You are here
THERAPEUTIC STRATEGIES USING SULINDAC AND G-CSF GENE THERAPY FOR NEUROLOGICAL DISEASE
- Date Issued:
- 2022
- Abstract/Description:
- Alzheimer’s disease is a neurodegenerative disease that causes cognitive dysfunction and leads to progressive memory loss and behavioral impairment. About 60% to 80% of dementia cases are attributed to Alzheimer’s disease and currently afflict about 50 million people worldwide. Although it primarily affects people over the age of 65, a person’s risk for developing Alzheimer’s disease earlier can depend on factors such as a family history (genetic inheritance) or experiencing an ischemic stroke event. Current treatments for Alzheimer’s disease include behavioral therapy and drug treatment that can lessen the severity of symptoms but cannot stop progression indefinitely. Sulindac is a non-steroidal anti-inflammatory drug that, by a mechanism independent of its anti-inflammatory properties, has shown to express a preconditioning response to protect from oxidative damage. Granulocyte colony stimulating factor is a hematopoietic glycoprotein that can stimulate the production of granulocytes and stem cells that has proven to provide neuroprotection in models of ischemic stroke via mechanisms including anti-apoptosis and anti-inflammation. In this in vitro study, the potential neuroprotective effects of Sulindac is measured against the effects of oxidative stress when subjected to hypoxia and reperfusion. Regarding un-transfected SHSY-5Y cells, hypoxia was demonstrated to lower cell viability starting at a period of 12 hours. It was found that a low concentration of Sulindac (200 uM) was effective in protecting SHSY-5Y cells against oxidative stress and overall lowering the rate of cell death in the event of hypoxic and reperfusion injury. When SHSY-5Y cells were transfected with Swedish APP mutation, cell viability was also markedly decreased in hypoxic conditions. However when treated with a concentration of 600 uM of Sulindac, cell viability levels were near matched with its normoxic counterparts
Title: | THERAPEUTIC STRATEGIES USING SULINDAC AND G-CSF GENE THERAPY FOR NEUROLOGICAL DISEASE. |
49 views
19 downloads |
---|---|---|
Name(s): |
Chen, Belinda , author Prentice, Howard , Thesis advisor Florida Atlantic University, Degree grantor Department of Biomedical Science Charles E. Schmidt College of Medicine |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 57 p. | |
Language(s): | English | |
Abstract/Description: | Alzheimer’s disease is a neurodegenerative disease that causes cognitive dysfunction and leads to progressive memory loss and behavioral impairment. About 60% to 80% of dementia cases are attributed to Alzheimer’s disease and currently afflict about 50 million people worldwide. Although it primarily affects people over the age of 65, a person’s risk for developing Alzheimer’s disease earlier can depend on factors such as a family history (genetic inheritance) or experiencing an ischemic stroke event. Current treatments for Alzheimer’s disease include behavioral therapy and drug treatment that can lessen the severity of symptoms but cannot stop progression indefinitely. Sulindac is a non-steroidal anti-inflammatory drug that, by a mechanism independent of its anti-inflammatory properties, has shown to express a preconditioning response to protect from oxidative damage. Granulocyte colony stimulating factor is a hematopoietic glycoprotein that can stimulate the production of granulocytes and stem cells that has proven to provide neuroprotection in models of ischemic stroke via mechanisms including anti-apoptosis and anti-inflammation. In this in vitro study, the potential neuroprotective effects of Sulindac is measured against the effects of oxidative stress when subjected to hypoxia and reperfusion. Regarding un-transfected SHSY-5Y cells, hypoxia was demonstrated to lower cell viability starting at a period of 12 hours. It was found that a low concentration of Sulindac (200 uM) was effective in protecting SHSY-5Y cells against oxidative stress and overall lowering the rate of cell death in the event of hypoxic and reperfusion injury. When SHSY-5Y cells were transfected with Swedish APP mutation, cell viability was also markedly decreased in hypoxic conditions. However when treated with a concentration of 600 uM of Sulindac, cell viability levels were near matched with its normoxic counterparts | |
Identifier: | FA00014021 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Sulindac Granulocyte-colony stimulating factor Genetic Therapy Alzheimer Disease |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014021 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |