You are here
To identify the functional domains of BNIP3L required for elimination of MT, ER and GA to form mature lens fiber cells
- Date Issued:
- 2022
- Abstract/Description:
- The structure and transparency of the eye lens are vital for focusing light onto the retina for vision. Lens fiber cells undergo a cellular remodeling program that removes mitochondria (MT), endoplasmic reticulum (ER), and Golgi apparatus (GA) to form mature transparent lens fiber cells. Previous studies established a requirement for the mitochondrial outer membrane protein BNIP3L for the elimination of these non-nuclear organelles in the lens; however, the precise molecular pathways for BNIP3L function remain to be elucidated. BNIP3L contains multiple functional domains whose analysis may illuminate its lens mechanisms including the LIR, BH3, and TM domains. These domains each play an important role in regulation of autophagosome formation and initiation of autophagy. To test each domain’s functionality for BNIP3L-dependent organelle elimination, we designed site-directed mutagenesis studies to delete each domain and test the resulting mutants in initiating the degradation of organelles in ex vivo cultured embryonic chick lenses.
Title: | To identify the functional domains of BNIP3L required for elimination of MT, ER and GA to form mature lens fiber cells. |
![]() ![]() |
---|---|---|
Name(s): |
Zabizhin, Rachel , author Brennan, Lisa, Thesis advisor Florida Atlantic University, Degree grantor Department of Biomedical Science Charles E. Schmidt College of Medicine |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 29 p. | |
Language(s): | English | |
Abstract/Description: | The structure and transparency of the eye lens are vital for focusing light onto the retina for vision. Lens fiber cells undergo a cellular remodeling program that removes mitochondria (MT), endoplasmic reticulum (ER), and Golgi apparatus (GA) to form mature transparent lens fiber cells. Previous studies established a requirement for the mitochondrial outer membrane protein BNIP3L for the elimination of these non-nuclear organelles in the lens; however, the precise molecular pathways for BNIP3L function remain to be elucidated. BNIP3L contains multiple functional domains whose analysis may illuminate its lens mechanisms including the LIR, BH3, and TM domains. These domains each play an important role in regulation of autophagosome formation and initiation of autophagy. To test each domain’s functionality for BNIP3L-dependent organelle elimination, we designed site-directed mutagenesis studies to delete each domain and test the resulting mutants in initiating the degradation of organelles in ex vivo cultured embryonic chick lenses. | |
Identifier: | FA00014087 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Eye Lens, Crystalline |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014087 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |