You are here

TOWARDS DEPLOYABLE QUANTUM-SAFE CRYPTOSYSTEMS

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
It is well known that in the near future, a large-scale quantum computer will be unveiled, one that could be used to break the cryptography that underlies our digital infrastructure. Quantum computers operate on quantum mechanics, enabling exponential speedups to certain computational problems, including hard problems at the cornerstone of our deployed cryptographic algorithms. With a vulnerability in this security foundation, our online identities, banking information, and precious data is now vulnerable. To address this, we must prepare for a transition to post-quantum cryptography, or cryptosystems that are protected from attacks by both classical and quantum computers. This is a dissertation proposal targeting cryptographic engineering that is necessary to deploy isogeny-based cryptosystems, one known family of problems that are thought to be difficult to break, even for quantum computers. Isogeny-based cryptography utilizes mappings between elliptic curves to achieve public-key encryption, digital signatures, and other cryptographic objectives necessary to support our digital infrastructure's security. This proposal focuses on three aspects of isogeny-based cryptography: 1) cryptographic engineering of isogeny-based cryptosystems; 2) developing and optimizing security-enabling isogeny applications; and 3) improving the security from known and emerging implementation attacks. By improving each of these aspects, we are providing confidence in the deployability of isogeny-based cryptography and helping to prepare for a post-quantum transition.
Title: TOWARDS DEPLOYABLE QUANTUM-SAFE CRYPTOSYSTEMS.
45 views
18 downloads
Name(s): Koziel, Brian , author
Azarderakhsh, Reza , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 250 p.
Language(s): English
Abstract/Description: It is well known that in the near future, a large-scale quantum computer will be unveiled, one that could be used to break the cryptography that underlies our digital infrastructure. Quantum computers operate on quantum mechanics, enabling exponential speedups to certain computational problems, including hard problems at the cornerstone of our deployed cryptographic algorithms. With a vulnerability in this security foundation, our online identities, banking information, and precious data is now vulnerable. To address this, we must prepare for a transition to post-quantum cryptography, or cryptosystems that are protected from attacks by both classical and quantum computers. This is a dissertation proposal targeting cryptographic engineering that is necessary to deploy isogeny-based cryptosystems, one known family of problems that are thought to be difficult to break, even for quantum computers. Isogeny-based cryptography utilizes mappings between elliptic curves to achieve public-key encryption, digital signatures, and other cryptographic objectives necessary to support our digital infrastructure's security. This proposal focuses on three aspects of isogeny-based cryptography: 1) cryptographic engineering of isogeny-based cryptosystems; 2) developing and optimizing security-enabling isogeny applications; and 3) improving the security from known and emerging implementation attacks. By improving each of these aspects, we are providing confidence in the deployability of isogeny-based cryptography and helping to prepare for a post-quantum transition.
Identifier: FA00013998 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cryptography
Quantum computers
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013998
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.