You are here

ADDRESSING HIGHLY IMBALANCED BIG DATA CHALLENGES FOR MEDICARE FRAUD DETECTION

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
Access to affordable healthcare is a nationwide concern that impacts most of the United States population. Medicare is a federal government healthcare program that aims to provide affordable health insurance to the elderly population and individuals with select disabilities. Unfortunately, there is a significant amount of fraud, waste, and abuse within the Medicare system that inevitably raises premiums and costs taxpayers billions of dollars each year. Dedicated task forces investigate the most severe fraudulent cases, but with millions of healthcare providers and more than 60 million active Medicare beneficiaries, manual fraud detection efforts are not able to make widespread, meaningful impact. Through the proliferation of electronic health records and continuous breakthroughs in data mining and machine learning, there is a great opportunity to develop and leverage advanced machine learning systems for automating healthcare fraud detection. This dissertation identifies key challenges associated with predictive modeling for large-scale Medicare fraud detection and presents innovative solutions to address these challenges in order to provide state-of-the-art results on multiple real-world Medicare fraud data sets. Our methodology for curating nine distinct Medicare fraud classification data sets is presented with comprehensive details describing data accumulation, data pre-processing, data aggregation techniques, data enrichment strategies, and improved fraud labeling. Data-level and algorithm-level methods for treating severe class imbalance, including a flexible output thresholding method and a cost-sensitive framework, are evaluated using deep neural network and ensemble learners. Novel encoding techniques and representation learning methods for high-dimensional categorical features are proposed to create expressive representations of provider attributes and billing procedure codes.
Title: ADDRESSING HIGHLY IMBALANCED BIG DATA CHALLENGES FOR MEDICARE FRAUD DETECTION.
72 views
38 downloads
Name(s): Johnson, Justin M. , author
Khoshgoftaar, Taghi M. , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 210 p.
Language(s): English
Abstract/Description: Access to affordable healthcare is a nationwide concern that impacts most of the United States population. Medicare is a federal government healthcare program that aims to provide affordable health insurance to the elderly population and individuals with select disabilities. Unfortunately, there is a significant amount of fraud, waste, and abuse within the Medicare system that inevitably raises premiums and costs taxpayers billions of dollars each year. Dedicated task forces investigate the most severe fraudulent cases, but with millions of healthcare providers and more than 60 million active Medicare beneficiaries, manual fraud detection efforts are not able to make widespread, meaningful impact. Through the proliferation of electronic health records and continuous breakthroughs in data mining and machine learning, there is a great opportunity to develop and leverage advanced machine learning systems for automating healthcare fraud detection. This dissertation identifies key challenges associated with predictive modeling for large-scale Medicare fraud detection and presents innovative solutions to address these challenges in order to provide state-of-the-art results on multiple real-world Medicare fraud data sets. Our methodology for curating nine distinct Medicare fraud classification data sets is presented with comprehensive details describing data accumulation, data pre-processing, data aggregation techniques, data enrichment strategies, and improved fraud labeling. Data-level and algorithm-level methods for treating severe class imbalance, including a flexible output thresholding method and a cost-sensitive framework, are evaluated using deep neural network and ensemble learners. Novel encoding techniques and representation learning methods for high-dimensional categorical features are proposed to create expressive representations of provider attributes and billing procedure codes.
Identifier: FA00014057 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Medicare fraud
Big data
Machine learning
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014057
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.