You are here

DEVELOPMENT OF A MICROFLUIDIC DEVICE FOR EXOSOME ISOLATION IN POINT-OF-CARE SETTINGS

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
Exosomes have gained recognition in cancer diagnostics and therapeutics. Most exosome isolation methods are time-consuming, costly and require bulky equipment, rendering them unsuitable for point-of-care (POC) settings. Microfluidics can be the key to solving these challenges. Here, we employ the development of a double filtration microfluidic device that can rapidly isolate exosomes in POC settings. The device can efficiently isolate exosomes from just 100 uL of plasma within 50 minutes. The device was compared against Polyethylene glycol (PEG) based precipitation, and findings show that both methods yield comparable exosome sizes and purity, but the device can detect exosomal miRNA earlier than PEG. Finally, a comparative analysis of membrane filters with exosomes collected from pore sizes 15 nm and 30 nm showed a similarity in exosome size and miRNA expressions, with significantly increased sample purity. These findings suggest that this device has potential in POC settings.
Title: DEVELOPMENT OF A MICROFLUIDIC DEVICE FOR EXOSOME ISOLATION IN POINT-OF-CARE SETTINGS.
45 views
20 downloads
Name(s): Ramnauth, Natasha , author
Waseem Asghar, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biological Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 70 p.
Language(s): English
Abstract/Description: Exosomes have gained recognition in cancer diagnostics and therapeutics. Most exosome isolation methods are time-consuming, costly and require bulky equipment, rendering them unsuitable for point-of-care (POC) settings. Microfluidics can be the key to solving these challenges. Here, we employ the development of a double filtration microfluidic device that can rapidly isolate exosomes in POC settings. The device can efficiently isolate exosomes from just 100 uL of plasma within 50 minutes. The device was compared against Polyethylene glycol (PEG) based precipitation, and findings show that both methods yield comparable exosome sizes and purity, but the device can detect exosomal miRNA earlier than PEG. Finally, a comparative analysis of membrane filters with exosomes collected from pore sizes 15 nm and 30 nm showed a similarity in exosome size and miRNA expressions, with significantly increased sample purity. These findings suggest that this device has potential in POC settings.
Identifier: FA00014071 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Microfluidic devices
Exosomes
Point-of-care testing
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014071
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.