You are here
MACHINE LEARNING METHODS FOR IMAGE ENHANCEMENT IN DEGRADED VISUAL ENVIRONMENTS
- Date Issued:
- 2022
- Abstract/Description:
- Significant reduction in space, weight, power, and cost (SWAP-C) of imaging hardware has induced a paradigm shift in remote sensing where unmanned platforms have become the mainstay. However, mitigating the degraded visual environment (DVE) remains an issue. DVEs can cause a loss of contrast and image detail due to particle scattering and distortion due to turbulence-induced effects. The problem is especially challenging when imaging from unmanned platforms such as autonomous underwater vehicles (AUV) and unmanned ariel vehicles (UAV). While single-frame image restoration techniques have been studied extensively in recent years, single image capture is not adequate to address the effects of DVEs due to under-sampling, low dynamic range, and chromatic aberration. Significant development has been made to employ multi-frame image fusion techniques to take advantage of spatial and temporal information to aid in the recovery of corrupted image detail and high-frequency content and increasing dynamic range.
Title: | MACHINE LEARNING METHODS FOR IMAGE ENHANCEMENT IN DEGRADED VISUAL ENVIRONMENTS. |
35 views
13 downloads |
---|---|---|
Name(s): |
Estrada, Dennis, author Tang, Yufei , Thesis advisor Ouyang, Bing, Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 151 p. | |
Language(s): | English | |
Abstract/Description: | Significant reduction in space, weight, power, and cost (SWAP-C) of imaging hardware has induced a paradigm shift in remote sensing where unmanned platforms have become the mainstay. However, mitigating the degraded visual environment (DVE) remains an issue. DVEs can cause a loss of contrast and image detail due to particle scattering and distortion due to turbulence-induced effects. The problem is especially challenging when imaging from unmanned platforms such as autonomous underwater vehicles (AUV) and unmanned ariel vehicles (UAV). While single-frame image restoration techniques have been studied extensively in recent years, single image capture is not adequate to address the effects of DVEs due to under-sampling, low dynamic range, and chromatic aberration. Significant development has been made to employ multi-frame image fusion techniques to take advantage of spatial and temporal information to aid in the recovery of corrupted image detail and high-frequency content and increasing dynamic range. | |
Identifier: | FA00013987 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Image Enhancement Machine learning Remote sensing |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013987 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |