You are here
Characterization of A Stereo Vision System For Object Classification For USV Navigation
- Date Issued:
- 2022
- Abstract/Description:
- This experiment used different methodologies and comparisons that helped to determine the direction of future research on water-based perception systems for unmanned surface vehicles (USV) platforms. This would be using a stereo-vison based system. Presented in this work is object color and shape classification in the real-time maritime environment. This was coupled with HSV color space that allowed for different thresholds to be identified and detected. The algorithm was then calibrated and executed to configure the depth, color and shape accuracies. The approach entails the characterization of a stereo-vision camera and mount that was designed with 8.5° horizontal viewing increments and mounted on the WAMV. This characterization has depth, color and shape object detection and its classification. Different shapes and buoys were used to complete the testing with assorted colors and shapes. The main program used was OpenCV which entails Gaussian blurring, Morphological operators and Canny edge detection libraries with a ROS integration. The code focuses on the area size and the number of contours detected on the shape for successes. A summary of what this thesis entails is the installation and characterization of the stereovision system on the WAMV-USV by obtaining specific inputs to the high-level controller.
Title: | Characterization of A Stereo Vision System For Object Classification For USV Navigation. |
86 views
61 downloads |
---|---|---|
Name(s): |
Kaplowitz, Chad , author Dhanak, Manhar, Thesis advisor Florida Atlantic University, Degree grantor Department of Ocean and Mechanical Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 118 P. | |
Language(s): | English | |
Abstract/Description: | This experiment used different methodologies and comparisons that helped to determine the direction of future research on water-based perception systems for unmanned surface vehicles (USV) platforms. This would be using a stereo-vison based system. Presented in this work is object color and shape classification in the real-time maritime environment. This was coupled with HSV color space that allowed for different thresholds to be identified and detected. The algorithm was then calibrated and executed to configure the depth, color and shape accuracies. The approach entails the characterization of a stereo-vision camera and mount that was designed with 8.5° horizontal viewing increments and mounted on the WAMV. This characterization has depth, color and shape object detection and its classification. Different shapes and buoys were used to complete the testing with assorted colors and shapes. The main program used was OpenCV which entails Gaussian blurring, Morphological operators and Canny edge detection libraries with a ROS integration. The code focuses on the area size and the number of contours detected on the shape for successes. A summary of what this thesis entails is the installation and characterization of the stereovision system on the WAMV-USV by obtaining specific inputs to the high-level controller. | |
Identifier: | FA00014035 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Computer vision Unmanned surface vehicles |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014035 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |