You are here
DEVELOPMENT OF A SLIDING MODE CONTROLLER AND CONTROL ALLOCATION OPTIMIZED FOR ELECTRO-MAGNETIC ACTUATOR LIMITATIONS
- Date Issued:
- 2022
- Abstract/Description:
- This thesis presents the development a sliding mode controller and vehicle allocation to control a surface vessel platform within a high degree of accuracy. This is part of ongoing development on the WAMV platform at Florida Atlantic University to improve autonomy in marine systems. By developing models for the untested thrusters currently used, the efficacy of a Sliding Mode Controller is evaluated, and a new control allocation developed based on the gradient descent optimization method is developed to manage the thrusters’ constrained angles of thrust generation. The official simulation for the WAMV platform was then modified to include these aspects and the system was tested under wind conditions and was successful in achieving control to waypoints. The gradient descent optimization used for the control allocation did manage to increase the accuracy of both heading and position of the system at convergence. The sliding mode controller navigated to the desired waypoint however maintained oscillations of cross track that were less then 2m and heading error less 20 degrees.
Title: | DEVELOPMENT OF A SLIDING MODE CONTROLLER AND CONTROL ALLOCATION OPTIMIZED FOR ELECTRO-MAGNETIC ACTUATOR LIMITATIONS. |
46 views
23 downloads |
---|---|---|
Name(s): |
Resio, Daniel , author Dhanak, Manhar , Thesis advisor Florida Atlantic University, Degree grantor Department of Ocean and Mechanical Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 77 p. | |
Language(s): | English | |
Abstract/Description: | This thesis presents the development a sliding mode controller and vehicle allocation to control a surface vessel platform within a high degree of accuracy. This is part of ongoing development on the WAMV platform at Florida Atlantic University to improve autonomy in marine systems. By developing models for the untested thrusters currently used, the efficacy of a Sliding Mode Controller is evaluated, and a new control allocation developed based on the gradient descent optimization method is developed to manage the thrusters’ constrained angles of thrust generation. The official simulation for the WAMV platform was then modified to include these aspects and the system was tested under wind conditions and was successful in achieving control to waypoints. The gradient descent optimization used for the control allocation did manage to increase the accuracy of both heading and position of the system at convergence. The sliding mode controller navigated to the desired waypoint however maintained oscillations of cross track that were less then 2m and heading error less 20 degrees. | |
Identifier: | FA00014037 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Unmanned surface vehicles Actuators Sliding mode control |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014037 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |