You are here
DESIGN, SIMULATION, AND TESTING OF A CVT BASED PTO AND CONTROLLER FOR A SMALL SCALE MHK-TURBINE IN LOW FLOW SPEED OPERATION
- Date Issued:
- 2022
- Abstract/Description:
- The aim of this thesis project was to design, develop, and test, a continuously variable transmission (CVT)-based power take off (PTO) sub-system, and its controller, for a small scale marine hydrokinetic turbine (MHK) developed for low-speed tidal currents. In this thesis, a CVT based PTO and controller was developed for a predefined MHK and validated through simulations. A testing platform was subsequently developed including an emulation system to replicate the MHK for testing of the coupled MHK/PTO system. Laboratory testing of the emulation system, PTO component efficiencies, and full system with controls was then conducted. The results showed the mechanical PTO design to be a valid solution and the control methods to be marginally stable with adequate power conversion at low-speed current conditions. The results also identified future work in continued controller development, alternate PTO component testing, and continued testing in parallel with that being done on the MHK prototype.
Title: | DESIGN, SIMULATION, AND TESTING OF A CVT BASED PTO AND CONTROLLER FOR A SMALL SCALE MHK-TURBINE IN LOW FLOW SPEED OPERATION. |
61 views
17 downloads |
---|---|---|
Name(s): |
Hall, Adam , author Dhanak, Manhar, Thesis advisor Florida Atlantic University, Degree grantor Department of Ocean and Mechanical Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 177 p. | |
Language(s): | English | |
Abstract/Description: | The aim of this thesis project was to design, develop, and test, a continuously variable transmission (CVT)-based power take off (PTO) sub-system, and its controller, for a small scale marine hydrokinetic turbine (MHK) developed for low-speed tidal currents. In this thesis, a CVT based PTO and controller was developed for a predefined MHK and validated through simulations. A testing platform was subsequently developed including an emulation system to replicate the MHK for testing of the coupled MHK/PTO system. Laboratory testing of the emulation system, PTO component efficiencies, and full system with controls was then conducted. The results showed the mechanical PTO design to be a valid solution and the control methods to be marginally stable with adequate power conversion at low-speed current conditions. The results also identified future work in continued controller development, alternate PTO component testing, and continued testing in parallel with that being done on the MHK prototype. | |
Identifier: | FA00013977 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Marine turbines--Design and construction Marine turbines--Transmission devices Marine turbines--Testing |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013977 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |