considered ranges. Both methods almost predict identical rank-

ing models over range I , and the two models have some small difference over 
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Figure 4.104: Performance of LNTS-RAW: CART-LS, CART-LAD, SPLUS 
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Figure 4.105: Alberg diagram for LNTS-RAW: CART-LS, CART-LAD, SPLUS 
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range I I . The same results are noticed when we take a close view to the most 

critical range as shown in Figure 4.106. 

When focusing on the performances shown in Figure 4.107, SPLUS almost 

has the same performance as CBR over range I . Considering range I I , they 

still perform close to each other compared to other methods. This means that 

SPLUS also perform close to MLR and ANN. 

4 . LNTS-RA W, comparative results regarding AAE, ARE 

CART-LAD and CART-LS provided the best and the worst underlying pre-

diction regarding AAE and ARE values. 

The models based on these two techniques alternatively have closer ranking to 

the perfect ranking along both ranges I and II as illustrated in Figure 4.108. 
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For the most critical modules, CART-LS presents the predicted ranking closer 

to the perfect ranking than CART-LAD over the critical range as shown in 

Figure 4.109. 

When focusing on performance, both techniques present unstable performance 

along the considered ranges. Considering range I, a ranking model based 

on CART-LS has higher performance for the former half of the range, while 

CART-LAD performs better than CART-LS for the later half of the range. 

However, the former half of range I would be more interesting than the later 

half because more faults are contained in the modules of the former half. 

For range II, CART-LAD performs apparently better than CART-LS for the 

first half of the range. However, CART -LS visibly performs better than CART­

LAD for the second half of range I I. 

Concisely, CART -LAD may have better prediction accuracy than CART -LS, 

but this doesn't mean that CART-LAD would perform better than CART-LS 

over all the cutoff ranges. 

4.5.2 Experiment on LNTS-PCA 

• Comparative results of the underlying quantitative models, LNTS-

PCA 

After conducting the principal components analysis, LNTS-PCA was ob­

tained from LNTS-RAW data set. After the models were built using the fit data 
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Figure 4.108: Alberg diagram for LNTS-RAW: CART-LS, CART-LAD 
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Figure 4.110: Performance of LNTS-RAW: CART-LS, CART-LAD 

Table 4.13: LNTS-PCA, Comparative accuracy of underlying quantitative models 

Test data 
Model AAE ARE 
CBR 1.231 0.624 
ANN 1.291 0.682 
MLR 1.254 0.671 

CART-LS 1.304 0.694 
CART-LAD 1.160 0.424 

SPLUS 1.276 0.671 

set, the test data set was applied. The results are shown in Table 4.13. 

For case-based reasoning, the city-block distance and distance weighted av-

erage provided the best result among all available similarity functions and solution 

algorithms for LNTS-PCA (29]. 

Stepwise model selection {5% significance level) with LNTS-PCA data se-

lected 3 out of 4 independent variables applied to Multiple Linear Regression. The 
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following model was obtained [29]. 

faults = 1.24178336 + 0.75727622 ·DOMAIN!+ 0.0.58507056 · DOMAIJN2 

+ 0.34032970 · DO M AI N3 

When using CART-LS, the tree has 5 terminal nodes and uses 2 out ·of 4 

independent variables. The tree built using CART-LAD has 4 leaf nodes and -uses 

3 out of 4 independent variables. For SPLUS, the preferred tree has 14 temninal 

nodes and uses 3 out of 4 independent variables [27]. 

CBR gave better prediction accuracy than MLR and ANN within grorup I. 

For group II, CART-LAD provided better prediction than CART-LS and SPLUS. 

Comparing all the underlying quantitative models, the order from the best to• the 

worst accuracy is CART-LAD, CBR, .MLR, SPLUS, ANN and CART-LS. 

• Comparative results of module-order models, LNTS-PCA 

1. LNTS-PCA, Comparative Results for Group I 

The results of module-order models based on group I are illustrated in Fig­

ure 4.111, 4.112 and 4.113. The Alberg diagram and the close view oE the 

most critical modules show that the three methods give very close predi•_cted 

ranking models along both ranges I and II. When analyzing performances, 

the three techniques in group I also perform really close over all the consid•_ered 

ranges. 
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Figure 4.111: Alberg diagram for LNTS-PCA: CBR, MLR, ANN 
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Figure 4.112: Close view of Alberg diagram for LNTS-PCA: CBR, MLR, AL~N 
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Figure 4.113: Performance of LNTS-PCA: CBR, MLR, ANN 

2. LNTS-PCA, Comparative Results for Group II 

The Alberg diagram in Figure 4.114 denotes that SPLUS seems to present 

closer predicted ranking to the perfect ranking than the two CART techniques 

over range I. However, ranking models using CART-LS and CART-LAD are 

closer to a perfect model than a model using SPL US for some intervals of 

range II. 

For the most critical modules, SPLUS presents the nearest ranking to the 

perfect ranking, and CART-LAD gives the farthest ranking from the perfect 

ranking as illustrated in Figure 4.115. 

When analyzing performances for range I , SPLUS performs better than the 

other two methods. CART-LS presents lower performance than SPLUS. How-

ever, CART-LAD has considerably lower performance than both SPLUS and 

CART-LS for this range. 
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Figure 4.114: Alberg diagram for LNTS-PCA: CART-LS, CART-LAD, SPLUS 

When considering performances over range I I , both CART techniques per-

form better than SPLUS over range II. CART-LS has an increasing trend of 

performance, while CART-LAD presents varying trend of performance along 

this range. The performance diagram is shown in Figure 4.116. 

CART-LAD has the best accuracy prediction within group II , but it presents 

considerably lower module-order modeling performance than others for the 

high interesting range, range I . This is one of several evidences that bet-

ter prediction does not always yield better performance when module-order 

modeling. 

3. LNTS-PCA, Group I and Group I I Models Comparison 

CBR is selected to represent all group I 's methods. The comparative results 

are illustrated in Figure 4.117, 4.118 and 4.119. We can easily notice again 
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Figure 4.115: Close view of Alberg diagram for LNTS-PCA: CART-LS, CART­
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Figure 4.116: Performance of LNTS-PCA: CART-LS, CART-LAD, SPLUS 
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Figure 4.117: Alberg diagram for LNTS-PCA: CART-LS, CART-LAD, SPLUS 
and CBR 

that CBR performs close to SPLUS. This yields that SPLUS also performs 

close to the other models in group I. 

4. LNTS-PCA, comparative results regarding AAE and ARE 

CART-LAD and CART-LS provided the best and the worst prediction. How-

ever, CART-LAD doesn't perform better than CART-LS. When focusing on 

range I, CART-LS performs considerably better than CART-LAD. We can 

easily notice the large gap existing between the two curves. For range II, 

CART-LAD presents better performance for some intervals of the range, but 

at the end of range I I, it doesn't perform as well as CART-LS. For the most 

critical ranges, CART-LS obviously presents closer ranking to the perfect rank-

ing than CART-LAD. The graphical presentation is shown in Figure 4.120, 
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Figure 4.118: Close view of Alberg diagram for LNTS-PCA: CART-LS, CART­
LAD, SPLUS and CBR 
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Figure 4.120: Alberg diagram for LNTS-PCA: CART-LS, CART-LAD 
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Figure 4.121: Close view of Alberg diagram for LNTS-PCA: CART-LS, CART­
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Figure 4.122: Performance of LNTS-PCA: CART-LS, CART-LAD 

4.121 and 4.122. 

4.6 Comparing module-order models based on RAW and PCA metrics 

Prior research stated that the use of principal components analysis does not 

improve the prediction accuracy for tree-modeling (27]. For non tree-modeling tech-

niques (CBR, MLR, ANN), when comparing the prediction accuracy using PCA and 

RAW metrics (29], PCA gave better accuracy than RAW for the LLTS case study. 

However, RAW presented better accuracy than PCA for NT and LNTS. Therefore, 

we can conclude that PCA did not improve the prediction accuracy for tree models 

and didn't systematically improve the prediction accuracy for the other models. 

For our research, we investigate the benefits of using principal components 

analysis in module-order modeling. We will compare the module-order models built 

using the RAW metrics and their principal components. 
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Figure 4.123: Alberg diagram for LLTS PCA and RAW comparison release 4: 
CBR 

4.6.1 Comparing module-order models for LLTS 

1. Comparative Results for Group I 

For LLTS data, the module-order models built using RAW metrics are very 

close to the ones built using PCA metrics for all methods in group I . We can 

see the obvious examples in Figure 4.123, 4.124 and 4.125. 

2. Comparative Results for Group II 

When considering CART-LS, the module-order models built using RAW met-

rics give closer ranking to the perfect ranking than the ones using PCA metrics 

for all releases. We show an example of the comparison in Figure 4.126 

For CART-LAD, the results are similar to CART-LS. The ordering models 

built using RAW metrics presents closer ranking to the perfect ranking than 

147 



100 

90 

80 

70 

~ 60 MLR 

• 50 ::: 
:I 

.f 40 
-Actual 

--PeA 
30 --RAW 
20 

10 

0 

0 10 20 30 40 50 

Madulea(%) 

Figure 4.124: Alberg diagram for LLTS PCA and RAW comparison release 2: 
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Figure 4.125: Alberg diagram for LLTS PCA and RAW comparison release 2: 
ANN 
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Figure 4.126: Alberg diagram for LLTS PCA and RAW comparison release 2: 
CART-LS 

the ones using PCA metrics for release 2 and 4. For release 3, the two models 

alternatively have closer ranking to the perfect ranking, but the one built 

using RAW metrics present closer ranking for the most critical modules. The 

example of release 2 and 3 are shown in Figure 4.127 and 4.128. 

SPLUS presents similar results to the group I techniques. The module-order 

models built using RAW metrics are very close to the ones built using PCA 

metrics as shown in Figure 4.129. 

Concisely, It was observed that when comparing PCA and RAW for the 

three group l's methods, the module-order models are very close. For group II, 

RAW metrics give better models than PCA for the two CART techniques. No 

improvement was observed for SPLUS. Therefore, the use of principal components 
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Figure 4.127: Alberg diagram for LLTS PCA and RAW comparison release 2: 
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Figure 4.128: Alberg diagram for LLTS PCA and RAW comparison release 3: 
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Figure 4.129: Alberg diagram for LLTS PCA and RAW comparison release 4: 
SPLUS 

analysis does not yield any improvement when module-order modeling for the LLTS 

case study. 

4.6.2 Comparing module-order models of NT 

1. Comparative Results for Group I 

The module-order models of group I built using RAW and PCA metrics are 

very close to each other. When using PCA metrics fo:r CBR, the model is very 

close to the one using RAW metrics as illustrated in Figure 4.130. 

For MLR, the predicted ranking using PCA is closer to the perfect ranking 

than the one using RAW over range I, but the difference is not large, and 

both predicted rankings become close to each other <>ver range I I as shown in 

Figure 4.131. 
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Figure 4 .130: Alberg diagram for NT PCA and RAW comparison: CBR 

For ANN, the model built using RAW is slightly closer to the the perfect 

ranking than the one using PCA metrics as shown in Figure 4.132. 

2 . Comparative Results for Group II 

T he module-order model using PCA is visibly better than the one using RAW 

metrics for CART-LS. We obviously see the considerable difference between 

PCA and RAW over range I . Figure 4.133 shows the comparative results for 

CART-LS. 

For CART-LAD, the model built using RAW is better than the one using 

PCA metrics over the considered ranges. The two models are very close to 

each other for the beginning of the cutoff range I . Afterwards, the model using 

RAW presents a closer ranking to the perfect ranking than the one using PCA 
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Figure 4.131: Alberg diagram for NT PCA and RAW comparison: MLR 
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Figure 4.132: Alberg diagram for NT PCA and RAW comparison: ANN 
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Figure 4.133: Alberg diagram for NT PCA and RAW comparison: CART-LS 

as shown in Figure 4.134. The same result is also seen for SPLUS as illustrated 

in Figure 4.135. 

To summarize, using PCA metrics improves the module-order models for 

MLR and CART-LS. However, for the other techniques in group I, the models using 

PCA are very close to the ones using RAW metrics. For the other methods in group 

II, using RAW metrics yielded better results than using PCA when module-order 

modeling. 

4.6.3 Comparing module-order models for LNTS 

1. Comparative Results for Group I 

The module-order models using RAW metrics are very close to the ones using 

PCA metrics for all group l's methods as shown in Figure 4.136, 4.137 and 

4.138. 
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Figure 4.134: Alberg diagram for NT PCA and RAW comparison: CART-LAD 

100 

90 

80 

70 

~ 60 ....... 
SPLUS 

.. 50 
~ 
~ 40 

-Actual 

--PCA 

30 ---RAW 

20 
10 

0 
0 10 20 30 40 50 

Module.(%) 

Figure 4.135: Alberg diagram for NT PCA and RAW comparison: SPLUS 
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Figure 4.136: Alberg diagram for LNTS PCA a.nd RAW comparison: CBR 
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Figure 4.137: Alberg diagram for LNTS PCA and RAW comparison: MLR 
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Figure 4.138: Alberg diagram for LNTS PCA and RAW comparison: ANN 
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Figure 4.139: Alberg diagram for LNTS P CA and RAW comparison: CART-LS 
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Figure 4.140: Alberg diagram for LNTS PCA and RAW comparison: CART-LAD 
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Figure 4.141: Alberg diagram for LNTS PCA and RAW comparison: SPLUS 
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2. comparative Results for Group I I 

When comparing PCA with RAW for CART-LS, the two models are very 

close for range I, but they alternatively present closer ranking to the perfect 

ranking for range II as shown in Figure 4.139. 

For CART-LAD, the model using RAW is considerably better than the one 

using PCA metrics over range I, but they alternatively present closer ranking 

to the perfect ranking over range II as shown in Figure 4.140. 

For SPLUS, the model using PCA is very close models to one using RAW 

metrics over the considered ranges as shown in Figure 4.141 

To summarize, the module-order models using PCA are very close to ones 

using RAW metrics for three group I's methods and SPLUS. For the two CART 

methods, the models using PCA are not better than ones using RAW metrics for 

the range of higher interest. Therefore, the use of principal components analysis 

does not yield any benefit when module-order modeling for the LNTS case study. 
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Chapter 5 

CONCLUSIONS 

In this chapter, we present our conclusions based on the results of experiments 

on module-order modeling. 

5.1 Overview 

A module-order model predict the rank-order of modules based on a quanti­

tative quality factor. In this research, we used number of faults as a quality factor. 

An empirical study based on various underlying quantitative software quality pre­

diction methods was performed. Those underlying quantitative prediction models 

are Case-base Reasoning (CBR), Multiple Linear Regression (MLR), Artificial In­

telligent Networks (ANN), CART Least Square (CART-LS), CART Least Absolute 

Deviation (CART-LAD) and SPLUS algorithms. 

Three case studies of full-scale industrial software systems were used to com­

pare the module-order modeling performance of the different underlying techniques. 
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Both original RAW data and preprocessed PCA data set were applied to the ex­

periments. We will conclude with the lessons learned from this study following the 

three objectives discussed in the introduction of this thesis. 

The first objective is to study the behavior of module-order models based on 

five different underlying techniques. The conclusion can be grouped as the following. 

1. When considering CBR, MLR, and ANN the performances remained very close 

to each other when module-order modeling. 

2. For tree-modeling group, CART-LS, CART-LAD and SPLUS, the tree tech­

niques present different module-order models for all three case studies. The 

models based on the two CART methods present varying behaviors and per­

formances along the considered range. SPLUS provided better performances 

than the CART methods. In addition SPLUS provides the most robust model 

due to the least variation of ¢(c) in this group. The diagram presented the 

performance from these tree-modeling techniques have different trend of path. 

3. When comparing non tree-modeling with tree-modeling group, CBR, MLR 

and ANN perform close to SPLUS when module-order modeling compared to 

CART techniques. 

4. We can not conclude which underlying technique has the best performance 

when module-order modeling. This depends on the particular cutoff percentile 

the manager wants to select. For example in the experiments, CART-LS 
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performs considerably better than other underlying techniques around the 

40-50 percentile for all case studies, however it frequently provides poorer 

performances than other techniques around the beginning of the considered 

range. 

For the second objective, we investigated the benefits of using principal com­

ponents analysis when module-order modeling. When considering the non tree­

modeling group, the models built using PCA remained very close to the ones built 

using RAW. For the tree-modeling group, RAW metrics usually yielded better mod­

els than PCA metrics for all three case studies. This leads us to the conclusion that 

the use of PCA doesn't yield better results when module-order modeling. 

For the third objective, we have verified that better prediction accuracy, 

doesn't always yield better performance when module-order modeling. We can see 

several evidences according to the comparative results. Prior research [27] stated 

that CART-LAD had better prediction accuracy than other techniques. However, 

CART-LAD did not perform better than the other techniques when module-order 

modeling for all three case studies. 

Overall, any underlying quantitative method can be applied to module-order 

modeling. The performance of a rank-order models may be differ from one algorithm 

to another and from one case study to another. In addition, AAE and ARE value 

seem not to be good indicators to define a good prediction model for module-order 

modeling. 
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5.2 Future Work 

Module-order modeling can be further investigated by using different under­

lying quantitative techniques and applying it to a wide variety of systems other than 

a telecommunications system. 
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