You are here
Placement and Denoising of Total Magnetic Field Sensors Onboard an AUV in Support of Geophysical Navigation
- Date Issued:
- 2022
- Abstract/Description:
- The objective of this thesis is to study the proper placement and denoising of Total Field Magnetometers (TFM) installed on an Autonomous Underwater Vehicle (AUV), in support of a long-term goal to perform geophysical navigation based on total field magnetic sensing. This new form of navigation works by using the magnetic field of the Earth as a source of reference to find the desired heading. The primary tools used in this experiment are a REMUS 100 AUV, a QuSpin scalar magnetometer, and a TwinLeaf vector magnetometer. The Earth’s magnetic field was measured over periods of several hours to determine the range of values it provides under natural conditions. Digital filters were created to digitally reduce fluctuations caused by sources of external interference and sources of internal interference. To mitigate the issue of platform based interference, two methods were examined. These methods involved the use of the Tolles-Lawson model and Wavelet Multiresolution Analysis. The Tolles-Lawson model is used to determine the compensation coefficients from a calibration mission to mitigate the effects from the permanently detected magnetic field, the induced magnetic field, eddy currents. and the geomagnetic field. Wavelet multiresolution analysis follows the same basic steps as Fourier transformations and is used to analyze time series with power sources in motion over a frequency spectrum. Several acquisitions were run with the QuSpin in various locations around and along REMUS, and it was concluded that placing the sensor at the very front of the vessel which is approximately 1.8 [m] from the DC motor, with assistance from wavelet analysis was acceptable for the project.
Title: | Placement and Denoising of Total Magnetic Field Sensors Onboard an AUV in Support of Geophysical Navigation. |
59 views
13 downloads |
---|---|---|
Name(s): |
Cracchiolo, Timothy , author Beaujean, Pierre-Philippe , Thesis advisor Florida Atlantic University, Degree grantor Department of Ocean and Mechanical Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 84 p. | |
Language(s): | English | |
Abstract/Description: | The objective of this thesis is to study the proper placement and denoising of Total Field Magnetometers (TFM) installed on an Autonomous Underwater Vehicle (AUV), in support of a long-term goal to perform geophysical navigation based on total field magnetic sensing. This new form of navigation works by using the magnetic field of the Earth as a source of reference to find the desired heading. The primary tools used in this experiment are a REMUS 100 AUV, a QuSpin scalar magnetometer, and a TwinLeaf vector magnetometer. The Earth’s magnetic field was measured over periods of several hours to determine the range of values it provides under natural conditions. Digital filters were created to digitally reduce fluctuations caused by sources of external interference and sources of internal interference. To mitigate the issue of platform based interference, two methods were examined. These methods involved the use of the Tolles-Lawson model and Wavelet Multiresolution Analysis. The Tolles-Lawson model is used to determine the compensation coefficients from a calibration mission to mitigate the effects from the permanently detected magnetic field, the induced magnetic field, eddy currents. and the geomagnetic field. Wavelet multiresolution analysis follows the same basic steps as Fourier transformations and is used to analyze time series with power sources in motion over a frequency spectrum. Several acquisitions were run with the QuSpin in various locations around and along REMUS, and it was concluded that placing the sensor at the very front of the vessel which is approximately 1.8 [m] from the DC motor, with assistance from wavelet analysis was acceptable for the project. | |
Identifier: | FA00013972 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Autonomous underwater vehicles Magnetometers Magnetic fields Remote sensing |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013972 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |