You are here
Event-driven Nearshore Sediment Transport and Morphodynamics of a Beach in Boca Raton, Florida
- Date Issued:
- 2022
- Abstract/Description:
- Tropical storms and mid-latitude cyclones are major drivers of coastal change and damage in coastal communities. Beaches act as a first line of defense against storms, as well as provide recreation, contribute to the economy, and serve as ecological habitat for coastal flora and fauna. Throughout the year, meteorological event-driven increases in wave energy result in higher amounts of sediment transport that cause rapid coastal zone morphology alterations and threaten these beach functions. This study uses streamer traps to evaluate cohesionless sediment dynamics in the surf zone and storm-induced morphology change in Boca Raton, Florida. The quantitative and sedimentological characteristics of sediment collected in the bottom streamer trap bins was larger grains with a higher capture weight near the seabed compared to sediment captured in the middle and upper streamer trap bins during both the cold front and the tropical storm. A greater quantity of sediment was captured in transport due to the tropical storm compared to the cold front. Morphology change observed as a result of the cold front included berm erosion, swash zone and foreshore accretion, and erosion beyond the -1.0m contour elevation. Analysis of the morphology observed post-tropical storm included berm accretion, and swash zone and foreshore erosion that continued seaward to the end of the profile. Dean number calculations using pre-cold front sediments and wave parameters predicted erosion, and the post-cold front BMAP measurements confirmed this prediction. Dean number calculations using pre-tropical storm sediments and wave parameters predicted accretion and the post-tropical storm BMAP measurements invalidated this prediction at all capture locations, although above the 1.0m contour the berm did exhibit accretion. Results of this study aim to quantify granulometric differences in event-driven sediment transport in Boca Raton, FL for improved prediction capabilities. Given the current trajectory of climate change, sea-level rise, and increased storm intensity, better understanding the morphological impact of different classes of storms is necessary to ensure and improve coastal resiliency and management.
Title: | Event-driven Nearshore Sediment Transport and Morphodynamics of a Beach in Boca Raton, Florida. |
![]() ![]() |
---|---|---|
Name(s): |
Priddy, Michael S. , author Briggs, Tiffany Roberts , Thesis advisor Florida Atlantic University, Degree grantor Department of Geosciences Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 90 p. | |
Language(s): | English | |
Abstract/Description: | Tropical storms and mid-latitude cyclones are major drivers of coastal change and damage in coastal communities. Beaches act as a first line of defense against storms, as well as provide recreation, contribute to the economy, and serve as ecological habitat for coastal flora and fauna. Throughout the year, meteorological event-driven increases in wave energy result in higher amounts of sediment transport that cause rapid coastal zone morphology alterations and threaten these beach functions. This study uses streamer traps to evaluate cohesionless sediment dynamics in the surf zone and storm-induced morphology change in Boca Raton, Florida. The quantitative and sedimentological characteristics of sediment collected in the bottom streamer trap bins was larger grains with a higher capture weight near the seabed compared to sediment captured in the middle and upper streamer trap bins during both the cold front and the tropical storm. A greater quantity of sediment was captured in transport due to the tropical storm compared to the cold front. Morphology change observed as a result of the cold front included berm erosion, swash zone and foreshore accretion, and erosion beyond the -1.0m contour elevation. Analysis of the morphology observed post-tropical storm included berm accretion, and swash zone and foreshore erosion that continued seaward to the end of the profile. Dean number calculations using pre-cold front sediments and wave parameters predicted erosion, and the post-cold front BMAP measurements confirmed this prediction. Dean number calculations using pre-tropical storm sediments and wave parameters predicted accretion and the post-tropical storm BMAP measurements invalidated this prediction at all capture locations, although above the 1.0m contour the berm did exhibit accretion. Results of this study aim to quantify granulometric differences in event-driven sediment transport in Boca Raton, FL for improved prediction capabilities. Given the current trajectory of climate change, sea-level rise, and increased storm intensity, better understanding the morphological impact of different classes of storms is necessary to ensure and improve coastal resiliency and management. | |
Identifier: | FA00014005 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Sediment transport Boca Raton (Fla.) Geomorphology Beaches |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014005 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |