You are here
wavelet-based detector for underwater communication
- Date Issued:
- 2001
- Summary:
- The need for reliable underwater communication at Florida Atlantic University is critical in transmitting data to and from Autonomous Underwater Vehicles (AUV) and remote sensors. Since a received signal is corrupted with ambient ocean noise, the nature of such noise is investigated. Furthermore, we establish connection between ambient ocean noise and fractal noise. Since the matched filter is designed under the assumption that noise is white, performance degradation of the matched filter due non-white noise is investigated. We show empirical results that the wavelet transform provides an approximate Karhunen-Loeve expansion for 1/f-type noise. Since whitening can improve only broadband signals, a new method for synchronization signal design in wavelet subspaces with increased energy-to-peak amplitude ratio is presented. The wavelet detector with whitening of fractal noise and detection in wavelet subspace is shown. Results show that the wavelet detector improves detectability, however this is below expectation due to differences between fractal noise and ambient ocean noise.
Title: | A wavelet-based detector for underwater communication. |
![]() ![]() |
---|---|---|
Name(s): |
Petljanski, Branko. Florida Atlantic University, Degree grantor Erdol, Nurgun, Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2001 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 78 p. | |
Language(s): | English | |
Summary: | The need for reliable underwater communication at Florida Atlantic University is critical in transmitting data to and from Autonomous Underwater Vehicles (AUV) and remote sensors. Since a received signal is corrupted with ambient ocean noise, the nature of such noise is investigated. Furthermore, we establish connection between ambient ocean noise and fractal noise. Since the matched filter is designed under the assumption that noise is white, performance degradation of the matched filter due non-white noise is investigated. We show empirical results that the wavelet transform provides an approximate Karhunen-Loeve expansion for 1/f-type noise. Since whitening can improve only broadband signals, a new method for synchronization signal design in wavelet subspaces with increased energy-to-peak amplitude ratio is presented. The wavelet detector with whitening of fractal noise and detection in wavelet subspace is shown. Results show that the wavelet detector improves detectability, however this is below expectation due to differences between fractal noise and ambient ocean noise. | |
Identifier: | 9780493121857 (isbn), 12778 (digitool), FADT12778 (IID), fau:9655 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2001. |
|
Subject(s): |
Wavelets (Mathematics) Underwater acoustics |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12778 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |