You are here

Scattering and response Green's function modeling of a fluid-loaded coated cylindrical shell

Download pdf | Full Screen View

Date Issued:
2001
Summary:
An acoustic compliant coating is applied on a fluid-loaded structure to control the radiated pressure, by decoupling the fluid medium from the vibrating surface. In this thesis the problem of an infinite cylindrical shell immersed in a fluid and entirely covered with an acoustic compliant layer, excited either by a ring force or an incident acoustic plane wave is considered. To model this problem two different approaches are used. The first one, which is available in the literature, is based on multi-layer shell theory. In this approach the scalar and the vector potential formulation are used to solve for the response and the scattering from the cylinder. The second approach is based on modeling the compliant layer by a normally reacting impedance layer on the surface of the shell. The velocity response Green's function of the shell is found using the hybrid numerical/analytical method. Results for the radiated and scattered pressure from the shell are also presented. The advantage of this second approach is that it can be used to model complex coating geometries. The results obtained with both approaches are compared.
Title: Scattering and response Green's function modeling of a fluid-loaded coated cylindrical shell.
109 views
41 downloads
Name(s): Treffot, Carole.
Florida Atlantic University, Degree grantor
Cuschieri, Joseph M., Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2001
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 115 p.
Language(s): English
Summary: An acoustic compliant coating is applied on a fluid-loaded structure to control the radiated pressure, by decoupling the fluid medium from the vibrating surface. In this thesis the problem of an infinite cylindrical shell immersed in a fluid and entirely covered with an acoustic compliant layer, excited either by a ring force or an incident acoustic plane wave is considered. To model this problem two different approaches are used. The first one, which is available in the literature, is based on multi-layer shell theory. In this approach the scalar and the vector potential formulation are used to solve for the response and the scattering from the cylinder. The second approach is based on modeling the compliant layer by a normally reacting impedance layer on the surface of the shell. The velocity response Green's function of the shell is found using the hybrid numerical/analytical method. Results for the radiated and scattered pressure from the shell are also presented. The advantage of this second approach is that it can be used to model complex coating geometries. The results obtained with both approaches are compared.
Identifier: 9780493121826 (isbn), 12775 (digitool), FADT12775 (IID), fau:9652 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2001.
Subject(s): Green's functions
Elastic plates and shells
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12775
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.