You are here

MODELING, PATH PLANNING, AND CONTROL CO-DESIGN OF MARINE CURRENT TURBINES

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
Marine and hydrokinetic (MHK) energy systems, including marine current turbines and wave energy converters, could contribute significantly to reducing reliance on fossil fuels and improving energy security while accelerating progress in the blue economy. However, technologies to capture them are nascent in development due to several technical and economic challenges. For example, for capturing ocean flows, the fluid velocity is low but density is high, resulting in early boundary layer separation and high torque. This dissertation addresses critical challenges in modeling, optimization, and control co-design of MHK energy systems, with specific case studies of a variable buoyancy-controlled marine current turbine (MCT). Specifically, this dissertation presents (a) comprehensive dynamic modeling of the MCT, where data recorded by an acoustic Doppler current profiler will be used as the real ocean environment; (b) vertical path planning of the MCT, where the problem is formulated as a novel spatial-temporal optimization problem to maximize the total harvested power of the system in an uncertain oceanic environment; (c) control co-design of the MCT, where the physical device geometry and turbine path control are optimized simultaneously. In a nutshell, the contributions are summarized as follows:
Title: MODELING, PATH PLANNING, AND CONTROL CO-DESIGN OF MARINE CURRENT TURBINES.
99 views
75 downloads
Name(s): Hasankhani, Arezoo , author
Tang, Yufei , Thesis advisor
VanZwieten, James , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 132 p.
Language(s): English
Abstract/Description: Marine and hydrokinetic (MHK) energy systems, including marine current turbines and wave energy converters, could contribute significantly to reducing reliance on fossil fuels and improving energy security while accelerating progress in the blue economy. However, technologies to capture them are nascent in development due to several technical and economic challenges. For example, for capturing ocean flows, the fluid velocity is low but density is high, resulting in early boundary layer separation and high torque. This dissertation addresses critical challenges in modeling, optimization, and control co-design of MHK energy systems, with specific case studies of a variable buoyancy-controlled marine current turbine (MCT). Specifically, this dissertation presents (a) comprehensive dynamic modeling of the MCT, where data recorded by an acoustic Doppler current profiler will be used as the real ocean environment; (b) vertical path planning of the MCT, where the problem is formulated as a novel spatial-temporal optimization problem to maximize the total harvested power of the system in an uncertain oceanic environment; (c) control co-design of the MCT, where the physical device geometry and turbine path control are optimized simultaneously. In a nutshell, the contributions are summarized as follows:
Identifier: FA00013991 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Marine turbines
Modeling dynamic systems
Ocean wave power
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013991
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.