You are here

Modeling the forward look sonar

Download pdf | Full Screen View

Date Issued:
2001
Summary:
A numerical model that simulates the operation of a Forward Look Scan Sonar (FLSS) has been developed in this thesis. The model discretizes the sonar-projected signal by a set of rays using a geometrical approach. Bending of the rays due to varying acoustic wave speed is neglected. Simulated raw sonar data are generated, and used as input in the sonar processing algorithms to generate sonar images. Using the model, the influence of, the most critical characteristics of the sonar, including phase variations among the channels, non-homogeneous channel amplitude, and the number of bad channels, on the quality of the sonar image is determined. The results of the model are compared to real data from a low frequency FLS sonar (250 KHz) and a high frequency FLS sonar (600 KHz). There is good matching between the simulation and the operation of the two sonars and the performance was markedly enhanced by using the modeling results.
Title: Modeling the forward look sonar.
206 views
101 downloads
Name(s): Barrault, Guillaume.
Florida Atlantic University, Degree grantor
Cuschieri, Joseph M., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2001
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 96 p.
Language(s): English
Summary: A numerical model that simulates the operation of a Forward Look Scan Sonar (FLSS) has been developed in this thesis. The model discretizes the sonar-projected signal by a set of rays using a geometrical approach. Bending of the rays due to varying acoustic wave speed is neglected. Simulated raw sonar data are generated, and used as input in the sonar processing algorithms to generate sonar images. Using the model, the influence of, the most critical characteristics of the sonar, including phase variations among the channels, non-homogeneous channel amplitude, and the number of bad channels, on the quality of the sonar image is determined. The results of the model are compared to real data from a low frequency FLS sonar (250 KHz) and a high frequency FLS sonar (600 KHz). There is good matching between the simulation and the operation of the two sonars and the performance was markedly enhanced by using the modeling results.
Identifier: 9780493070605 (isbn), 12733 (digitool), FADT12733 (IID), fau:9614 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2001.
Subject(s): Sonar
Underwater acoustics
Remote submersibles
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12733
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.