You are here

KINOVA ROBOTIC ARM MANIPULATION WITH PYTHON PROGRAMMING

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
As artificial intelligence (AI), such as reinforcement learning (RL), has continued to grow, the introduction of AI for use in robotic arms in order to have them autonomously complete tasks has become an increasingly popular topic. Robotic arms have recently had a drastic spike in innovation, with new robotic arms being developed for a variety of tasks both menial and complicated. One robotic arm recently developed for everyday use in close proximity to the user is the Kinova Gen 3 Lite, but limited formal research has been conducted about controlling this robotic arm both with an AI and in general. Therefore, this thesis covers the implementation of Python programs in controlling the robotic arm physically as well as the use of a simulation to train an RL based AI compatible with the Kinova Gen 3 Lite. Additionally, the purpose of this research is to identify and solve the difficulties in the physical instance and the simulation as well as the impact of the learning parameters on the robotic arm AI. Similarly, the issues in connecting two Kinova Gen 3 Lites to one computer at once are also examined. This thesis goes into detail about the goal of the Python programs created to move the physical robotic arm as well as the overall setup and goal of the robotic arm simulation for the RL method. In particular, the Python programs for the physical robotic arm pick up the object and place it at a different location, identifying a method to prevent the gripper from crushing an object without a tactile sensor in the process. The thesis also covers the effect of various learning parameters on the accuracy and steps to goal curves of an RL method designed to make a Kinova Gen 3 Lite grab an object in a simulation. In particular, a neural network implementation of RL method with one of the learning parameters changed in comparison to the optimal learning parameters. The neural network is trained using Python Anaconda to control a Kinova Gen 3 Lite robotic arm model for a simulation made in the Unity compiler.
Title: KINOVA ROBOTIC ARM MANIPULATION WITH PYTHON PROGRAMMING.
145 views
19 downloads
Name(s): Veit, Cameron , author
Zhong, Xiangnan , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 77 p.
Language(s): English
Abstract/Description: As artificial intelligence (AI), such as reinforcement learning (RL), has continued to grow, the introduction of AI for use in robotic arms in order to have them autonomously complete tasks has become an increasingly popular topic. Robotic arms have recently had a drastic spike in innovation, with new robotic arms being developed for a variety of tasks both menial and complicated. One robotic arm recently developed for everyday use in close proximity to the user is the Kinova Gen 3 Lite, but limited formal research has been conducted about controlling this robotic arm both with an AI and in general. Therefore, this thesis covers the implementation of Python programs in controlling the robotic arm physically as well as the use of a simulation to train an RL based AI compatible with the Kinova Gen 3 Lite. Additionally, the purpose of this research is to identify and solve the difficulties in the physical instance and the simulation as well as the impact of the learning parameters on the robotic arm AI. Similarly, the issues in connecting two Kinova Gen 3 Lites to one computer at once are also examined. This thesis goes into detail about the goal of the Python programs created to move the physical robotic arm as well as the overall setup and goal of the robotic arm simulation for the RL method. In particular, the Python programs for the physical robotic arm pick up the object and place it at a different location, identifying a method to prevent the gripper from crushing an object without a tactile sensor in the process. The thesis also covers the effect of various learning parameters on the accuracy and steps to goal curves of an RL method designed to make a Kinova Gen 3 Lite grab an object in a simulation. In particular, a neural network implementation of RL method with one of the learning parameters changed in comparison to the optimal learning parameters. The neural network is trained using Python Anaconda to control a Kinova Gen 3 Lite robotic arm model for a simulation made in the Unity compiler.
Identifier: FA00014022 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Robotics
Artificial intelligence
Reinforcement learning
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014022
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.