You are here
ADVANCED DATA SCIENCE AND PHYSICS-BASED MODELING FOR DYNAMIC SYSTEMS
- Date Issued:
- 2022
- Abstract/Description:
- This dissertation focuses on the development of data-driven and physics-based modeling for two distinct significant structural engineering applications: time-varying response variables estimation and unwanted lateral vibration control. In the first part, I propose a machine learning (ML)-based surrogate modeling to directly predict dynamic responses over an entire mechanical system during operations. Any mechanical system design, as well as structural health monitoring systems, require transient vibration analysis. However, traditional methods and modeling calculations are time- and resource-consuming. The use of ML approaches is particularly promising in scientific and engineering challenges containing processes that are not completely understood, or where it is computationally infeasible to run numerical or analytical models at desired resolutions in space and time. In this research, an ML-based surrogate for the FEA approach is developed to forecast the time-varying response, i.e., displacement of a two-dimensional truss structure. Various ML regression algorithms including decision trees and deep neural networks are developed to predict movement over a truss structure, and their efficiencies are investigated. ML algorithms have been combined with FEA in preliminary attempts to address issues in static mechanical systems.
Title: | ADVANCED DATA SCIENCE AND PHYSICS-BASED MODELING FOR DYNAMIC SYSTEMS. |
![]() ![]() |
---|---|---|
Name(s): |
Hashemi, Ali , author Jang, Jinwoo , Thesis advisor Florida Atlantic University, Degree grantor Department of Civil, Environmental and Geomatics Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 142 p. | |
Language(s): | English | |
Abstract/Description: | This dissertation focuses on the development of data-driven and physics-based modeling for two distinct significant structural engineering applications: time-varying response variables estimation and unwanted lateral vibration control. In the first part, I propose a machine learning (ML)-based surrogate modeling to directly predict dynamic responses over an entire mechanical system during operations. Any mechanical system design, as well as structural health monitoring systems, require transient vibration analysis. However, traditional methods and modeling calculations are time- and resource-consuming. The use of ML approaches is particularly promising in scientific and engineering challenges containing processes that are not completely understood, or where it is computationally infeasible to run numerical or analytical models at desired resolutions in space and time. In this research, an ML-based surrogate for the FEA approach is developed to forecast the time-varying response, i.e., displacement of a two-dimensional truss structure. Various ML regression algorithms including decision trees and deep neural networks are developed to predict movement over a truss structure, and their efficiencies are investigated. ML algorithms have been combined with FEA in preliminary attempts to address issues in static mechanical systems. | |
Identifier: | FA00014048 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Dynamics Data Science Machine learning |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014048 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |