You are here
WASTE DERIVED ACTIVATED CARBON MATERIALS FOR LANDFILL GAS PURIFICATION
- Date Issued:
- 2022
- Abstract/Description:
- The potential of paper waste-derived activated carbon was investigated for the removal of carbon dioxide and hydrogen sulfide from landfill gas. Activated carbon materials were prepared by carbonizing paper waste followed by acid treatment to remove ash, mixing with aqueous phase potassium hydroxide, and activation via microwave heating. Activated samples were tested using thermogravimetric analysis to determine their equilibrium uptake of carbon dioxide. The adsorbent materials were modified with both tetraethylenepentamine and diethanolamine to potentially increase the carbon dioxide uptake, however, all the modified samples had a performance significantly worse than their unmodified counterparts. Adsorbent screening was conducted in conditions mimicking that of landfill gas, namely temperature of 40 °C and 40% carbon dioxide in nitrogen. Performant samples were identified as those achieving uptakes greater than 3 wt.%. The best performing sample achieved an uptake of 5.03 wt.% and maintained 97% of its uptake during 100 successive adsorption-desorption cycles. Column-breakthrough experiments demonstrated that the final candidate achieved complete removal of both carbon dioxide and hydrogen sulfide, suggesting viability for larger scale landfill gas purification.
Title: | WASTE DERIVED ACTIVATED CARBON MATERIALS FOR LANDFILL GAS PURIFICATION. |
![]() ![]() |
---|---|---|
Name(s): |
Thomas, Ryan , author Lashaki, Masoud Jahandar , Thesis advisor Florida Atlantic University, Degree grantor Department of Civil, Environmental and Geomatics Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 130 p. | |
Language(s): | English | |
Abstract/Description: | The potential of paper waste-derived activated carbon was investigated for the removal of carbon dioxide and hydrogen sulfide from landfill gas. Activated carbon materials were prepared by carbonizing paper waste followed by acid treatment to remove ash, mixing with aqueous phase potassium hydroxide, and activation via microwave heating. Activated samples were tested using thermogravimetric analysis to determine their equilibrium uptake of carbon dioxide. The adsorbent materials were modified with both tetraethylenepentamine and diethanolamine to potentially increase the carbon dioxide uptake, however, all the modified samples had a performance significantly worse than their unmodified counterparts. Adsorbent screening was conducted in conditions mimicking that of landfill gas, namely temperature of 40 °C and 40% carbon dioxide in nitrogen. Performant samples were identified as those achieving uptakes greater than 3 wt.%. The best performing sample achieved an uptake of 5.03 wt.% and maintained 97% of its uptake during 100 successive adsorption-desorption cycles. Column-breakthrough experiments demonstrated that the final candidate achieved complete removal of both carbon dioxide and hydrogen sulfide, suggesting viability for larger scale landfill gas purification. | |
Identifier: | FA00014106 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Landfill gases--Purification Carbon, Activated Adsorption |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014106 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |