
PRESERVING KNOWLEDGE IN SIMULATED BEHAVIORAL ACTION LOOPS

by

Rachel St.Clair

A Dissertation Submitted to the Faculty of

Charles E. Schmidt College of Science

In Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

Florida Atlantic University

Boca Raton, FL

May 2022

Copyright 2022 by Rachel St.Clair

ii

April 8, 2022

ACKNOWLEDGEMENTS

The author wishes to express sincere gratitude to her committee members for

all of their guidance and support, and a very special thanks to my advisors for their

persistence, patience, encouragement, countless pep-talks, and endless support during

the preparation and typing of this manuscript. The author is grateful to the Rubin

Gruber Sandbox for providing the research equipment and space to conduct the study.

Last but not least, the author wishes to thank her lab mates for all of their support.

iv

ABSTRACT

Author: Rachel St.Clair

Title: Preserving Knowledge in Simulated Behavior Action Loops

Institution: Florida Atlantic University

Dissertation Advisor: Dr. Elan Barenholtz and Dr. William Hahn

Degree: Doctor of Philosophy

Year: 2022

One basic goal of artificial learning systems is the ability to continually learn

throughout that system’s lifetime. Transitioning between tasks and re-deploying

prior knowledge is thus a desired feature of artificial learning. However, in the

deep-learning approaches, the problem of catastrophic forgetting of prior knowledge

persists. As a field, we want to solve the catastrophic forgetting problem without

requiring exponential computations or time, while demonstrating real-world

relevance. This work proposes a novel model which uses an evolutionary algorithm

similar to a meta-learning objective, that is fitted with a resource constraint

metrics. Four reinforcement learning environments are considered with the shared

concept of depth although the collection of environments is multi-modal. This

system shows preservation of some knowledge in sequential task learning and

protection of catastrophic forgetting in deep neural networks.

v

DEDICATION

This manuscript is dedicated to my family, particularly my supportful and patient

mother, Kimberly, and father, Joe, who have encouraged me through these many years

of research, and especially to my cat, Boopi, who is the joy of my life. I also dedicate

this work to my friends who have allowed me to allot an extraordinary amount of my

cognitive processing time to this work by offloading some basic human functioning to

their own accord, and my grandparents, Phyllis and Don, both of whom believed in

the pursuit of my dreams unequivocally.

PRESERVING KNOWLEDGE IN SIMULATED BEHAVIORAL ACTION LOOPS

List of Tables . ix

List of Figures . x

1 Introduction . 1

Significance . 6

Theoretical Basis . 7

Relevant Literature . 12

Dilemma . 15

Research Questions and Hypotheses 16

Research Question One . 16

Research Question Two . 16

2 Literature Review . 17

History of Computing . 17

Backpropagation . 19

Genetic Algorithms . 20

Artificial General Intelligence . 21

Knowledge Preservation . 22

Theory Relevant Literature . 23

Connectionism . 23

Symbolism . 23

Artificial General Intelligence 24

Neuro-Symbolic Architectures 25

vii

Backpropagation as a Plausible Brain Mechanism 25

Contending Frameworks and Theories of Brain Activity 29

Current Empirical Literature . 31

Catastrophic Forgetting . 31

Transferring Knowledge . 33

Neuroevolution . 33

3 Method . 35

Environment . 35

Computational Framework . 39

Measures . 41

Research Design . 43

Procedures . 46

Data Analysis . 50

Research Question One . 50

Research Question Two . 51

4 Results . 53

Model and Environment Analysis . 53

Statistical Analysis . 58

Research Question One . 58

Research Question Two . 62

5 Discussion . 65

Summary . 65

Conclusions . 65

Importance of Layer Learning 65

Environment and Model Viability 67

Training with Resource Constraints in Evolutionary Loops . . 68

Mixed Sequences and Depth Sequences 68

viii

Model Weight Change . 69

Evolutionary Approach to Learning 70

Hypothesis Analysis . 70

Limitations . 72

Recommendations for Future Research 74

Appendix. 75

References . 86

ix

LIST OF TABLES

3.1 Set-Up for All Environments . 39

3.2 Set-up for Computational Framework 41

3.3 Accuracy Measures per Model and Environment 43

4.1 P-values for Depth and Mixed Test DQN+GA and DQN-GA. 61

x

LIST OF FIGURES

3.1 Basic Environment Set-up . 37

3.2 Match Environment . 38

3.3 DQN Model Flow. 40

3.4 Novel Model Flow . 45

4.1 DQN Hyperparameter Importance . 54

4.2 DQN Training Results . 55

4.3 Base Model Training Accuracy . 56

4.4 DQN+GA Hyperparameter Importance 57

4.5 DQN+GA Hyperparameter Search 57

4.6 DQN+GA, DAN+GA-RC, DQN-GA Depth Sequence Training Resuts. 59

4.7 DQN+GA and DQN-GA Depth Sequence Training Results. 60

4.8 DQN+GA and DQN-GA Depth Sequence Test Results. 62

4.9 Model Weight Change . 63

4.10 DQN+GA and DQN-GA Test Results. 64

xi

Chapter 1

INTRODUCTION

One basic goal of artificial learning systems is the ability to continually learn

throughout that system’s lifetime. The ability for continual learning, or life-long

learning implies that the artificial learning system, or agent, can learn without for-

getting prior learning. The potential utility of learning without forgetting, or ’knowl-

edge preservation’, is twofold: first, the system can return to previously learned tasks

after learning something new. Secondly, bootstrapping previous knowledge may al-

low for faster learning of a novel task. Both of these potential benefits of preserving

learned information may serve to conserve resources. Allowing the same computa-

tional hardware to be ‘multiplexed’ for another task, rather than requiring allocation

of distinct resources, reduces the required energy resources involved in the learning

process. Multiplexed information is stored in such a way that the system can switch

between previously learned tasks while retaining performance. Information can then

be accessed for learning new tasks in a contextually relevant manner. Multiplexed

information is thus stored and retrieved in a way that facilitates the conservation

and use of prior learning, broadening the ability of a learning system to multiple task

domains by encoding high-level ‘multi-use’ concepts.

Although many metrics exist for characterizing desirable properties of artificial

general intelligence (AGI), the term is commonly used to describe a software pro-

gram that is highly adaptable to a variety of environments while displaying a range

of functionality similar to, or beyond, human cognition. The term is distinct from

traditional artificial intelligence research, which aims to make domain-specific pre-

diction programs. AGI, or rather superintelligent AGI, which has the potential to

1

drastically improve the quality of human life, being able to solve problems at com-

putational speeds that far exceed the capacity of several human lives combined and

with perspectives on systemic societal issues currently unavailable to human bias.

However, it is not without ethical consideration that the creation of such a program

could be adversarial to human life if the sueprintelligent AGI does not hold the same

values as it’s biological counterparts [1]. Nevertheless, several approaches for AGI

have been created and play an important role in understanding artificial learning and

cognition.

Both approaches, AGI and AI, to creating artificial learning systems encompass

a wide variety of approaches, all attempting to create an intelligence in which being

capable of learning without forgetting to is desirable to some degree. Transitioning

between tasks and re-deploying prior knowledge is thus a desired feature of artificial

learning. Each of these approaches has a unique perspective to offer upon our under-

standing of intelligence as a whole, as it relates to human, animal, and machine ‘life’.

However, no approach thus far has been able to demonstrate the degree of knowl-

edge preservation necessary to achieve life-long learning to the degree of biological

counterparts.

In recent years, practical implementations in the field of artificial intelligence (AI)

have largely converged on deep learning methodologies. The underlying mechanics of

the majority of these approaches involve artificial neural networks constructed with

weights which are tuned by backpropagating an error signal in accordance with some

update rule (i.e. stochastic gradient descent). While deep learning has shown state-

of-the-art performance in many domains such as computer vision, natural language

processing, time-series forecasting, etc., one major problem is that of catastrophic

forgetting, in which new learning overwrites prior learning. Challenges in overcoming

catastrophic forgetting are bound by practical considerations such as resource con-

straints and model applicability. As a field, we want to solve the catastrophic forget-

2

ting problem without requiring exponential computations or time, while demonstrat-

ing real-world relevance. Learning without catastrophic forgetting would potentially

allow an AI model to transfer its knowledge base between tasks. The study of trans-

fer learning is still in its infancy in neural network models. More research is needed

on how to create robust algorithms that employ prior knowledge without requiring

excessive training time and previous learning rehearsal. Thus, new learning without

overwriting prior learning provides a model with a broadened intelligence, rather than

the narrow, domain-specific intelligence seen in current AI approaches. I suspect a

broad intelligence basis, when paired with other adequate algorithms, might allow

for the emergence of previously elusive cognitive behaviors such as causal inference,

common sense, rational choice, etc.

The field of AGI encompasses many techniques and metrics. Most notable in re-

cent years are described in [2], which describes symbolic, emergentist, artificial life,

developmental robotics, universalist, and hybrid approaches to AGI. In symbolic ar-

chitectures, which have seen the majority of adoption in the AGI community, have

the challenge of designing memory components capable of strong learning. Other

approaches exhibit strong learning, such as associative memory capabilities, but lack

the ability for high-order concepts, i.e. complex language and reasoning. While still,

others lack the ability to model the brain to the degree of which larger artificial learn-

ing systems can be constructed, failing to result in algorithms which exhibit multiple

cognitive behaviors. Hybrid architectures attempt to leverage the various symbolic

and connectionist approaches but lack in their ability to be understandable in terms of

design and offer little insight into human intelligence. That, these approaches are of-

ten a hodge-podge of design elements taken from computational experiment, and not

lack systematic design based on properties of human intelligence as we understand it

from the perspective of neuroscience. Interoperability for understanding the resulting

artificial learning system is important as it protects against adverse interpretations of

3

reality as we understand it, compared with reality as a computer may understand it;

thus, protecting ethical considerations and real-world applicability [3]. While many

of these techniques have resulted in useful, intelligent algorithms, we have yet to see

algorithms that result in knowledge preservation close to the level in which vertebrate

brains can perform. Even though our understanding of neuroscience is still incom-

plete, core features from foundational mechanisms of action can be recruited to better

design AGI systems. Thus, it is foreseeable that AGI approaches would benefit from

better understanding how knowledge preservation occurs in biological systems.

It can be inferred from biological intelligence that one core property of how bio-

logical brains learn is their ability to preserve knowledge within resource constraints.

That the number of neurons for an animal is mostly fixed and animals with ad-

vanced nervous systems can learn multiple distinct tasks without forgetting prior

tasks. Evolution designed vertebrate brains in a highly conserved manner in over

about 3.5 million years [4]. This information is stored molecularly, mostly by way of

genetic encoding. The modern human brain sequesters this information during early

prenatal development before any online learning starts to take place. Advantageous

features of the brain to be repairable, easily constructible, conserve resources, modifi-

able, and synchronous favored the highly conserved architectural design of biological

brains [5]. In vertebrates, these evolutionary pressures resulted in nervous system

topology structures with distinct condition detection devices (neurons) arranged in

segregated populations (brain areas) with ambiguous roles which coordinate with

the larger specific tasks of their respective area. From such architecture, emergent

fundamental features arise allowing for higher cognitive processes, according to the

recommendation architecture theory of cognition [6].

When neuron populations are segregated based on functional tasks (eg. visual vs

auditory streams), they have to share information via some third party mechanisms of

integration to signal to the overall system the appropriate interpretation of the current

4

condition. This area to area signaling is not exactly information compression, it’s

more like communication or control and may be a foundational principle of emergent

cognitive phenomena. It is plausible that this communication between brain areas

lends itself to the self-generated, “subjective”, experience. The modular paradigm

found in the human brain uses several tools to manage information flows through the

system, including (but not limited to) inhibition, feedback, behavior recommendation

and selection, indirect activation, receptive field expansion, and reward cascades [7].

Evolution is a slow process of optimization for which we can only observe the

final products and few intermediate states. By contrast, researchers can design and

implement computational architectures speedily and flexibly, creating the potential

for new models that predict and test hypotheses about the evolution of the nervous

system. Currently, most artificial network architectures are arbitrarily designed due

to lack of systematic evidence for what types of connectivity topology best facili-

tates what type of learning. Here, connectivity refers to how information units are

linked to other information units, whether it be nodes in a neural network, subject

and predicate links in graphs, etc.. Vertebrate brains are highly conserved in that

they have continuously evolved without discarding much of the previously adapted

architecture. If neuron connectivity lends itself to learning environmental solutions,

then some previously learned solutions are already stored in the earlier evolved parts

of our brains.

The niche field of neuroevolution tries to replicate what occured naturally by

allowing network topology to evolve using various genetic algorithms given input.

Most of the best neuroevolutionary models investigate emergent architectures with

specific inputs for task optimization. To date, no published approach uses knowledge

preservation as an optimization metric. Likewise, there is little information on how

connectivity architectures emerge from an evolving environment subject to similar

pressures in which the human brain developed.

5

Significance

The importance of investigating what types of architectures are well suited for

preserving knowledge lies in constructing artificial learning systems that can not only

provide utility in our daily lives, but also give insight into our understanding of human

learning and intelligence.

Currently, topologies of artificial learning systems are somewhat haphazardly de-

signed. Informing our architecture designs with systematic research, will lead to

better insight into how models of artificial cognition can be better constructed. The

key idea is modeled from the human brain where it is likely that network topology is

at least, if not more, important than later learning algorithms in achieving knowledge

preservation. This allows us to avoid ending up with a system that is doing the bulk

of the learning process after it has been configured. In a system that prioritizes ini-

tial connectivity, this manifests as understanding what is the appropriate topology to

facilitate continual learning, over the model’s lifetime. Our current artificial learning

algorithms drastically reduce their biological counterparts to imitative mathematics

that do not yet withstand the demands of real-world problem solving within resource

conservative systems.

The major problem of catastrophic forgetting prevents artificial neural networks

from learning in a similar fashion to the human brain. An abundance of evidence

suggests that biological brains are capable of learning without forgetting and that

they do so within resource constraints. Brains do not create a new neuron for every

piece of information they need to learn. Instead, they multiplex existing learning in

novel contexts. If we better understand how connectivity between neurons facilitates

knowledge preservation, we can not only create more generally intelligent artificial

agents, but also learn more about how the human brain is facilitating learning.

In a broader sense, knowledge preservation lends itself to general learning which

6

is useful for designing artificial intelligences with less computational resources and

in better understanding how the organizations of neurons in the human brain may

facilitate different types of life-long learning. The significance of having an artificial

general intelligence is that if AGI is created with benevolent,ethical consideration, it

is speculated to be useful in solving a range of everyday tasks as well as tackling some

of humanity’s toughest challenges. We will have created something that is capable of

solving problems, just as a human would but with much more speed and processing

power. The reason for these exponential returns is that silicon chips are inherently

much faster than biological neurons. As semiconductor research progresses, it is

foreseeable that any model of cognition that runs in a computer will be much faster

than any biological counterpart. The difficulties in creating a computational model

that has the ability to help humanity solve our toughest challenges, eve those we

cannot foresee, is that the model must be ethical (sharing humanitie’ values), capable

of general intelligence (that it can learn in a exceedingly comparable fashion to human

intelligence), and that it can understand the world as we understand it, or rather,

better than we understand it.

Theoretical Basis

Lifelong learning, or continual learning, is the idea that a computational model

should learn across tasks without being reset to an initialization state. In lifelong

learning, a model is trained upon inception on a task and retains it’s training so

long as it is in use [8]. This means that the model weights are not reset, as they

typically are in current AI models, between training tasks. Knowledge preservation

concerns itself with lifelong learning models. Those that re-initialize the weights are

inherently destroying all previous learning. Being able to switch between tasks, using

prior knowledge, is a deserada of general intelligence. Thus, lifelong learning models

play a critical role in understanding the functions of intelligence in biological brains.

7

The question then becomes, how do we structure models to facilitate learning across

a vast range of tasks, storing knowledge in such a way that it can return to previ-

ous tasks later and use prior learning to learn new tasks efficiently. Connectionism

proposes that the brain is composed of units, or neurons, which act on other units

to create a functional dynamical network of total units active at one time [9]. Ac-

tivity denotes excitation or inhibition. This idea has been extensively extended to

computer science where simulations of nodes activating other nodes within a net-

work occur. Thus, neural networks rely extensively on the connectionist paradigm

by incorporating connected nodes updated with backpropagation. In backpropa-

gation, node weights are learned by propagating and error backwards through the

hierarchy of connections [10]. In these approaches, knowledge is built by iterating

over environmental input which is forced through hierarchical encodings [11]. Here,

hierarchy enforces decomposition of higher concepts into parts, which relies on the

combinatorial expression of the network to make sense of. The ‘mind’ results from the

environmental input’s impression on the neural substrate. Parallel processing enables

the network to create a dynamical system which in turn, takes on new functions for

the network itself, interacting with other networks as a complex system [12]. The

main point of connectionism is that the connectome, or connections between neu-

rons, construct the mind, or rather, cognition. The architecture of the brain results

in learning which transfers input to output in a series of parallel computations of

units activating other units in a network. In the field of artificial intelligence, recent

research has only just begun to look at what types of architectures facilitate which

types of learning. While many deep learning approaches already use inductive biases

of biological brains, such as visual cortex hierarchies in the convolutional neural net-

work, there is much that remains to be understood on the impact of architectures

on inductive biases of neural networks. The topology of various networks considers

how computational units, or neurons, are connected in such a way that facilitates

8

learning appropriate information and transcoding that information into appropriate

output, or behavior. Connectionism in artificial neural networks measures learning by

stimulus-response pairs, or rather how well the model can predict an output from an

input. Artificial learning models, especially those using deep learning methods, suffer

in the ability to learn new tasks without forgetting prior-learning. In the artificial

intelligence community, this problem is known as catastrophic forgetting (CF), or the

plasticity/stability trade-off. This is in part due to the fundamental nature of back-

propagation in deep learning models to rewrite learning; where weights are updated

most heavily towards current learning at the expense of weights learned in more dis-

tant tasks [13]. The result of backpropagation, even when assuaged by CF mitigation,

is narrow feature learning that will eventually reach a resource constraint asymptote

as learning increases throughout the model’s lifetime. In recent years, practical im-

plementations in the field of artificial intelligence (AI) have largely converged on deep

learning methodologies. The underlying mechanics of these approaches involve arti-

ficial neural networks constructed with weights which are tuned by backpropagating

an error signal in accordance with some update rule (i.e. stochastic gradient descent).

While deep learning has shown state-of-the-art performance in many domains such as

computer vision, natural language processing, time-series forecasting, etc., one major

problem is that of catastrophic forgetting (CF), in which new learning overwrites

prior learning. Challenges in overcoming CF are bound by practical considerations

such as resource constraints and model applicability. As a field, we want to solve the

catastrophic forgetting problem without requiring exponential computations or time,

while demonstrating practical relevance. Learning without CF would potentially al-

low an AI model to transfer its knowledge base between tasks. Thus, new learning

without overwriting prior learning provides a model with a broadened intelligence,

rather than the narrow, domain-specific intelligence seen in current AI approaches.

We suspect a broad intelligence basis, when paired with other adequate algorithms,

9

might allow for the emergence of previously elusive cognitive behaviors such as causal

inference, common sense, rational choice, etc. Embodied cognition describes a theory

of cognition in which the brain needs the ability to execute actions in an environment

in a cyclical fashion. Behavioral outputs react with the environment, producing the

next set of inputs, aiding in higher cognitive functions, such as learning and agency.

In embodied cognition, representations of the mind are manipulated to interact with

nature in a way that produces a dynamical system [14]. The being, or agent of the

brain, is directly entwined with the interaction of it’s situation. Physiology cannot

be distinctly separated from goals of the agent, and thus, must be viewed as part of

the overarching nature of cognition [15]. Embodied cognition describes a system in

which an agent takes input from the environment, computes that information, and

provides output which in turn creates it’s next input. Reinforcement learning (RL),

a subset of artificial intelligence and dynamic programming, models embodied cogni-

tion in the form of state, action, and reward scenarios. The core foundation of RL

is that most behaviors are sequential, requiring active engagement in sequestering

the next input to the sequence [16]. A balance between exploration and exploitation

is critical in successful RL algorithms as the first results in new solutions and the

former in reliance on previous learning. Therefore, retaining prior learning and being

able to use it in new situations is imperative for RL architectures. The mathematical

foundations of RL rely upon markov decision making [17]. Excessive trial-and-error

is needed to iterate through effective policies for decision making before an optimal

solution is converged upon. This results in the need for an abundance of computa-

tional resources; unlike biological brains which are bound by the number of neurons

and biochemical processes available to the system.

The evolution of the human nervous system has been speculated to be a product

of darwinian fitness. The central dogma of Darwinian evolution is that adaptations

which are advantageous get passed down via genetic traits [18]. Here, adaptations

10

are behaviors encoded in genes and advantage, or fitness, refers to the organism’s

increased survival and reproduction. The class of computational algorithms, genetic

algorithms (GA), capitalize on this fundamental feature; that a fitness function is used

as a metric to determine which genes should propagate to future individuals in a pop-

ulation. GAs are mathematical constructs to embody natural evolution [19]. While

most GAs use the strategy of transferring genes, or rather computational instruc-

tions, to the next generation, or rather iteration, of the population (i.e. program),

according to a fitness function. Together, the fitness function and the mathematical

code creates an optimization tasks, which with enough computational resources and

time, is generally successful at deriving solvable solutions. This approach, although

human derived, is quite similar to natural selection in Darwinian evolution since the

program’s behavior results in advancing the system forward, by recombination and

mutation of genetic material that provides an increase in fitness. The fitness function

thus becomes instrumental in advancing the program’s outcome and constitutes the

evolutionary pressures of development.

Resource constraints are considered as a key indicator of multiplexing informa-

tion in life-long learning systems here based on the theoretical framework of the

Recommendation Architecture (RA) as theorized in [6]. Understanding recommen-

dation architecture (RA) requires thinking about the brain as a system in which

different anatomical structures like the cortex, basal ganglia, hippocampus, thala-

mus, amygdala and cerebellum are subsystems that perform different, distinctive

types of information processes, each contributing in key ways to the brain’s conscious

activity. This framework for understanding higher cognition describes brain function

in a similar mechanism to understanding functions of a computer; by relating lev-

els of understanding to levels of anatomical description. The key feature of RA is

that it describes foundational properties of cognition in terms of core system inter-

actions. This means that properties of the brain can be somewhat abstracted from

11

their biological properties of neurochemical interactions and dynamical systems into

artificial systems which embody the system interactions by mechanisms outside of

physiology and anatomy. Here, we rely on the RA’s description of evolutionary pres-

sure and constraints of biological brains to provide support for artificial cognition

being constrained within resource conservative systems. This approach is very useful

in understanding the problem of knowledge preservation. Thus, we can define the

concept of knowledge preservation as the ability to learn information for later multi-

plexing under resource constraints. The constraint of limited resources enforces the

multiplexing of information units. That is, in order to keep the number of neurons

needed from growing exponentially, neurons need to be used in various ways without

degrading prior learning. Once information is stored appropriately, it can then be

bootstrapped to inform novel contexts. With this consideration, learning can then be

measured, in part, in terms of using prior information in novel context and returning

to previous context without information degradation, all within minimal requirements

of the amount of computational resources available.

Relevant Literature

Recent literature suggests that the intersection of continual deep reinforcement

learning with genetic algorithms may be useful for preserving knowledge. State of

the art learning algorithms in reinforcement learning rely on deep-learning based Deep

Q Networks (DQNs) and Markov decision based processes, namely Proximal Policy

Optimization (PPO) and Soft Actor-Critic (SAC) models. In both of these cases, an

agent uses one of these decision making models to perform tasks in an environment.

Some decisions in the tasks provide the agent’s model with a reward value. The

reward value is used to calculate the appropriateness of the decision making policy

within the model. Over time, the single-task or multiple-task objective is completed,

often in a continual learning process. In genetic algorithms, a continual learning

12

process spans over a period of time where populations of agents learn according to

a fitness function, providing the ‘reward’ for agents individually and/or as a whole

population of agents. Thus, both RL and GAs are similar in their overall design

for continuous learning, but the mechanisms by which policies are constructed and

rewards are given are specific to the model design.

In the works of [20], a single-task continual reinforcement learning objective is

used to test how context-dependent relevance to tune the information in the models

in such a way that the task performance is increased and memory requirements are

decreased compared to other state-of-the-art RL models. The key insight to their work

is that the sequential nature of learning is often dependent on prior contexts. They

successfully showed that by incorporating some metric of context, the model is more

robust to changes in input states because the distribution can adapt more smoothly

by incorporating gradient information of recent context. Thus, by distributing prior

knowledge into the current state, the dynamically leverages the plasticity/stability.

However, their approach did not explicate how the information is managed in the

weights of the network, or how long the continual learning tasks could be performed

before the benefits of the model reach resource constraints. This work suggests that

incorporating sequential contextual information across the continual learning process

of the model has benefits for mitigating catastrophic forgetting.

The works of [21] further suggest that continual deep reinforcement learning can

be modified to mitigate catastrophic forgetting using another technique called pol-

icy reuse, where task-specific policies are cached and switched between tasks. Their

findings support this approach for lifetime learning. The key to their work is that

multiple-task learning objectives can be learned independently over a continual learn-

ing process while minimizing catastrophic forgetting. Here the limitation is that the

tasks are finite and pre-determined, leaving little room for adaptability and gener-

alization to different categories of tasks and resource constraints for storing policies.

13

Nonetheless, the authors showed that task-capacity in multi-task continual learning

benefits from dynamic policies that limit rewriting of task-specific weights.

[22] showed that evolutionary algorithms to tune hyperparameters, the operator

chosen variables, of a RL DQN single-task objective allows the policy to traverse the

appropriate decision space while adapting to changes in the input state. The key here

is that a global optimization using GA allows the model to adapt to changes in the

environment. Furthermore the authors showed supporting evidence that the method

could be used to control a swarm of drones to collaboratively clean up oil spills. This

implies that the global optimization accounts for individual task differences for the

global task objective.

Synthesizing the findings from those key articles, this work argues that a continual

learning process for a RL model could benefit from a multi-task objective that shares

policies to mitigate catastrophic forgetting. They also suggest that a GA could be

employed to help tune the individual tasks differences to coordinate a shared global

objective. Yet, there remains a central theme amongst these sources, as well as others,

that points to resource constraints as a critical component of the life-long learning

design.

Artificial intelligence algorithms and genetic algorithms to date have not found

a work-around for managing the resources in such a way that solves the stability-

plasticity dilemma indicative of catastrophic forgetting. However, the work of [23]

details one such system that takes resource constraints as a central consideration,

the human brain. In this work, the authors build a framework for understanding

the implications of resource constraints as it relates to cognitive modeling and con-

sciousness. The key point of their work is that evolutionary pressures of resource

constraints are responsible for designing the topology, or architecture, of the brain.

From the connectionist perspective, topology of this sort directly allows neurons to

multiplex information, being used for storing and acting upon multiple information

14

sequences. Combining the previous relevant literature with this framework suggests

that employing a GA to simulate the evolutionary resource constraint pressure may

give rise to a new mechanism to protect against catastrophic forgetting.

Dilemma

Biological brains are highly skilled in learning and adapting to novel contexts.

Yet, computational models seeking to employ a similar level of intelligence in the

human brain are limited in their learning capabilities and even more so in their adap-

tive abilities. Specifically, computational models to date lack the ability to preserve

knowledge for later use, which ultimately keeps resource requirements low. Any com-

putational or biological system is bound to limited resources. This key constraint

is largely unconsidered in current AI and AGI architectures. This work seeks to

understand how architecture plays a role in preserving knowledge. Although many

studies have been conducted on topology of intelligent algorithms, life-long learning,

and learning without forgetting, an investigation on how these variables play a role

in preserving knowledge is not available. Furthermore, when designing an AI or AGI

system, there is little scientific methodology on how to construct the topology for

the types of inductive biases and learning tasks at play. Encoding higher concepts,

or concepts built on-top of other concepts, is not well studied in current literature.

Here, an evolutionary approach is employed which subjects emerging architectures

to pressures of resource constraints, similar to those under which the human brain

evolved. More specifically, this work investigates how information is multiplexed be-

tween computational neurons in neural networks to encode high-level concepts that

can be used between multimodal learning environments.

15

Research Questions and Hypotheses

Research Question One

How does changing architecture preserve knowledge?

Hypothesis 1 Architectures that self-modify neuron weights in a way that man-

ages the trade-off between existing information and new information in relation to

sequential specific goals preserve knowledge.

Hypothesis 2 Architectures that self-modify by rewriting existing neuron weights

are able to adapt to changing modalities by optimizing for consecutive tasks.

Research Question Two

How do evolutionary pressures of knowledge preservation affect architectures for

learning and using high-level concepts?

Hypothesis 1 Architectures with neurons which are shared across different com-

putational abilities display more multiplexing of learned information.

Hypothesis 2 Emergent architectures from evolutionary pressures of knowledge

preservation aid general learning and use of a high-level concept.

16

Chapter 2

LITERATURE REVIEW

History of Computing

The term ‘computer’ has morphed over this history of computing devices, but

has generally evolved to represent a singular instrument of digital, mathematical

computation. Yet, the word computer didn’t always mean what it means today. The

first use of the word computer is mentioned in 1613 in The Yong Mans Gleanings

by Richard Braithway [24]. The term was originally used to refer to a person who

carried out arithmetic calculations up until the 19th century.

Computers actually have a huge, vast history, dating all the way back to around

200 BC with the first analogue computing device, the Antikythera, which was used to

predict astronomical positions and eclipses decades in advance [25]. An analog com-

puter is a device that works off properties of nature, physiological properties, either

based on liquid or based on mechanical power. Analog computers are mechanical de-

vices that carry out mathematical sequences within a continuous number space using

physical structures (instead of digitally, as we’ve come to think of them). Analog

computers have a long history going back to the Mesopotamian Abacus device (from

as early as 2300 BC) which calculated basic arithmetic [26]. The Abacus was used

to calculate basic addition and subtraction. This device was found in many other

regions in Egypt, Persia, Greece, China, Rome, and India. Abacus were used into the

early 20th century in schools to teach lessons. More complex versions are capable of

solving square and cubic roots.

Computers as we know them today were inspired by the Jacquard Loom, an

analogue device for creating textiles using punch-cards to carry out a sequence of

17

sewing operations [27]. In 1822, Charles Babbage prototyped a mechanical computer

called the Difference Engine, capable of solving polynomial equations [28]. Later, in

1936, Alan Turing developed a series of technical articles which described computing

devices known as Turing machines [29]. These along with other historical works

inspired the first general-purpose digital computer, ENIAC, built in 1943 [28]. The

ENIAC was a computer the size of a 1,500 square foot room used to calculate ballistics

for the U.S. government. John Von Neumann helped develop the ENIAC and his work

in applied mathematics led to the creation of classical computers as we know them

today [30].

Shortly after the invention of the digital computer, the brilliant mathematician

Alan Turing, who studied cryptography on the famous Enigma machine in WWII,

hypothesized intelligent machines [31]. His work still serves as a reference point for

intelligent algorithms today. Yet, the birth of artificial intelligence can be attributed

to John McCarthy and Marvin Minsky in 1956 at the Dartmouth Summer Research

Project on Artificial Intelligence [32]. However, the neuroscientific work of Hebb

in 1949 [33] inspired the work of McCulloch and Pitts in 1943, which provided the

modern neural network in [34] This work was shortly followed up by the influential

perceptron model of Rosenblatt in 1957 [35], which most current neural networks

model in some form.

Notably, Turing, McCulloh, and Pitts’ work all demonstrate the connectionist

paradigm. Although Turing’s work in [36] is of particular interest to this study as

he detailed the design of machines that could enable and disable connections be-

tween neurons (i.e. unorganized machine), and is linked to modern day reinforcement

learning [29]. Furthermore, Turing elucidates that the human cortex can be thought

of a sort of unorganized machine, that through evolution and punishment/reward

feedback, organizes into an intelligent machine, similar to human intelligence.

This work and many influential scientists cultivated the machine learning field

18

that flourished from the late 1950’s through the 1980’s [32]. At this point, machine

learning was largely of systems which were explicitly programmed to execute tasks

that mimicked intelligence, however the computational complexity of computers at

that time were underwhelmingly capable of producing intelligence as we understand

it in by human comparison. By the 1980’s expert systems and deep learning by John

Hopfield, David Rumelhart, and Edward Feigenbaum [37, 38, 39]. These advance-

ments were critical for igniting today’s intelligent algorithms.

While the history of computing and artificial intelligence is rich enough to write a

multiple novel series on, the revolution of deep learning seen today can be largely at-

tributed to Rumelhart’s error propagation techniques coupled with accelerated hard-

ware of parallel processing units and audio differentiation [40, 41]. Current AI is

largely overtaken by deep learning methodologies that use auto differentiation to

backpropagate errors on accelerated parallel processing hardware. A particular sub-

set of machine learning is reinforcement learning which originates from Markov deci-

sion making processes (MDP) [17]. However, state-of-the-art reinforcement learning

employs deep learning neural networks within the MDP. One of the best performing

models across tasks is that of Deepmind’s Deep Q Network [42, 43]. This particu-

lar model is robust in solving a variety of tasks by relying on the backpropagation

methods of deep learning.

Backpropagation

Backpropagatiaon was first implemented as a method for learning patterns. Weights

in an artificial neural network are repeatedly modified to minimize the difference be-

tween the ground-truth label and the network’s prediction. This difference, known as

the loss, is used in a partial derivative step which designates the direction the weights

should change to create a smaller loss during the next iteration. Backpropagation

relies on an optimization objective [44]. As part of the weight update process, a

19

gradient is partially calculated from the environmental signal, whether it be reward,

error, etc.. In theory, a complete gradient exists for any one set of inputs for a given

task. If the task or input changes, the gradient changes. Backpropagation affords

little room for encoding patterns from the input that could be used across different

gradient landscapes. This is in part because the features learned from one gradient’s

optimization are specifically tuned to be useful for the current task. Thus, features

learned to minimize one error surface are unlikely to minimize another without careful

construction of a unified objective [45] or task-specific finetuning [46]. These limita-

tions result in narrow, domain-specific learning and inefficient learned representations,

as demonstrated by the success of post-hoc weight pruning algorithms [47, 48] that

ablate a majority of learned weights in a network with minimal degradation to perfor-

mance on the training task. Without the constraint of adding new neurons to neural

networks for encoding new information as tasks capacity increases, backpropagation

is limited by resource constraints.

Genetic Algorithms

Genetic algorithms (GA) may provide a unique solution by affording generaliza-

tion while making use of existing resources. In [49], authors highlight GA used in RL

as a means for overcoming the constraints of backpropagation caused ‘forgetting’ of

prior learned information. GA models which engage in self-organizing, autonomous

processes employ two processes, top-down (global, population feedback to the ob-

jective) and bottom-up (mutations and crossover of information components), for a

more in-depth discussion see [50]. The causal relationship between the two is partially

decoupled, which allows for local components to evolve somewhat independently of

the overarching top-down metrics. The result is that the history of the system is in-

terjected from the top-down process, while novelty is introduced from the bottom-up

processes. Generalization to novel circumstances demonstrates resource constraints

20

by repurposing existing knowledge with few examples and few updates to learned rep-

resentations. Indications of this claim are apparent in the evolutionary mechanism

which employs a long-range temporal success metric in [51]. However, we suspect

more rigorous analysis of how to curate general, emergent adaptability is needed.

The overall emergent nature of these systems may show some degree of extrapola-

tion, which would abet deep neural networks in some degree of general learning under

resource constraints.

Artificial General Intelligence

Meanwhile, expert systems from the 1980’s paved the way for a different type of

artificial intelligence, namely symbolic architectures. Ultimately, this path has led to

the body of work delineated from AI as artificial general intelligence (AGI). Spawning

from the ideas of thinking machines from Turing, science fiction took a particular

interest in humans matching and exceeding human intelligence. First in 1872 [52],

and later for the android character, Data, in Star Trek: The Next Generation [53] and

fully in Stanley Kubrick and Arthur C. Clarke’s Space Odyssey [54], although there

are many others. Albeit a plethora of science fiction has cultivated the idealization

of AGI, the core scientific pursuit has a rich history in an alternative approach to

the connectionist paradigm aforementioned. Here, the key difference between AI and

AGI is that AI relies on connectionism while AGI relies on symbolism.

In practice, AGI systems have largely converged on graph knowledge based archi-

tectures [55]. These approaches do not suffer from the same rewriting of information

as backpropagation AI systems do. Instead, they add new nodes to correlate new in-

formation in relation to existing information. Some multiplexing is involved by mod-

ifying types and meta-information in the graph architectures [56]. Although these

models are more robust to task switching and continual learning, they suffer from

resource limitations. If the AGI is expected to learn the vast depth of knowledge that

21

is available to the current generation, then at best it would understand the meaning

of all words and the relationships between those words. In the English dictionary, this

amounts to 171,146 different information objects, or words [57]. The combinations

of these objects is combinatorial intractable in current computing architectures. In

the prominent AGI architecture of Hyperon, the knowledge graph manages resource

constraints by learning to ‘forget’ or learn according to the current state, past prior

information, current tasks, and referencing priors for recovering future information.

Although this model is projected to be formidable in its ability to tackle real-world

problems, AGI is still limited in resource constraints as we consider the vast explosion

of information to be known has increased exponentially over the last decade.

Knowledge Preservation

One defining characteristic of knowledge preservation is resource conservation.

Intuitively, practical models are those which can mature without allocating new, ded-

icated resources in each novel learning case. Thus, resource constraints force the

underlying learning mechanisms to learn new information without degrading prior

knowledge. One mechanism such a model might employ is the multiplexing of in-

formation units for multiple tasks in such a way that finite resources can be used to

contend with human level intelligence.

Thus, a major constraint of intelligent algorithms is resource constraints and life-

long learning, both in artificial intelligence in the form of catastrophic forgetting and

in AGI in life-long learning for reconciling current knowledge and future knowledge

within hardware constraints. We can then surmise that the problem of catastrophic

forgetting in deep learning is more than a plasticity-stability management problem,

it is rather a resource allocation challenge.

22

Theory Relevant Literature

The work proposed here is thus an approach informed by the history of intelli-

gent algorithms in both AI and AGI with a critical need to overcome catastrophic

forgetting (CF), and more broadly, the need to manage a finite number of resources.

However, there are different existing approaches for designing computational models

of intelligence that can overcome CF or allocate resources appropriately.

Connectionism

Connectionism is a theory that frames learning as an incremental process. This

framework relies on connections between neurons to encode information from an in-

put stimulus and produce an output response [58]. While the overall schema of

connectionism has many implications, the most important here is that of topology.

Biological neurons are not arbitrarily exchanging information. They are particularly

constructed in space and time. Their morphology largely dictates how information is

allowed to travel and be utilized throughout the brain. Effectively, what other neu-

rons any one neuron is receiving inputs from and what neurons it can output too will

constrain learning. This theory has built the foundation for modern deep learning

approaches.

Symbolism

is different from connectionsims; that is, unique, indirect representations, or sym-

bols, are developed in the brain, which concretely surmise to the knowledge of the

mind [59]. The ‘mind’ is composed of symbols, which can be called upon to interpret

incoming information. Here, language is especially important as it holds the sym-

bol which can take on various meanings, depending on the circumstances [60]. This

concept is often referred to as the ‘Language of Thought’ hypothesis, which states

23

that symbol manipulation is a product of mental language, a type of symbolic in-

formation representation, that once combined provides meaning with syntactic and

semantic structure [61]. Mental language is not exactly the same as grammatical lan-

guage, taking on a unique representation of information that is only meaningful once

context is provided by other symbols and signals. The main idea here is that cogni-

tion results from manipulation of mental representations [62]. Symbolism is directly

embedded in classical cognitive science.

Artificial General Intelligence

Existing models of artificial general intelligence, which mostly use cognitive science

architectures. Most prominent approaches in AGI rely upon symbolic and subsym-

bolic models. For a more detailed description, see [63]. Of these works many employ

the techniques of graph networks and predicate logic [64]. In this case, information

is learned symbolically and manipulated through nodes and edges in the graph to

produce a construct of knowledge. Nodes denote subjects and objects, while edges

denote relationships (i.e. predicates) between them [65]. Symbolic learning in these

cases is mostly measured in terms of similarity between simulation results and human

behavior [66]. The most notable of these approaches are still in early development

and much remains to be determined in terms of how similarly they model human

intelligence in terms of knowledge preservation.

Both the connectionist and symbolic frameworks for artificial intelligence and arti-

ficial general intelligence share the element of combinatorial expression of information

processing units as a key feature of learning. What is largely implied in these frame-

works by their metrics of learning is the varying degrees to which the model can retain

information for later use, or knowledge preservation. What is missing is a unifying

understanding of architecture, independent of the artificial cognitive framework, as it

relates to life-long learning without forgetting.

24

Neuro-Symbolic Architectures

Neuro-symbolic architectures are those which take input information and create

symbolic representations. Their approach draws from the original symbolic architec-

tures first employed for artificial intelligence in the 1950’s and combines it with newer

techniques in gradient optimization [67]. Concept embeddings are often stored in

knowledge graphs which can be manipulated to produce some artificial semblance of

logic and understanding. Graph neural networks are a particular kind of architecture

that aim to integrate the successes of deep neural networks for non-grid data [68].

In these cases, the issue is either CF or the need to expand resource requirements to

incorporate higher-level concepts as knowledge is transferred across domains. New

information has to be learned on each occasion and it is difficult to utilize prior

knowledge in a completely novel context.

Backpropagation as a Plausible Brain Mechanism

Meanwhile, there is little evidence to support that backpropagation is a plausible

mechanism for the human brain. For further explanation of various learning models

and their implementation of backpropagation in a biologically plausible fashion, we

refer to the works of [69]. Here we offer some additional concerns to those already

presented. In speculating if backpropagation could be used by biological neural net-

works, the first concern is that brains are not provided a ground truth for which to

calculate a loss. Very few data-points in any one moment of sensory perception re-

ceive a true label (e.g. teacher signal). Yet, animal and human brains still afford large

degrees of generalization amongst similar instances and in many cases, context is used

to extrapolate new inferences and predictions for which categories (i.e. labels) have

not been provided. Secondly, the amount of data and teacher signals needed for even

a small child to generalize to a vast amount of other out-of-distribution data is far

25

less than what is currently employed in any deep learning technique. Lastly, we turn

the topological structure preserved amongst many vertebrate brains. Lack of direct

connectivity between top layer to lower layer neurons in any one sensory processing

stream suggests that an error signal, or any sort of backpropagated information, is

unlikely. In nearly all biological vertebrate brains, evolution has preserved a modular

hierarchy of neurons [70]. To date, there is no evidence of a physiological mechanism

in the human brain which would provide individual neurons with direct feedback from

the environment, other than those involved in stimulus-response coding. Otherwise,

either long-range connections from the higher cortical regions detecting categories or

a separate molecular mechanism to propagate information backwards would need to

be in place to tune the synaptic connections between neurons at every cortical level

involved in the sensory processing stream. Yet, this is precisely the procedure used

in backpropagation. To further make this point clear, the feed-foward information

in a DNN is distinct from the bakpropagated information, but in biological neurons,

the information from one neuron cell to another is the same chemical-electric process.

These considerations suggest that backpropagation is not the primary learning mech-

anism of biological brains, for which we’ve seen copious amounts of broad intelligence.

Furthermore, while this work agrees with [67] in their conclusion that equilib-

rium propagation (EP) is a unifying backpropagation framework, this work doubts

that it will lead to knowledge preservation. EP is proposed as a method to integrate

various DL models into one by constructing the global optimization objective as min-

imizing free-energy. However, the current method of which free-energy is optimized

still relies on some form of backpropagation, which has no constraint or initiative to

conserve past learning. The exceptions to this are predictive coding models, which

can still be optimized in terms of free energy and do not suffer from the concerns

previously mentioned for backpropagation. While the preliminary results of the pre-

dictive coding model put forth by Ororbia, et.al. [71] shows a different approach

26

to CF mitigation, known as the Sequential Neural Coding Network (SNCN); it has

yet to demonstrate knowledge preservation without explicit tasks descriptions and

target labels, a concern previously shared with backpropagation’s role in CF. Due to

the dual-optimization technique of SNCN, the gradient is large in comparison with

standard artificial neural networks, suggesting that resource constraints play a role

in converging on a minimum as knowledge is accumulated throughout the life-long

learning process. The result of these constraints is increased probability of inciting

prior learning re-writes. Indications of this concern are addressed in detail in the

discussion on limitations in Ororbia, et. al.’s work.

While minimal changes to brain organization are possible, the majority of neuron

connectivity is already established by age three [72], where more connections between

neurons are present than necessary. As part of early developmental learning, an

extensive process of synaptic pruning removes unnecessary connections. This process

further supports the connectionist theory; that neurons have to have the ability to

fire onto each other to facilitate learning. Thus, the initial topology of any brain,

biological or artificial, is crucial in dictating future learning. Furthermore, this feature

has largely been overlooked in artificial models that ‘scale-up’ as they learn instead

of ‘scaling down’, as in biological brains.

In [73], the authors offer insight that rather than relying on the previously thought-

to-be primary mode of extrapolation learning, it is rather likely that the brain is ca-

pable of using interpolation for generalization due to the large observation sampling

size. They underline this point with evidence from big data models which are in-

creasingly gaining human-level performance. While we candidly agree on the overall

premise of their work, we suggest here that while interpolation may serve as a means

for generalization in the brain, the mechanism by which it does so is not directly com-

parable to interpolation in deep neural networks (DNN). In the latter case, excessive

computational resources are required to learn from copious amounts of data in order

27

to produce human-level performance.

The scalability of DNNs to human-level tasks has recently been scrutinized in

several works [74, 75]. While the human brain has 86 billion neurons, some language

models (e.g. GPT-3) have more computational nodes; yet we do not see the same

retention of knowledge. GPT-3 is particularly suited for language learning, but does

not transfer knowledge between tasks in the same proficiency as the brain. It is clear

that models such as these are constrained to pattern storage and retrieval tasks. Ap-

plying GPT-3 to seemingly unconstrained tasks, such as question answering, requires

careful, prompt engineering and problem constraints to avoid erratic predictions [76].

These models fail in comparison to, even in the case of animals with considerably

fewer neurons, the ability to perform a range of goal-directed behavior and learn new

tasks without forgetting old tasks.

Simply put, a brown mouse, with 200 million neurons and an estimated 4.48X101̂1

synapses [77], shows a higher degree of knowledge retention than any known DNN.

This is .001 the number of neurons and 25.6 times the number of synapses to compu-

tational neurons of GPT-3 [78]. In the case of neurons, we see much more knowledge

preservation in the mouse and in the case of synapses, we suspect that we do not

see 1/25 the amount of knowledge preservation in GPT-3. Here, a mouse is able to

use information previously stored in its brain for a variety of cognitive functioning

without being re-trained on every task; while GPT-3 requires re-training for each

individual task and cannot generalize out-of-distribution. We suspect big data paired

with traditional deep learning alone is not enough to create the type of knowledge

preservation we see in biological counterparts and suggest that extrapolation is the

important difference between the types of general learning occurring in both DNNs

and highly preserved vertebrate brains.

28

Contending Frameworks and Theories of Brain Activity

There are several leading frameworks for constructing brain-inspired models from.

This work examines the most prevelate models to date in relation to their success in

cognitive modeling as it relates to intelligent algorithms.

Global Workspace Theory Global Workspace Theory for consciousness, was first

proposed by Baars in 1988 [79]. The theory has been adapted to Global Workspace

Dynamic (GWD) that provides a theory of conscious and unconscious brain events

[80]. While the theory is expansive in the amount of literature and scope of detail,

in summary, Baars describes brain activity as a series of activations that collabo-

rate in ensembles with emergent wave forms of cascading activations. Early works

implementing GWD can be found in Stan Franklin’s LIDA architecture [81], demon-

strating learning and memory as an autonomous agent, requiring built-in task-based

priors. Another notable implementation by Dahene and Changeux’s DCM model [82].

DCM demonstrated GWD applicability to visual consciousness. Most prominently,

the work of Bengio [83] that indicates a shared workspace implemented in a deep

learning model can encourage specialization and facilitate synchronization between

specialized components. Amongst these implementations, the problem of task-based

resource allocation persists. Integrated Information Theory Integrated Information

Theory (IIT) postulates the physical systems of the brain under the axioms of con-

sciousness and was first surmised in by Tononi in 2004 [84]. This mathematical theory

of consciousness includes a quantitative measure, phi, of the integrated information

in a physical system. The larger the value of phi, the more conscious the system

is. IIT is more inclusive than just this measurement of phi, but several prominent

scientists, such as Scott Aronson, have scrutinized the measure of phi as a central

component of IIT [85, 86]. According to the mathematical formulas for phi, an arbi-

trary complex mathematical system can be constructed in such a way that it would

29

clearly not be regarded by most i individuals, but would have a significantly high

phi value. Implementations of IIT include a toolkit for measuring phi and various

reports of using phi in existing models [87, 88, 89, 90]. However, there are no known

reports for a IIT cognitive computational model at the time of this work. Predictive

Processing Predictive processing, first proposed by Roa and Ballard in 1999, is a neu-

roscientific framework for describing the core function of the brain as an optimization

task to minimize errors between real sensory input and predicted input [91]. There

are multiple accounts of human behavioral phenomena that are not captured in the

previously mentioned models that can be described by predictive processing, such as

auditory hallucination during low decibel listening, inability to self-tickle, pre-motor

movement firing, and binocular rivalry [92]. The most successful application of these

models is in perception-action loops [93], which demonstrates that task learning is

well suited for prediction based modeling in ways that rival reinforcement learning.

Other notable works in [94, 95, 96, 97] show strong results in figure-ground segre-

gation, speach, image, text representation learning in 3D environments, and most

prominently, video representation learning. While these reports show predictive pro-

cessing as a useful computational tool, their ability to generalize and adapt to new

context over a continual learning process is not currently supported. Predictive coding

models thus suffer from catastrophic forgetting since they are backpropagation based

methods [98]. Furthermore, the physiological basis of predicting error is questionable

when considering the infant brain and how the mechanism may first occur (i.e. how

is an error predicted in the first instance of neuronal firing). The Recommendation

Architecture The recommendation architecture (RA) is particularly interesting in re-

lation to the work proposed here, since a core feature of the framework is resource

constraints. Proposed by Coward in 2001 [99], although the preemptive work can be

dated back to 1995 in a pattern extraction hierarchy framework [100]. The Recom-

mendation Architecture is a conceptual framework for understanding how cognition

30

occurs in terms of anatomy and physiology. In RA, the overall function of the brain

can be divided into two systems: condition detection and definition comprised of

the cortex, hippocampus, and amygdala; and the behavioral selection system com-

prised of the basal forebrain, thalamus, dorsal basal ganglia, and ventral basal ganglia

[101]. The cerebellum, brain stem, and spinal cord manage behavior sequences and

implementation.

RA is particularly interesting because it relies on multiplexing information in the

cortex for behavioral response. This occurs when the cortex encodes abstract hier-

archical patterns that are later interpreted as recommendations for behavior by the

behavior system. This topology and corresponding learning algorithms allow neurons

to generalize and bootstrap prior information, ultimately leading to the ability of

the brain to have a somewhat fixed number of neurons and connections [102]. Thus,

we adopt RA as the appropriate leading cognitive framework of which to inform our

cognitive modeling.

In the work proposed here, RA applies to the problem of resource constraints as

demonstrated by catastrophic in deep learning models. As the theory suggests, if

the topology of the computational brain is organized according to the evolutionary

pressures of resource constraints, it is likely that the result will be similar multiplexing

of computational units as neurons in the brain.

Current Empirical Literature

Catastrophic Forgetting

Catastrophic forgetting is observed as a failure to perform and to generalize to

previous goals due to changing weights for the sake of the current goal by re-writing

the previous weights learned during a previous goal [103]. CF is also observed when

the input data distribution critically shifts during same tasks problems [104]. Besides

31

that of Ororbia, et. al., most successful work on overcoming CF involves slowing

the weight-update process during the model’s lifetime [105], known as elastic weight

consolidation (EWC). While these are effective strategies, there are still resource

limitations constraining generalizability. Excess resources are needed in either the

number of neurons to encode patterns of the data and/or in the amount of data

needed. Other methods for alleviating CF involve sharing learned representations

of past inputs during a downstream processing state, sharing weights between tasks,

and pseudo-rehearsal where past tasks are passed through the gradient again [106,

107, 108, 109, 110]. Another alternative method is asynchronous updating as in [111,

112, 113].

Dropout is another technique which tries to allay overwriting of weights by peri-

odically ‘freezing’ random populations of neurons at various weight-update iteration

steps [114]. The effect here is similar to EWC in that only a partial set of neurons are

tuned to the current input batch, allowing the non-tuned set to persist down-stream

until further update. Catastrophic forgetting is typically measured by accuracy and

speed in learning a recurrent sequence of a task or tasks [104, 115, 116, 117, 118]

Some more advanced metrics can be implemented to determine tasks overlap, layer-

wise stability (i.e. rewriting percentage), and rate of forgetting [119, 120, 121].

The theme of works involving CF mitigation is to disperse learning over temporal

ranges, which has afforded such models to learn some sequences of tasks and avoid

over-fitting. However, these models are still limited by the foundational crux of

backpropagation: that narrow features are inherently encoded from the optimization

process and sooner, rather than later, the model will reach resource constraints. There

remains the problem of storing prior general learning to be used in a broad manner.

32

Transferring Knowledge

Transferring knowledge from one task to another is formally known as transfer

learning [122]. In these techniques, weights are pre-trained in a neural network on a

broad task and then imported and fine-tuned to a specific task. One such promising

approach is that of Google Brain’s PathNet which uses a modular architecture to

swap out computational units depending on the tasks [123]. However, the idea of

bootstrapping a-priori knowledge is the larger goal of knowledge preservation that

uses existing architecture to provide information, without requiring additional com-

putational resources. The metrics for transfer learning are how quickly and accurately

the new model can learn with pre-trained weights.

In general, the ability to preserve knowledge should manage resources in such a

way that the system is able to learn continuously over its lifetime without continuously

needing new computational resources. Part of this ability is due to the fact that

prior information can be sequestered in a novel context. Transfer learning techniques

are similar, but they rely on additional resources to transfer to the existing system.

While the methods for catastrophic forgetting also attempt to alleviate the resource

constraint problem, the current methods have resource asymptotes that quickly reach

peak learning abilities far below that of human and animal memory abilities.

Neuroevolution

Neuroevolution is another potential approach to preserve knowledge that has thus

far been largely neglected is to consider the topology of the learning system — that is,

its ‘architecture’. Some approaches in neuroevolution of artificial networks attempt

to answer this question, but none have shown emergent architectures in simulated

environments systematically. While there is a significant body of work on archi-

tecture optimization for other metrics of learning [124, 125, 126, 127, 128, 129], to

33

date there has been little work considering architectural choices in relation to CF

and/or transferring knowledge. Fortunately, millions of years of evolution has gener-

ated highly conserved, vertebrate and mammalian brain architectures that have been

optimized with regard to intelligent functions including, it is reasonable to assume,

the preservation of learning without CF.

The work proposed here combines deep reinforcement learning and genetic algo-

rithms within a resource constrained environment for the goal of preserving knowledge

amongst sequential tasks.

Continual reinforcement learning (RL) is an emerging field that describes an au-

tonomous agent that can learn multiple tasks over time [130]. Within the framework

of reinforcement learning, several works have shown interesting results in relation to

catastrophic forgetting (CF). Likewise, the works of [131] employs a meta-learning

algorithm to tune an RL model to extract knowledge between similar tasks in multi-

tasks environments. In [132], a framework with a simple feed-forward neural network

is used in conjunction with pseudo-rehearsal to overcome CF with some resource con-

straints. In [133], a decomposition-based reinforcement learning environment with

evolutionary strategy is used to explore CF in a sequence of tasks. The results

show that the first tasks become less optimized and the system favors plasticity over

stability in the model’s weightsk, leading to increased learning time and overall per-

formance. Furthermore, critical knowledge was replaced due to the greedy behavior

of the genetic algorithm (GA). The work of [134] describes a path to AGI that relies

on reinforcement learning and Hebbian learning by constraining decision-making that

aims for satisfaction of multiple physiological needs in sequence-based tasks. The work

here borrows from the theoretical framework proposed that Hebbian learning within

the reinforcement learning paradigm described can aid in adaptive generalization for

sequential learning.

34

Chapter 3

METHOD

The work proposed here is adopted from previous works that use a continuous RL

model for recurrent sequences of multiple tasks in simulated behavior-action loops.

Similar to meta-learning in which a second optimization protocol is used to optimize

the original neural network optimization tasks [135], an approach is used to tune

the network on a global level beyond the local model optimization methods using a

(1+1) evolutionary algorithm and a hyperparameter search technique. The method-

ology uses a basic framework by employing a simple DQN-based model. The DQN

adopted from [42] is fitted with experience replay, a type of pseudo-rehearsal, but uses

a simplified fully-connected network. In the work proposed here, the evolutionary al-

gorithm fitted with a resource constraint metric is used to manage the imbalance

between plasticity and stability, and mitigate the effects of greedy optimization in

the GA. The overall optimization goal of the system is to maximize reward across all

tasks in the sequence.

Environment

The direct mapping of an agent’s action to the resulting environment behavior

is imperative for simulating human-like cognition in the embodied-mind approach.

Unity3D offers easy to construct simulation environments that allow flexible and

rapid changes during experiment testing of artificial agents. The built-in physics

simulating feature provides constraints of physics as we would experience them in the

natural world. The built-in temporal component of these environments also offers an

opportunity to study simulated environments within the fourth dimension that may

35

not be easily accessible by standard computer vision, natural language processing,

and extracted time-series datas alone. Unity3D has another built-in package, ML-

Agents that offers state-of-the-art reinforcement learning algorithms easily deployable

on the custom simulated environment [136].

In this work, a custom environment is constructed as the basic environment with

x, y, and z planes. The environment consists of a fox-like artificial agent, a cylinder,

a cube, and a plane, as seen in Figure One. This comprises the base environment

and remains the same for all sub-environments, unless otherwise noted. The fox,

or rather agent, looks similar to a real-life fox in that it has four legs, a face, and

a tail. However, the agent moves as a sliding cube; physical coordination between

body parts is assumed. The environment affords the agent one of six discrete actions:

left one unit, right one unit, up one unit, down one unit, and rotate of a unit left

or right. A reinforcement learning model is used to control the agent’s movements.

This agent has a mass of 10. Gravity is enforced on the agent such that if it moves

off the edge of the plane, it will decrease it’s coordinate in the y plane. The plane,

cube, and cylinder are massless objects that cannot move on the x,y,z plane; they

are static objects. A light source is cast from above the environment, directly onto

the plane. Unity3D version 2020.3.21 with mlagents version 0.26, 2.0 was used for all

environments in this study.

Four sub-environments are created by enabling different sensory organs on the fox:

vision, position, raycast, and audio. For vision, the fox receives a camera attached to

the fox’s eyes with a focal length of 14.4 units and field of view of 79.5 units, giving a

state vector input shape of 24 by 24 pixels for the red, green, and blue channels. For

position, the fox is given a state vector of its x,y,z position in the environment, it’s

x and z velocity, the cube x,y,z coordinates, and the cylinder x,y,z coordinates. For

raycast perception, the fox has one raycast object (a built-in mlagents sensor similar

to lidar). This object extends in front of the fox’s face from the eye level pointed

36

Figure 3.1: The simulated environment includes a fox agent, a cylinder and cube as
target objects, and a plane serving as the floor.

towards the plane at a 45 degree angle, with a ray length of 3 units. When the sphere

of radius .34 units comes into contact with an object, that object’s x,y,z position is

reported as the state vector input. For audio, the cube and cylinder broadcast a

recording of a cat’s meow. This auditory signal decays according to the protocol set

forth in [137]. The state input vector is the signal once it reaches the fox’s location.

These four sub-environments are evaluated independently of one another such that

the model controls the agent for only one sub-environment at a time, where only one

sensory organ is placed on the agent. A fifth sub-environment is created by using

the base environment. However, in this environment, no sensory organ is given. This

allows for a control environment to be formed in which no state input is given.

A sixth sub-environment is formed without using the base environment. Here,

we use a new environment, Match, which is customly crafted as a control. In this

environment the agent must navigate to a target position. The state input is a

40,000 vector input of the target position statement. The agent is a cube suspended

37

without gravity. Action behaviors are to move up one, down one, left one, right one,

forward one, or back one unit. The target position state is a number, one through

six, denoting each of the possible actions, but repeated in the state input vector for

40,000 dimensions. If the target is to move up, the input value is zero and the state

vector is a vector of 40,000 zeros. To get a reward of one, the agent must choose

action output 0. The environment can be seen below in Figure 2 where the square is

the agent which has received a target signal and the objective is to select an output

which corresponds to the target signal. In each episode, the target signal is chosen

at random. This environment was chosen as a control to the depth tasks in previous

documents since it does not share core concepts.

Figure 3.2: A custom mlagents environment where the cube agent is given a target
vector. The agent selects the action output corresponding to the target vector value.

A table of all environments is given below.

38

Environment Name State Input Action Output Reward Goal

None-Fox None Rotate left, rotate right, move up, move down, move right, move left

-1 falling off plane
-1 moving to further target
+1 moving to target
-.01 for each step

Move to closest target

Visual-Fox 24 by 24 visual input from agent view camera Rotate left, rotate right, move up, move down, move right, move left

-1 falling off plane
-1 moving to further target
+1 moving to target
-.01 for each step

Move to closest target

Audio-Fox 40,000 state vector of audio signals from target and non-target sources Rotate left, rotate right, move up, move down, move right, move left

-1 falling off plane
-1 moving to further target
+1 moving to target
-.01 for each step

Move to closest target

Position-Fox Agent x,y velocity, agent x,y,z position, target x,y,z position, non-target x,y,z position Rotate left, rotate right, move up, move down, move right, move left

-1 falling off plane
-1 moving to further target
+1 moving to target
-.01 for each step

Move to closest target

Raycast-Fox Vector input of received raycast object, size 9 Rotate left, rotate right, move up, move down, move right, move left

-1 falling off plane
-1 moving to further target
+1 moving to target
-.01 for each step

Move to closest target

Match Target vector of desired action out value repeated for 40,000 dimensions Select up, down, left, right, forward, or back
-1 selecting incorrect action
+1 selection correct action

Match target vector input value to action output value

Table 3.1: Described here is each environment used throughout this work. A name,
the state input, the action output, reward, and goal for optimization is given.

Computational Framework

A variety of reinforcement learning models are used for the computational frame-

work of the agent. Which model controls the agent is dictated according to the

experimental procedure described in the procedures section below. For baseline test

of each environment set-up, the built-in mlagents reinforcement learning algorithms,

proximal policy optimization (PPO) and soft actor-critic (SAC), are used with de-

fault hyperparameter configurations found in Appendix A and B [138, 139]. In the

variable testing, a reinforcement learning with a built-in replay buffer, DQN, is used

adapted from [42], for which exact configurations can be found in Appendix C. The

DQN consists of three fully connected layers. Layers one and two are followed by

the ReLU activation layer as described in [140]. The DQN uses smooth L1 loss as

described in [141] and RMSprop optimization as described in [142] The DQN code is

implemented in Pytorch version 1.8.1 with Cuda version 10.1 [143, 144]. Figure 3.3

is adopted from [145] to show the computational flow of a DQN.

The genetic algorithm used is a modification of a (1+1) evolutionary algorithm

[146]. The hyperparameter tuning algorithm is used from Weights and Biases, a

program for tracking model variables and performance, according to a random search

as described in [147].

The motivation behind using mlagents built-in PPO and SAC algorithms was to

39

Figure 3.3: DQN Model Flow.

use state-of-the-art reinforcement learning policies as control measures to compare

against the novel DQN approach and to identify if the custom environments are

learnable. Supporting works for using these algorithms with mlagents can be found

in [148, 149, 150, 151, 152]. The choice to use the DQN is supported by the ease

of use in the evolutionary strategy, since weights in a fully connected system can be

easily recombined and mutated and as previously mentioned, DQNs have a built-

in pseudo-rehearsal to protect against catastrophic forgetting, further supported by

works of [153, 154, 155, 156, 157, 158]. The work of [159, 160, 161, 162] motivated

the use of the evolutionary algorithm as well as the desire to simulate evolutionary

pressures of resource constraints as described in the Recommendation Architecture

in [99]. The evolutionary algorithm used is a 1+1 GA, where through evolutions,

mutation and crossover within each layer of the DQN weights occurs according to the

resource constraint metric. If the number of non-zero weights is above the resource

constraint, a random selection of weights are mutated to zero, else zero value weights

are mutated to a random value between 0 and 1. The number of crossover weights

is controlled by a single hyperparameter while the number of mutation weights is

40

controlled by three hyperparameters for each layer. Hyperparameter tuning with

Weights and Biases was used due to its comprehensive model tracking and ability to

quickly search for optimal hyperparameters.

The table below describes all models used in the computational framework.

Model Name Purpose Brief Description
PPO Control State-of-the-art proximal policy optimization
SAC Control State-of-the-at soft actor-critic
SAC+LSTM Control Same as SAC with additional final LSTM layer
DQN Test – PPO, SAC, SAC+LSTM Standard deep Q network with 3 fully connected layers
DQN+GA Test – DQN-GA, DQN+GA-RC Same as DQN with evolutionary algorithm and resource constraint metric
DQN+GA-RC Control-Test – DQN-GA Same as DQN+GA without the resource constraint
DQN-GA Control Same as DQN+GA-RA without crossover and mutation

Table 3.2: Each model used in this work is listed by name. The purpose of the model
(control, test, or control-test) for analysis in relation to other models and a brief
description of each model’s set-up is given

Measures

In order to assess a model’s knowledge preservation, it must be able to demonstrate

that it can learn a sequence of tasks in a variety of task specific goals and return to

those tasks with improvements in computational costs and/or learning time. Below

we describe initial tests to measure generality in terms of learning without forgetting

and bootstrapping capacities. However, as generality scales, more advanced testing is

likely necessary. Metrics for testing knowledge preservation are novel, first introduced

by the author in prior works of [70].

As described, it is also important for a knowledge preserving model to do so

within resource constraints. Here, the evolutionary algorithm is used to employ a

bottom-up and top-down optimization method for preserving knowledge within re-

source constraints. Curating a bottom-up novelty process should be done in a way

that preserves historic learning. If the novelty mechanism, often performed by mu-

tations, transitions the overall global state rapidly, historical information is changed

in such a way that a recurrent success metric wouldn’t have time to select for broad

41

adaptability. Another key consideration for the bottom-up process is where muta-

tions occur. The global state should contain components that retain information

from prior states. If mutations occur throughout the global state simultaneously, the

ability for the system to re-introduce a particular configuration of a local component,

for the sake of returning to a prior task, is degraded. Likewise, if the success metric

is too recurrently focused that it penalizes most novelty, the system won’t be able

to adapt to novelty introduced by the other evolving components. Thus, there is a

critical balance between the bottom-up and top-down mechanisms. Here, bottom-up

processes are controlled by minimizing the loss metric of the model and crossover and

mutation hyperparameters in the evolutionary algorithm.

Learning without catastrophic forgetting is typically measured by performance on

a sequence of tasks. Here, we propose that a recurrent sequence of sub-environments

can be used to assess knowledge preservation. Where task A is performed, then task

B then task A again. However, in order to test whether higher-order concepts can be

encoded in the pursuit of multiplexing information, as occurs in the human brain, the

tasks chosen share the common concept of depth perception. Depth can be ascertained

through various sense modalities. In this work, depth can be perceived by the artificial

agent visually, through distance via position, through auditory clues, or through a

distance measure via raycast. One main goal of the study is to determine if the

concept of depth can be encoded and used across lower-level sensory representations.

The metric used in this study for measuring knowledge preservation how well

the model preforms on the current task. Thus, this measure can be related to the

accuracy of a single task or across a sequence tasks. Here, accuracy is a measure by

the reward received by the agent in each tasks. For single tasks and sequences of tasks,

as well as the type of model used, accuracy can be measured differently. For PPO,

SAC, SAC+LSTM, and DQN models on single tasks, a single-task accuracy meassure

is used. This measure is collected after the total number of iterations for each the

42

final episode rewards. An average is then taken across all iterations. This results

in the rewards at the end of each episode, during which the model is updated. The

advantage here, is that the speed at which the model learns is somewhat inherently

captured, since the reward is gathered across the entire training. For the DQN+GA,

DQN+GA-RC, and DQN-GA, A total episode reward is calculated by adding the

rewards incurred during and episode. An average across all episodes is taken to result

in the sequence-task accuracy measure. This measure is similar to the single-task

accuracy with the exception that it is measured across the sequence of tasks. A

special accuracy measure is given in addition to the previous sequence task accuracy

during testing. A total episode reward is calculated by adding the rewards incurred

during and episode. An average is taken of the last five total episode rewards. From

this reward list, the last value is taken as the prime reward. This resulting prime

reward is essentially the final training model reward for a particular individual model.

An average is taken across model iterations, resulting in the prime accuracy measure.

The advantage of this measure, is that the final reward is captured which is indicative

of how well the training procedure performed. Higher reward values indicate better

performance on the task.

Below is a table of the accuracy measures used in this work.

Name Single-task Accuracy Sequence-task Accuracy Prime-task Accuracy
Models PPO, SAC, SAC+LSTM, DQN DQN+GA, DQN+GA-RC, DQN-GA DQN+GA, DQN+GA-RC, DQN-GA
Train/Test Training and Testing on Single Tasks Training on Sequence of Tasks Testing on Sequence of Tasks

Table 3.3: Rewards in each environment and model pair can be calculated according to
single-task or the sequence-task objective and type of training/testing metric desired.

Research Design

In each of the 4 sub-environments for the fox base environment an agent is fitted

with the respective input capturing device (i.e. sensory organ) and navigates the

environment to collect input data for the corresponding model to use as information

43

to produce an actionable output. In each environment, there are two sources, A and

B, or rather cylinder and cube. The goal of the agent is to move to the closest source,

moving to the incorrect source results in a negative outcome, moving to the correct

target results in a positive outcome. The agent is always placed in the scene at the

same fixed geographical location while the location of A and B are randomized. Once

the agent gets within a predetermined range of a source, a reward of 1 unit is given

for the target or -1 unit for the non-target and the environment is terminated and

the prediction of which agent is closer is captured. In each environment, a time-step

consists of one navigation decision, rendering a new scene depending on how the agent

moves around. This process is iterated a number of times in order for the agent to

learn the environment effectively, using the total reward as information to update the

neural architecture.

Since the space of all possible modular architectures is too large to investigate by

design, the authors propose an evolutionary strategy to explore emergent architec-

tures. Resulting topologies are selected by a fitness function that rewards models on

the basis of performance in three metrics: computational execution time, accuracy

on the task, and resource requirements. Topologies which are faster at learning the

tasks, produce more accurate predictions, or require less resources are more likely to

be rewarded with the ability to pass on their genes to the next generation. Genes

describe the network topologies in terms of the number of nodes, how those nodes are

connected in the form of the weight matrix of each layer in the network. The weight,

or connection value, is learned through traditional back propagation techniques, spec-

ified by the aforementioned connections. However, the ability to drop weights, or add

weights, is determined by the resource constraint hyperparameter. Hyperparameter

tuning is used to configure the optimal number of add and drop neurons within the

fixed resource constraint metric. Figure Two describes the overall flow in the novel

model proposed.

44

Figure 3.4: A loop iterates through different sub-environments with different sensory
organs for DQN training until task A, B and repeat task A (i.e. A’) have been
completed. The total average reward is collected and used as the fitness function
for a genetic algorithm to remove or add weights in the DQN layers at random,
percentages calculated by hyperparameter tuning. Final results are then collected
after one recombination, mutation, and implementation loop of the genetic algorithm.

45

Procedures

First, each environment was constructed and trained using PPO, SAC, and SAC+LSTM

models. Results were recorded with Tensorflow’s Tensorboard program [163], which

tracked single-task accuracy and loss. This step determines the viability of each en-

vironment in the reinforcement learning, state-action loop. In this step, each model

is trained on one environment at a time. Between training sessions, each model is

re-created from scratch. These metrics serve as control measures for the DQN on

each environment as a single task. The DQN was trained using the hyperparameters

derived from the procedures below.

In each of the six environments, the input signal (e.g. sensory information) needs

to be of the same length. This allows the same brain to be recycled in sequences of

environments, which is necessary for comparing models equally. Each DQN based

model is constructed with this constraint in mind by forming the input vector to be

of a predefined length. The largest length of the four fox environments was that of

the auditory organ, at a length of 40,000. Thus, all inputs for DQN, DQN+GA,

DQN+GA-RA, and DQN-GA were padded to 40,000 dimensions. Since the audio

model is the largest, in terms of real-valued input state, a hyperparameter sweep was

performed according to the procedure below. To determine the impact of padding, the

DQN was trained on each environment with padding to 40,000 and with an alternative

padding to the visual signal of 1,752. In the alternative padding, compresses the

audio signal by stacking the audio images into a single images, linearizing it, and

then padding to the visual signal length.

To determine the DQN hyperparameters, the audio environment was used for a

hyperparameter sweep using Weights and Biases hyperparameter random search pro-

cess. Here, the Weights and Biases program was used to run a random search on the

DQN hyperparameters in order to determine optimal values according to maximiz-

46

ing the total average reward (for a list of hyperparameters tuned and tuning results,

see Appendix D and E). The model has 10 hyperparameters with three values each,

resulting in 59049 possible combinations. The runtime to calculate all possible com-

binations was outside the scope of this work. Therefore, only a subset of hyperparam-

eter tuning runs were used to calculate the optimal hyperparameter values. 280 runs

were taken into account, although the selection of the hyperparameters is optimized

according to the Weights and Biases program’s protocol which optimizes for most

viable hyperparameter values (i.e. an intelligent search of values instead of random

search) [147]. From here the mode value was collected from the total values sorted

by maximum reward for all average reward values less than one and greater than -10.

The mode was then calculated for all average rewards less than one and greater than

-5. The mode was then calculated for average rewards sorted by reward and then

by runtime for the rewards for the first 100 runs, excluding runs that received an

average reward of one. The mode was then calculated for the average reward sorted

by reward and then sorted by run time for reward values between 2 and 10.

From these four mode calculations, the mode was used as final hyperparameter

values. This procedure was used because the model procedures allow a random chance

of spawning into the environment and automatically hitting the target without any

learning or computation of the input. In short, by pure chance, the agent could spawn

into the reward or close enough to it that the first random action it chooses gets the

agent to the target. In order to account for this, we remove the low runtime and

high average rewards models The environment training process was then repeated

with the DQN model for which weights and biases log single-task accuracy. These

hyperparameters were used throughout all future DQN and DQN+GA training and

testing.

A hyperparameter search was performed to investigate the resource constraints by

adding four new hyperparameters: number of crossover weights, layer one mutation

47

rate, layer two mutation rate, and layer three mutation rate. For hyperparameter

tuning of the DQN+GA, the previous hyperparameters were frozen so that they were

left out from the new hyperparameter tuning. The total resource constraint metric

was set to 80%, such that if the number of total zeros in the DQN model is over 80%,

the GA is instructed to remove weights. If the total of zero weights is below 80%, the

GA is instructed to add random weights. Which layer to add/remove in crossover is

chosen at random. Which weights to add/remove in mutation is chosen at random.

Yet, once a layer is chosen to add or remove weights to in crossover and mutation,

the percentage of weights in that layer is chosen according to a hyperparameter. This

hyperparameter is optimized according to the aforementioned Weights and Biases

hyperparameter tuning random search process.

Here, there are 16 hyperparemeters for the DQN+GA model. Six of these hy-

perparameters are additional for the GA model, of which, four are tuned using hy-

perparameter optimization described above. Each tunable hyperparameter has three

values each, resulting in 81 possible combinations. Testing all possible combinations

was outside of the scope of this work, thus only 14 runs were considered for hyperpa-

rameter tuning during this phase. Results for hyperparameter tunning were concluded

using run that received the best final reward accuracy. These hyperparameters were

used for further training and testing of the DQN+GA, DQN+GA-RC, and DQN-GA

models.

In order to evaluate a model’s ability to preserve knowledge during a sequence of

tasks, two sub-environments out of the four fox environments (visual-fox, audio-fox,

position-fox, and raycast-fox) were randomly chosen, reffered to as depth-sequence

tasks. The agent is evaluated first on task A, then task B, then task A again. Between

tasks, the model weights are saved and re-loaded for the next tasks. Results are

collected using the Weights and Biases application. In order to asses if having a

shared concept is useful in storing information for later learning, another sequence

48

task was constructed in which task B is always the match environment while tasks

A is chosen at random from the four fox sensory environments, reffered to as mixed-

sequence task.

The DQN+GA, DQN+GA-RC, and DQN-GA models were then depth sequence

task three times. Further results were collected for the DQN+GA and DQN-GA

by training both models on the mixed sequence for three separate iterations. The

last trained weights for each DQN+GA and DQN-GA model were then chosen to

preform a test. In this test, the weights are loaded and evaluated on a each sensory

environment (excluding the none environment). This test is repeated for each of the

10 individuals in each of the model’s population for the mixed and depth sequence task

separately. The population count was chosen as a hyperparameter in the DQN+GA

model based on compute resource availability.

In order to determine how model weights change during training. The DQN+GA

and DQN-GA are trained for three evolution iterations. At this point, models are

saved between task A, task B, and the recurrent task A. Another evolution iteration

is performed for which the resultant model weights are saved between each task sim-

ilarly. Model weights are then loaded into arrays, normalized, and the absolute value

difference between each model weights between the third and fourth evolutionary

iterations is recorded.

Finally, a hyperparameter tuning according to previous DQN+GA hyperparam-

eter tuning protocol is repeated for the DQN+GA model in which all other hyper-

parameters are frozen for various RC weights for which a sequence-task accuracy is

recorded.

49

Data Analysis

Research Question One

How does changing architecture preserve knowledge?

Hypothesis 1 Architectures that self-modify neuron weights in a way that man-

ages the trade-off between existing information and new information in relation to

sequential specific goals preserve knowledge.

This hypothesis can be tested by comparing the accuracy between the DQN+GA

model, the DQN+GA-RC, and the DQN -GA models on the sequential depth ob-

jective. Furthermore, an analysis of the accuracy between DQN+GA models with

various levels of crossover and mutation rates can test how resources might be man-

aged between layers. The rationale here is that the stability-plasticity trade-off is

directly managed by the resource constraint measure and the percentage of neurons

added or removed in each layer. Since information propagates from layer to layer, the

trade-off between which layer can afford more node modification, either mutation or

crossover, is also a viable statistical analysis. The limitation of this measure is that

the hyperparameters are not tuned for each set-up individually. The hyperparameters

were tuned for the DQN, since it is the base model. Extra hyperparameters for the

GA were tuned separately according to the procedures above.

Hypothesis 2 Architectures that self-modify by rewriting existing neuron weights

are able to adapt to changing modalities by optimizing for consecutive tasks.

Hypothesis two can be analyzed by comparing the training and test accuracies

between DQN+GA models and DQN-GA models for sequential tasks that share ob-

jectives (i.e. depth perception) and sequential tasks that don’t share an objective.

Analysis between sequences of tasks with shared concepts for models that use standard

backpropagation and the DQN+GA with resource constraint feature are compared to

test whether standard backpropagation methods or the DQN+GA method is better

50

suited for adapting to changing tasks. Here, limitations of the analysis are in the type

of tasks chosen. Since reinforcement learning is used, there is still a shared procedure

between the depth sequence objective and the non-depth sequence, in that the agent

has to learn state-action-reward loops. To account for this, the task of non-depth was

chosen to be a visual matching objective. Furthermore, the action outputs are shared,

which allows switching between depth tasks and visual matching tasks possible within

the same model weights.

Research Question Two

How do evolutionary pressures of resource constraints affect architectures for learn-

ing and using high-level concepts?

Hypothesis 1 Architectures with neurons which are shared across different com-

putational abilities display more multiplexing of learned information.

Degrees of change in weights at between model checkpoints for the DQN+GA

model and DQN-GA model between different tasks in the sequential depth objective

during training can be compared to asses which nodes are static, being used across

tasks, and which nodes are being re-learned to encode new information. In order

to test if neurons are being multiplexed, we would need to see if neurons remain

somewhat constant across tasks in a sequential task objective. The limitation here

is that since backpropagation forces automatic weight update, all neurons will be

changed by some small degree. To account for this, we take the degree of change

in terms of percentage normalization where a complete change, or reversal of value,

would result in a degree of one. Smaller changes in weight values result in a fraction of

one. Direction of change is not accounted for, as a positive or negative weight change

can be treated equally in terms of degree change and ultimately has no difference in

determining which nodes are multiplexed, or more static.

Hypothesis 2 Emergent architectures from evolutionary pressures of resource con-

51

straints aid general learning and use of a high-level concept.

The overall accuracy in sequences of depth tasks for testing between the baseline

models, DQN, and DQN+GA can be compared. As a standard measure of how

evolutionary pressures of resource constraints play a role in preserving knowledge,

the total reward is calculated over multiple test runs, using hyperparameters selected

by the aforementioned procedures. The limitation here is that the test models are

trained on a variety of environments, which may obscure the model’s accuracy on a

specific environment sequence. To account for this, multiple test models are performed

an a variety of depth sequences.

52

Chapter 4

RESULTS

Model and Environment Analysis

The results in figure 4.1 describe which hyperparameters in the DQN model have

the most impact on the overall single-task accuracy for the fox-audio environment.

The importance measures in relationship to all runs performed, the impact on the

accuracy measure, while the correlation states how increases the value of the hyper-

parameter will effect the accuracy value. For example, the number of nodes in layer

two (FC2) is anti-correlated with the accuracy measure, producing a large red bar.

This can be interpreted as, when the number of nodes increases, the accuracy de-

creases. During hyperparameter tuning, Weights and Biases used the random search

procedure to determine the appropriate number of episodes from a possible selection

of 25, 50, and 100; possible learning rate values of 0.001, 0.001, and 0.005; possible

layer one number of nodes 64, 128, and 256; possible layer two number of nodes 32,

64, 128; batch sizes of 64, 128, 256; gamma values of 0.3, 0.5, 0.999; epsilon starting

values of 0.7, 0.9, 0.99; epsilon ending values of 0.01, 0.05, ; epsilon decay values of

50, 100, 200; and target policy network update iteration values of 5, 10, 20. The final

hyperparameters chosen were learning rate of 0.001, 64 layer one number of nodes,

32 layer two number of nodes, batch size of 256, gamma rate of 0.3, epsilon starting

at 0.7 with a decay of 200 ending at 0.05, the target net updated every 5 iterations,

and 25 episode iterations.

53

Figure 4.1: DQN Hyperparameter Importance
Each hyperparameter in the DQN is ranked in terms of importance and

corresponding correlation in relation to the hyperparameter optimization of average
reward of the last 5 total episode reward averages.

Figure 4.2 shows the single-task accuracy on grouped by each environment for

the DQN model during training. The two-tailed P value equals 0.0411 and is sta-

tistically significant for alpha values of 0.05 for the none environment compared to

the fox sensory organ environment single-task accuracies. The mean of none environ-

ments minus organ environments equals -4.02500046221. 95% confidence interval of

this difference: From -7.88032033078 to -0.16968059364. Intermediate values used in

calculations: t = 2.1015, df = 46, standard error of difference = 1.915. This result is

captured from across six separate runs for the audio, visual, raycast, and position fox

environments and compared to 24 separate runs for the none environment. The top

54

bar in the graph is the match environment for the DQN included for comparison. In

each bar, the line represents the min and max values across the total runs for each

environment. The x-axis is average single-task accuracy reward across alll runs for

that environment.

Figure 4.2: Training accuracies grouped by environment type for average of last
5 episode types. Min and max lines are included. The top bar is for the match
environment. None environment vs. fox environments is statistically significant via
t-test. p=0.0411.

For each of the baseline models, PPO, SAC, SAC+LSTM and DQNmodels, single-

task accuracies were then compared for each of the six environments, as shown in

figure 4.3. Here, each run for each model in each environment records the last single-

task accuracy An average is then taken per model per run for that run’s last five

episode accuracies during training. A final average is calculated over all of runs per

model per environment to produce the results shown in the figure.

55

Figure 4.3: Average reward of last episode for DQN, PPO, SAC, SAC+LSTM models
on each single environment.

The DQN+GA model hyperparameter tuning used the already tunned hyperpa-

rameters from the DQN with the addition of hyperparameters for the number indi-

viduals in the evolutionary algorithm population, the number of nodes for each layer

to be used in crossover, the number of nodes in layer one to be used for mutation, the

number of nodes to be mutated in layer two, the number of nodes in layer three to

be mutated, and the number evolutionary episodes. Out of these hyperparameters,

the evolutionary episodes were fixed to 5 and the number of individuals in the popu-

lation were fixed to 10 to consereve compute requirements since each model run took

between three and 12 hours to train during the hyperparameter sweep. Figure 4.4

shows the importance of each searchable hyperparameter in relation to average prime

accuracy reward. Figure 4.5 shows the hyperparameter search across DQN+GA runs.

56

Figure 4.4: Each hyperparameter in the DQN+GA is ranked in terms of importance
and corresponding correlation in relation to the hyperparameter optimization of av-
erage reward of the last 5 total episode reward averages.

Figure 4.5: Runs across the hyperaprameter search are recorded in terms of prime
accuracy.

57

Statistical Analysis

For all statistical analysis, an unpaired, two-tailed t-test is used, with p values

less than .005 being statistically significant. The proceeding results compare different

model and environment training and test with reported accuracy measures to support

or deny the proposed research questions and corresponding hypotheses.

Research Question One

How does changing architecture preserve knowledge?

Hypothesis 1 Architectures that self-modify neuron weights in a way that man-

ages the trade-off between existing information and new information in relation to

sequential specific goals preserve knowledge.

Here, the training prime accuracy is reported for the DQN+GA, DQN+GA-RC,

and DQN-GA, as shown in figure 4.6. The sequence-task accuracy for the DQN+GA

during training on the depth tasks is -8.81, for the DQN+GA-RC is -14.73, and -

18.80 for the DQN-RC. This result is calculated from the average of three separate

runs per model. Between the DQN+GA and DQN-GA, each sequence-task accu-

racy was used in a t-test, resulting in a p-value of 0.0456. The mean of DQN+GA

minus DQN-GA equals 9.98666785800. 95% confidence interval of this difference:

from 4.09245857416 to 15.88087714184. Intermediate values used in calculations: t

= 4.7042, df = 4, standard error of difference = 2.123. By conventional criteria, this

difference is considered to be very statistically significant. Between the DQN+GA

and DQN+GA-RC, each sequence-task accuracy was used in a t-test, resulting in a

p-value of 0.0093. By conventional criteria, this difference is considered to be statis-

tically significant. Confidence interval: the mean of DQN+GA minus DQN+GA-RC

equals 9.30666775800. 95% confidence interval of this difference: from 0.29264323328

to 18.32069228272. Intermediate values used in calculations: t = 2.8666, df = 4,

58

standard error of difference = 3.247.

Figure 4.6: Average prime accuracy results across runs for DQN+GA, DQN+GA-
RC, and DQN-GA for depth sequence training.

Hypothesis 2 Architectures that self-modify by rewriting existing neuron weights

are able to adapt to changing modalities by optimizing for consecutive tasks.

Training prime accuracies are compared for the DQN+GA and DQN-GA for the

mixed sequence and depth sequence tasks during training as shown in figure 4.7.

The resultant value is an average across three model runs per environment for the

mixed and depth sequences. A t-test comparison between the DQN+GA and DQN-

GA for the mixed sequence task across three separate runs resulted in a p-value of

0.0693. By conventional criteria, this difference is considered to be not quite statisti-

cally significant. Confidence interval: the mean of DQN+GA minus DQN-GA equals

12.13333479333. 95% confidence interval of this difference: from -1.52999074279 to

25.79666032946. Intermediate values used in calculations: t = 2.4655, df = 4, stan-

dard error of difference = 4.921. A t-test comparison between the DQN+GA and

59

DQN-GAa for the depth sequence task during training across three separate runs

was previously reported in research question one, hypothesis one, with a p-value of

0.0093. This result is considered statistically significant.

Figure 4.7: Average prime accuracy results across runs for DQN+GA and DQN-GA
for depth sequence and mixed sequence training.

Test prime accuracies are compared for the DQN+GA and DQN-GA for the mixed

sequence and depth sequence tasks during testing as shown in figure 4.8. The resul-

tant value is an average of all tests per model for each environment for the mixed

and depth sequences during testing. A t-test comparison between the DQN+GA

and DQN-GA for the mixed sequence task across ten separate runs for the match

environment resulted in a p-value of 0.8297, a p-value of 0.3831 for the raycast en-

vironment, a p-value of 0.8530 for the audio environment, a p-value of 0.0738 for

the visual environment, and a p-value of 0.6168 for the position environment, none

of which are considered statistically significant. A t-test comparison between the

DQN+GA and DQN-GA for the depth sequence task across ten separate runs for the

60

match environment resulted in a p-value of 0.1753, a p-value of 0.8581 for the raycast

environment, a p-value of 0.0842 for the audio environment, a p-value of 0.3907 for

the visual environment, and a p-value of 0.9264 for the position environment, none of

which are considered statistically significant. The test results for just the DQN-GA

for each environment are recorded in Appendix section K. The table below describes

the p-values per DQN+GA to DQN-GA model t-test comparison per environment

4.1.

mixed-match 0.8297
depth-match 0.1753
mixed-visual 0.0738
depth-visual 0.3907
mixed-position 0.6168
depth-position 0.9264
mixed-raycast 0.3831
depth-raycast 0.8581
mixed-audio 0.8530
depth-audio 0.0842

Table 4.1: P-values for Depth and Mixed Test DQN+GA and DQN-GA.

61

Figure 4.8: Average prime accuracy results across runs for DQN+GA and DQN-GA
for depth sequence and mixed sequence test.

Research Question Two

How do evolutionary pressures of resource constraints affect architectures for learn-

ing and using high-level concepts?

Hypothesis 1 Architectures with neurons which are shared across different com-

putational abilities display more multiplexing of learned information.

Figure 4.9 records results from the percentage of weight change between be-

tween task A and recurrent task A between evolutionary steps three and four for

the DQN+GA per model layer. For the DQN+GA, layer one change resulted in

84.9318%, layer two in 1.944%, and layer three in %0.2626. This result is collected

by calculating the absolute value of change between the two normalized weights and

summing across each individual in the models population in relation to the total

weights in each layer as a percentage of the total weight change.

62

Figure 4.9: Percentage of change between model weights between tasks in evolutionary
iterations per model.

Hypothesis 2 Emergent architectures from evolutionary pressures of resource con-

straints aid general learning and use of a high-level concept.

Results are recorded for test prime accuracy for the DQN+GA and DQN-GA

depth sequence tasks. These results, shown in figure 4.10 are taken from research

question one, hypothesis two for direct comparison here. A t-test comparison between

the DQN+GA and DQN-GA for the depth sequence task across ten separate runs

for the match environment resulted in a p-value of 0.1753, a p-value of 0.8581 for the

raycast environment, a p-value of 0.0842 for the audio environment, a p-value of 0.3907

for the visual environment, and a p-value of 0.9264 for the position environment, none

of which are considered statistically significant.

63

Figure 4.10: Average prime accuracy results for depth sequence task for DQN+GA
and DQN-GA models.

Appendix section L shows the total results recorded for each research question

and corresponding hypothesis.

64

Chapter 5

DISCUSSION

Summary

Evolutionary algorithms aid deep learning models in preserving knowledge during

training on sequences of tasks. Some of this effect is transferable to testing on com-

pletely novel tasks. Resource constrained evolutionary algorithms outperform those

without resource constraints, which supports the ideas laid out in the recommendation

architecture theory of cognition by Andrew Coward [99].

Conclusions

Importance of Layer Learning

DQN Hyperparameter Tuning

Results form the DQN hyperparameter tuning suggests that increasing the num-

ber of episodes during training does not increase the overall average accuracy. One

reason for this is that the model weights could be overfitting to each task as commonly

observed in deep learning models [164]. For the epsilon, gamma, batch size, and learn-

ing rate related hyperparameters, the hyperameter search tunes the epsilon metrics

to the overall audio task as expected. Interestingly, the hyperparameter search shows

that the number of nodes in the fully connected layer two is more important than

the number of nodes in the first fully connected layer. Both hyperparameters are

anti-correlated. This result suggests that more nodes does not increase the average

reward, which implies that conserved resources may increase learning across variances

in a single-task objective. In addition, these results suggest that the nodes in layer

65

two, which are thought to encode higher-concept features from layer one, are more

important; that the fewer nodes that layer one projects into creates better average

learning, which expounds upon the current research of hierarchical networks encoding

concepts of concepts from layer to layer [165]. This particular result suggests that

higher degrees of multiplexing of shared lower-level features in layer one may lead to

higher average rewards on the current task. Finally, the target update hyperaparam-

eter results show that the more frequently the target policy in the DQN is updated,

the higher average reward received for the task. This result is expected since updating

the model results in advancing the stored learning protocol of the DQN. This fur-

ther suggest that the task can be learned more effectively with incremental learning.

This result is supported by the theory that biological brains require sleep as a sort

of update feature during learning, as suggested in the recommendation architecture

[99].

DQN+GA Hyperparameter Tuning

Results from the DQN+GA hyperaparameter tuning shows that the layer three

mutation rate is more important than layer one, followed importance for layer two, in

regards to the prime accuracy. Furthermore, layer three mutation rate is correlated,

meaning the more mutation that occurs in layer three, the increase in prime accu-

racy. This suggests that layer three benefits from random changes; that variability in

higher-order concepts can benefit the learning trajectory. Layer one is anti-correlated,

suggesting that the more weights changed in layer one, the worse performance mea-

sured. This result is consistent with the DQN hyperparameter search, that layer

one is encoding lower-level concepts that are then interpreted by layer two and then

layer three for behavioral output. Layer two weights are again correlated, further

suggesting that higher-order concepts make use of multiplexed information storage.

This result is consistent with the recommendation architecture that some features are

learned by the cortex which are later interpreted by the basal ganglia for behavioral

66

output [99]. Interestingly, number of nodes involved in crossover is less important

than the number of layer three mutation rate, but more important then layer one and

two mutation rate. Since the crossover hyperaprameter involves all layers, this sug-

gests that layer three, with the most higher-level concepts is the most imperative to

learning performance. Furthermore, since crossover is anti-correlated, this suggests

that transfer learning has a limit of effectiveness; that some degree of transferring

weight is helpful, but too much transfer can result in negative learning performance.

Environment and Model Viability

Single-task Accuracy DQN

The results from the DQN model single-task accuracy for each environment show

that with the sensory organ for the fox environments, the model is statistically signif-

icantly more likely to learn the task. This result validates the experimental design in

that, during training, the DQN benefits from sensory state inputs. The drawback of

comparing the match environment is that the match environment does not involve a

small negative reward per step as the fox environment does. Thus, it is not an accu-

rate comparison, since the total negative reward is automatically smaller than the fox

environments. It is important to take note of this distinction for further discussion;

that the mixed environment cannot be directly compared to other environments due

to the difference in reward curriculum.

Single-task Accuracy for Baseline Models

For each baseline model, the training accuracy per environment is provided by

figure 4.3. These results show variability in the best model suited for the single

task environment. Overall, the DQN preforms worse than the state-of-the-art models

provided. This is likely due to the increased number of weight update iterations

for PPO, SAC, and SAC+LSTM models compared to DQN. However, these results

suggest that not only is each environment learnable, but also that the environments

67

can be ranked in difficulty. The match environment is the easiest, followed by visual,

position, audio, raycast, and the none environments.

Training with Resource Constraints in Evolutionary Loops

In figure 4.6, the results show that the DQN with the evolutionary algorithm per-

form significantly better than the DQN without mutation and crossover, suggesting

that these features help manage stored information in such a way that the model

can learn sequences of tasks. At the very least, the comparison supports the valid-

ity of the experimental design in that the advantage of the DDQN+GA is due to

the management of weights by mutation and crossover rather than more iterations,

since the DQN-GA is still iterating through evolutionary steps. More interestingly

is the result that the DQN with the evolutionary algorithm, but without resource

constraints performs significantly worse, suggesting that resource constraints effect

information learning in the DQN model on the sequence task. This supports the

theory laid out in the recommendation architecture that evolutionary pressures of

resource constraints can enforce information encodings that be used across a variety

of contexts [23]. However, this finding is somewhat counterintuitive to the those in

the deep learning community that subscribe to the ideas afformented in [73]; that

larger networks capable of processing more data will lead to learning as the human

brain does.

Mixed Sequences and Depth Sequences

Figure 4.7 further suggests that the DQN+GA is significantly better at learning

recurrent sequences of tasks, even when the model learns a second task that is unre-

lated to features in the first (and recurrent) task. In moving from training to testing,

figure 4.8 shows that on average, the DQN+GA performs better than the DQN-GA

for mixed and depth sequence trained models across all test environments with the

68

exception of the match environment. This further supports the use of evolutionary

algorithms with the DQN for continual learning.

For DQN+GA models, the depth sequence training provided better, on average,

test results than the mixed sequence training for the match and position environ-

ments. This result is adversarial to the results found in training that suggest the

evolutionary algorithm helps the DQN learn and conserve information in sequences

of task. However, the results are not significant and are likely due to the difficulty

of the task as well as random assignment. Here, match and position are the easiest

tasks. During depth sequence training, the model is trained on two of the four fox

environments and model weights are saved. The trained model is then used for the

test procedure on one of the four fox environments at random. Thus, it is possible

that an artifact of the test is that the models for the mixed and depth were trained

on different fox environments. For example, if the depth training occurred with a

more difficult, such as audio, while the mixed training occurred with an easier task,

such as visual, the depth model could be more overfit to the model weights that

afforded the nuances of the more difficult tasks rather than general features across

tasks. In order to test this conjecture and find these results conclusive, more test

with a larger sample size should be performed, further supported by the information

in table 4.1. For the DQN-GA models, the results are similar that only three envi-

ronments, match, raycast, and position perform better with depth sequence training.

This further supports that the test results shown here could be influenced by an arti-

facts since the evolutionary algorithm has been removed, which results in the models

being re-trained after each task.

Model Weight Change

In figure 4.9 the DQN+GA model, from evolutionary iteration three to four, the

weights in the model for each layer change similar for the results provided by the

69

hyperparameter tuning, figure 4.4. Although layer two resulted in being least impor-

tant for prime accuracy during training, layer one has the majority of weight changes,

even though layer two and layer three have higher mutation rates. This suggests that

the core feature learning, before hierarchical feature encoding, is done by layer one;

which is consistent with current literature. Layer three is most important in relation

to accuracy, and has the fewest percent of change, even though it has the highest

mutation rate. This suggest that resources here are more likely to be conserved for

encoding higher-order concepts, which is further supported by the small degree of

change in layer two.

Evolutionary Approach to Learning

Finally, the test prime accuracies recorded by figure 4.10 shows that the DQN+GA

are on average more accurate than the DQN-GA, which further suggests that evolu-

tionary iterations during training on reccurent sequential tasks perserve knowledge

in such a way that the model is better at adapting to new environments, even not

trained on, than models without the evolutionary algorithm. Increasing sample size

would likely result in increased significance.

Hypothesis Analysis

The results of the work proposed here research question one of how does architec-

ture preserve knowledge, hypothesis one in that architectures that self-modify neuron

weights in a way that manages the trade-off between existing information and new

information in relation to sequential specific goals preserve knowledge. This hypoth-

esis is supported by results from figure 4.6 in that the DQN with mutation, crossover,

and resource constraints outperforms models without those weight managing features

on a recurrent tasks after learning a new task. Hypothesis two states that archi-

tectures that self-modify by rewriting existing neuron weights are able to adapt to

70

changing modalities by optimizing for consecutive tasks is not supported in that figure

4.7 significantly shows that the DQN-GA, which is prone to more rewriting and less

protection of the evolutionary crossover feature of the DQN+GA, performs worse

on returning to a task after learning a prior task during training. Thus, resource

question one can be partially answered in the work proposed here that evolutionary

learning can preserve knowledge in continual learning environments for deep-learning

based models and that resource constraints enforce hierarchical learning to be more

effective across tasks learning.

In regards to research question two of how do evolutionary pressures of resource

constraints affect architectures for learning and using high-level concepts, hypothesis

one, which states architectures with neurons which are shared across different com-

putational abilities display more multiplexing of learned information, is supported

by figure 4.9 in that lower level layers in the evolutionary resource constrained mod-

els are more susceptible to change while higher order concepts are more likely to be

preserved in higher layers. Conserved weights suggest sharing across environments

since the higher layers have higher mutation rates. While hypothesis two, which states

emergent architectures from evolutionary pressures of resource constraints aid general

learning and use of a high-level concept, is partially supported by figure 4.10 which

suggests that the emergent architectures during training resultant from the evolution-

ary weight management features preserve knowledge better since they are able to, on

average, perform completely novel tasks or return to previously learned tasks after

learning new tasks better than models with static architectures. Here, the DQN-GA

has a static architecture because new connections between weights can’t be turned on

and although they can be turned off by zeroing, they can’t be turned on again after-

wards, all of which the evolutionary algorithm provides. Thus the DQN+GA results

in more dynamic emergent weight architectures that are no longer fully connected.

Overall, the research question of how do evolutionary pressures of resource constraints

71

affect architectures for learning and using high-level concepts was investigated in this

work by comparing the DQN+GA and DQN-GA and can be partially answered in

that it is likely resource constraints are encoding higher order concepts that can be

used for multiplexing across novel tasks or returning to prior tasks.

Limitations

There are several challenges in constructing experiments to test the deliberation

presented here. First, it is difficult to design fitness functions which escape goal

optimization. With limited time to train models, a limited set of systems can be

used. It is not yet clear how many cycles of novelty and evaluation are needed

to endow a system with generally adaptive properties that could be applied to a

plethora of goal-directed behavior. For example, if a handful of tasks are given to the

system to perform in recurrent sequences, it would be difficult to draw conclusions

that superseded the correlation of those results into a causal manner. However,

similar reasoning can be applied to any reductionist experiment. Many different

configurations of the system would need to be tested to tease out the relationship

between the optimization goal and underlying mechanisms.

Secondly, the coupling of learning architecture, tasks/data, and embodiment is

more demanding than most DNNs in computation and time. Although, it should be

noted that the overall system may require more computational resources, the result-

ing encoded architectures may be extractable; that once trained, many of the existing

environments and embodiments could be ablated since the model could employ its

preserved knowledge in future tasks. Furthermore, the particular pairing of embodi-

ment, architecture, and tasks is not trivial. The design must consider the feasibility

of each component working in conjunction with the other.

If one designed an environment that relied upon a particular behavior for which

the model had no means of producing, the system would instantaneously become in-

72

tractable (e.g. expecting a sphere to climb a hill when the applied forces to the sphere

can’t exceed gravitational forces). Furthermore, the system is limited in requiring the

same input and output vector sizes. This approach, indicative of all deep learning,

severely limits any deep learning based approach for tackling general learning. More

specifically, comparing accuracies is only somewhat fruitful since environments with

more negative rewards can incur average accuracy results that are skewed when com-

pared to those that, by chance, have higher average accuracy rewards.

Final considerations revolve around initializing components and minimizing con-

founding variables. Designing an appropriate starting point for each component is

difficult in that the design implementation is biased by the operator. Each hyperpa-

rameter has to be in part chosen by the operator, even with hyperparameter search.

Since there is too much history in natural evolution, it is difficult to pinpoint and

construct a computational model that can minimize bias whilst curating a similar

evolutionary path to biological life. The resultant model will most likely have many

hyperparameters, each affecting the overall dynamics of the system. The author sus-

pects early work will involve more simple approaches that try to capture relevant

foundational characteristics to inform later work.

Thus, early models that show even small degrees of knowledge preservation would

be beneficial in this space. The goal of using GA characteristics in designing knowl-

edge preservation algorithms is to produce systems which can lead to broad intelli-

gence. Adaptive stability-plasticity in GA models affords a mechanism of introduc-

ing novelty while preserving prior learning. A balance between the top-down suc-

cess metric (sequence training optimization) which evaluates the novelty producing

bottom-up mechanism (mutation, crossover, and weight optimization) must be taken

into account. Fitness functions which enforce adaptability in recurrent sequences,

through resource constraint metrics, of tasks are likely to conserve resources given

the organization of local components has characteristics that lead to generalization.

73

Recommendations for Future Research

Direct future research from this study should expound upon the impact of re-

source constraints in relation to the mutation and crossover rates. Furthermore,

studies which investigate how shared concepts across different input and output sizes

would support to the results found here. For example, completely different task un-

bound by reinforcement learning environments could provide a modality of multi-task

learning that gives relevant insight into general learning emerging from deep learning

approaches. In addition, studies could investigate how much continual learning can

be preserved across task sequence lengths.

The work provided here demonstrates that evolutionary algorithms in conjunction

with traditional deep learning approaches can overcome some of the limitations of

catastrophic forgetting. More importantly, resource constraints can be used to guide

models into encoding higher-level concepts. Thus, it would be pertinent to investi-

gate alternative models which employ variations of the resource constraint metrics.

In addition, evolutionary algorithms in conjunction with deep learning models are

and emerging technique. Amongst these approaches, investigations of how resource

conservation plays a role in the overall learning with varying mutation and crossover

rates will likely result in important discoveries. Approaches such as these would sup-

port the theory in the recommendation architecture that evolutionary pressures of

resource constraints result in learning architectures that can encode information for

later multiplexing, ultimately leading to general intelligence.

74

APPENDIX

A. Default configurations for proximal policy optimization hyperparameters.

75

76

B. Default configurations for soft actor-critic hyperparameters.

77

C. Default configurations for soft actor-critic with LSTM hyperparameters.

78

D. DQN configuration for hyperparameters.

79

E. DQN hyperparameter tuning for the audio task.

80

F. Base models reward training results for all fox environments.

G. DQN reward training trajectory for each task.

81

H. DQN training average reward for last five episodes results used in t-test.

82

83

I. Training accuracies for all base models and environments.

84

J. Match training for PPO (pink), SAC (blue), and SAC+LSTM (red).

85

K. DQN-GA Prime Accuracy Test Results.

L. Research Question and Hypothesis Results.

86

REFERENCES

[1] Phil Torres. “The possibility and risks of artificial general intelligence”. In:
Bulletin of the Atomic Scientists 75.3 (2019), pp. 105–108.

[2] Ben Goertzel. “Artificial general intelligence: concept, state of the art, and
future prospects”. In: Journal of Artificial General Intelligence 5.1 (2014),
p. 1.

[3] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI”.
In: Information fusion 58 (2020), pp. 82–115.

[4] Harry Jerison. Evolution of the brain and intelligence. Elsevier, 2012.

[5] L Andrew Coward. “Modelling memory and learning consistently from psy-
chology to physiology”. In: Perception-Action Cycle. Springer, 2011, pp. 63–
133.

[6] L Andrew Coward. A system architecture approach to the brain: From neurons
to consciousness. Nova Publishers, 2005.

[7] L Andrew Coward. Towards a theoretical neuroscience: from cell chemistry to
cognition. Vol. 8. Springer Science & Business Media, 2013.

[8] Gerhard Fischer. “Lifelong learning—more than training”. In: Journal of In-
teractive Learning Research 11.3 (2000), pp. 265–294.

[9] Jerry A Fodor and Zenon W Pylyshyn. “Connectionism and cognitive archi-
tecture: A critical analysis”. In: Cognition 28.1-2 (1988), pp. 3–71.

[10] Timothy P Lillicrap et al. “Backpropagation and the brain”. In: Nature Re-
views Neuroscience 21.6 (2020), pp. 335–346.

[11] Sebastian Seung. Connectome: How the brain’s wiring makes us who we are.
HMH, 2012.

[12] Geoffrey E Hinton. “Connectionist learning procedures”. In: Machine learning.
Elsevier, 1990, pp. 555–610.

[13] John R Riesenberg. “Catastrophic Forgetting in Neural Networks”. PhD thesis.
University of Cincinnati, 2000.

[14] Margaret Wilson. “Six views of embodied cognition”. In: Psychonomic bulletin
& review 9.4 (2002), pp. 625–636.

[15] Michael L Anderson. “Embodied cognition: A field guide”. In: Artificial intel-
ligence 149.1 (2003), pp. 91–130.

[16] Kenji Doya. “Reinforcement learning: Computational theory and biological
mechanisms”. In: HFSP journal 1.1 (2007), p. 30.

87

[17] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Rein-
forcement learning: A survey”. In: Journal of artificial intelligence research
4 (1996), pp. 237–285.

[18] Stephen Jay Gould. “Darwinism and the expansion of evolutionary theory”.
In: Science 216.4544 (1982), pp. 380–387.

[19] Michael D Vose. The simple genetic algorithm: foundations and theory. MIT
press, 1999.

[20] Tiantian Zhang et al. “Catastrophic Interference in Reinforcement Learning:
A Solution Based on Context Division and Knowledge Distillation”. In: arXiv
preprint arXiv:2109.00525 (2021).

[21] David M Bossens and Adam J Sobey. “Lifetime policy reuse and the impor-
tance of task capacity”. In: arXiv preprint arXiv:2106.01741 (2021).

[22] Abhiit Banerjee, Dipendranath Ghosh, and Suvrojit Das. “Hyper-parameter
tuned deep q network for area estimation of oil spills: a meta-heuristic ap-
proach”. In: Evolutionary Intelligence 14.1 (2021), pp. 175–190.

[23] L Andrew Coward and Tamas O Gedeon. “Implications of resource limitations
for a conscious machine”. In: Neurocomputing 72.4-6 (2009), pp. 767–788.

[24] Brian Carnell. The Etymology of the Word “Computer”. 2015. url: https:
//brian.carnell.com/articles/2015/the-etymology-of-the-word-

computer/ (visited on 03/05/2022).

[25] Wikipedia. Antikythera mechanism. 2022. url: https://en.wikipedia.org/
wiki/Antikythera_mechanism (visited on 03/05/2022).

[26] Wikipedia. Antikythera mechanism. 2022. url: https://en.wikipedia.org/
wiki/Abacus (visited on 03/05/2022).

[27] Jim O’Reilly. Jacquard Looms at Lang Pioneer Village Museum. 2015. url:
http://thechawkersfoundation.org/jacquard-looms-at-lang-pioneer-

village/ (visited on 03/05/2022).

[28] DRS Education. James Burke Connections, Ep. 4 ”Faith in Numbers”. 2019.
url: https://www.youtube.com/watch?v=z6yL0_sDnX0&ab_channel=DRS_
Education (visited on 03/05/2022).

[29] S Barry Cooper and Jan Van Leeuwen. Alan Turing: His work and impact.
Elsevier, 2013.

[30] Atomic Heritage Foundation. John von Neumann. 2019. url: https://www.
atomicheritage.org/profile/john-von-neumann (visited on 03/05/2022).

[31] Alan M Turing. “Computing machinery and intelligence”. In: Parsing the tur-
ing test. Springer, 2009, pp. 23–65.

[32] The History of Artificial Intelligence. Rockwell Anyoha. 2017. url: https://
sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/

(visited on 03/05/2022).

88

[33] Donald Olding Hebb. The organization of behavior: A neuropsychological the-
ory. Psychology Press, 2005.

[34] WS McCulloh and W Pitts. “A logical calculus of the ideas immanent in neural
nets”. In: Bull Math. Biophys 5 (1943), pp. 133–137.

[35] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[36] Alan Mathison Turing. Intelligent machinery. 1948.

[37] John J Hopfield. “Neural networks and physical systems with emergent col-
lective computational abilities”. In: Feynman and computation. CRC Press,
2018, pp. 7–19.

[38] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[39] Edward A Feigenbaum. “Expert systems in the 1980s”. In: State of the art
report on machine intelligence. Maidenhead: Pergamon-Infotech (1981).

[40] Arthur J Bernstein. “Analysis of programs for parallel processing”. In: IEEE
transactions on electronic computers 5 (1966), pp. 757–763.

[41] Atilim Gunes Baydin et al. “Automatic differentiation in machine learning: a
survey”. In: Journal of Marchine Learning Research 18 (2018), pp. 1–43.

[42] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In:
arXiv preprint arXiv:1312.5602 (2013).

[43] Jianqing Fan et al. “A theoretical analysis of deep Q-learning”. In: Learning
for Dynamics and Control. PMLR. 2020, pp. 486–489.

[44] Blake A Richards et al. “A deep learning framework for neuroscience”. In:
Nature neuroscience 22.11 (2019), pp. 1761–1770.

[45] Sebastian Ruder. “An overview of multi-task learning in deep neural net-
works”. In: arXiv preprint arXiv:1706.05098 (2017).

[46] Kevin Lu et al. “Pretrained transformers as universal computation engines”.
In: arXiv preprint arXiv:2103.05247 (2021).

[47] Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint arXiv:1608.08710
(2016).

[48] Russell Reed. “Pruning algorithms-a survey”. In: IEEE transactions on Neural
Networks 4.5 (1993), pp. 740–747.

[49] Joseph Early. “Reducing catastrophic forgetting when evolving neural net-
works”. In: arXiv preprint arXiv:1904.03178 (2019).

[50] George FR Ellis. “Top-down causation and emergence: some comments on
mechanisms”. In: Interface Focus 2.1 (2012), pp. 126–140.

89

[51] Kevin Frans and Olaf Witkowski. “Population-Based Evolution Optimizes a
Meta-Learning Objective”. In: arXiv preprint arXiv:2103.06435 (2021).

[52] Samuel Butler and Denis Foa. Erewhon. Royal Victorian Institute for the Blind
Tertiary Resource Service., 1988.

[53] Lawrence Krauss and Lawrence M Krauss. The physics of star trek. Basic
Books (AZ), 2007.

[54] Stanley Kubrick. “2001: a space odyssey”. In: (1968).

[55] Ben Goertzel and Cassio Pennachin. Artificial general intelligence. Vol. 2.
Springer, 2007.

[56] Ben Goertzel. “Reflective Metagraph Rewriting as a Foundation for an AGI”
Language of Thought””. In: arXiv preprint arXiv:2112.08272 (2021).

[57] How many words do you need to speak a language? Beth Sagar-Fenton Lizzy
McNeill. 2018. url: https://www.bbc.com/news/world-44569277 (visited
on 03/05/2022).

[58] Cameron Buckner and James Garson. “Connectionism”. In: (1997).

[59] Ernest Jones. “The theory of symbolism”. In: British Journal of Psychology
9.2 (1918), p. 181.

[60] Tzvetan Todorov. Symbolism and interpretation. Cornell University Press,
1986.

[61] Charles Kay Ogden and Ivor Armstrong Richards. The Meaning of Meaning:
A Study of the Influence of Language upon Thought and of the Science of
Symbolism. Vol. 29. Harcourt, Brace, 1925.

[62] Sybille Kramer. “Mind, symbolism, formalism: Is Leibniz a precursor of ar-
tificial intelligence?” In: KO KNOWLEDGE ORGANIZATION 23.2 (1996),
pp. 83–87.

[63] Ben Goertzel. “The general theory of general intelligence: a pragmatic pat-
ternist perspective”. In: arXiv preprint arXiv:2103.15100 (2021).

[64] Seth Baum. “A survey of artificial general intelligence projects for ethics, risk,
and policy”. In: Global Catastrophic Risk Institute Working Paper (2017),
pp. 17–1.

[65] Michael Genesereth Vinay K. Chaudhri Naren Chittar. CS 520 Knowledge
Graphs. 2021. url: https://web.stanford.edu/class/cs520/ (visited on
03/05/2022).

[66] Antonio Lieto. Cognitive design for artificial minds. Routledge, 2021.

[67] Md Kamruzzaman Sarker et al. “Neuro-symbolic artificial intelligence: Current
trends”. In: arXiv preprint arXiv:2105.05330 (2021).

[68] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In:
IEEE transactions on neural networks and learning systems 32.1 (2020), pp. 4–
24.

90

[69] James CR Whittington and Rafal Bogacz. “Theories of error back-propagation
in the brain”. In: Trends in cognitive sciences 23.3 (2019), pp. 235–250.

[70] Rachel A StClair, William Edward Hahn, and Elan Barenholtz. “The Role of
Bio-Inspired Modularity in General Learning”. In: International Conference
on Artificial General Intelligence. Springer. 2021, pp. 261–268.

[71] Alexander Ororbia et al. “Lifelong neural predictive coding: Learning cumula-
tively online without forgetting”. In: arXiv preprint arXiv:1905.10696 (2019).

[72] Gal Chechik, Isaac Meilijson, and Eytan Ruppin. “Neuronal regulation: A
mechanism for synaptic pruning during brain maturation”. In: Neural compu-
tation 11.8 (1999), pp. 2061–2080.

[73] Uri Hasson, Samuel A Nastase, and Ariel Goldstein. “Direct fit to nature:
an evolutionary perspective on biological and artificial neural networks”. In:
Neuron 105.3 (2020), pp. 416–434.

[74] Luciano Floridi and Massimo Chiriatti. “GPT-3: Its nature, scope, limits, and
consequences”. In: Minds and Machines 30.4 (2020), pp. 681–694.

[75] Robert Dale. “GPT-3: What’s it good for?” In: Natural Language Engineering
27.1 (2021), pp. 113–118.

[76] Zihao Zhao et al. “Calibrate before use: Improving few-shot performance of
language models”. In: International Conference on Machine Learning. PMLR.
2021, pp. 12697–12706.

[77] Suzana Herculano-Houzel and Roberto Lent. “Isotropic fractionator: a simple,
rapid method for the quantification of total cell and neuron numbers in the
brain”. In: Journal of Neuroscience 25.10 (2005), pp. 2518–2521.

[78] Matthew Hutson et al. “Robo-writers: The rise and risks of language-generating
AI”. In: Nature 591.7848 (2021), pp. 22–25.

[79] Bernard J Baars. A cognitive theory of consciousness. Cambridge University
Press, 1993.

[80] Antti Revonsuo. Consciousness: The science of subjectivity. Psychology Press,
2009.

[81] Sean Kugele and Stan Franklin. “Learning in LIDA”. In: Cognitive Systems
Research 66 (2021), pp. 176–200.

[82] Changeux Dehaene Stanislas and Jean-Pierre. “A simple model of prefrontal
cortex function in delayed-response tasks”. In: Journal of Cognitive Neuro-
science 1.3 (1989), pp. 244–261.

[83] Anirudh Goyal et al. “Coordination among neural modules through a shared
global workspace”. In: arXiv preprint arXiv:2103.01197 (2021).

[84] Giulio Tononi. “An information integration theory of consciousness”. In: BMC
neuroscience 5.1 (2004), pp. 1–22.

91

[85] Scott Aaronson. Why I Am Not An Integrated Information Theorist (or, The
Unconscious Expander). 2014. url: https://scottaaronson.blog/?p=1799
(visited on 03/05/2022).

[86] Adrien Doerig et al. “The unfolding argument: Why IIT and other causal struc-
ture theories cannot explain consciousness”. In: Consciousness and cognition
72 (2019), pp. 49–59.

[87] William GP Mayner et al. “PyPhi: A toolbox for integrated information the-
ory”. In: PLoS computational biology 14.7 (2018), e1006343.

[88] Erik P Hoel et al. “Can the macro beat the micro? Integrated information
across spatiotemporal scales”. In: Neuroscience of Consciousness 2016.1 (2016).

[89] Adam B Barrett and Anil K Seth. “Practical measures of integrated informa-
tion for time-series data”. In: PLoS computational biology 7.1 (2011), e1001052.

[90] Pedro AM Mediano, Anil K Seth, and Adam B Barrett. “Measuring integrated
information: Comparison of candidate measures in theory and simulation”. In:
Entropy 21.1 (2019), p. 17.

[91] Rajesh PN Rao and Dana H Ballard. “Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects”. In:
Nature neuroscience 2.1 (1999), pp. 79–87.

[92] Andy Clark. Surfing uncertainty: Prediction, action, and the embodied mind.
Oxford University Press, 2015.

[93] Andy Clark. “Whatever next? Predictive brains, situated agents, and the
future of cognitive science”. In: Behavioral and brain sciences 36.3 (2013),
pp. 181–204.

[94] Karl Friston. “Does predictive coding have a future?” In: Nature neuroscience
21.8 (2018), pp. 1019–1021.

[95] Philipp Sterzer et al. “The predictive coding account of psychosis”. In: Bio-
logical psychiatry 84.9 (2018), pp. 634–643.

[96] Tengda Han, Weidi Xie, and Andrew Zisserman. “Video representation learn-
ing by dense predictive coding”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision Workshops. 2019, pp. 0–0.

[97] Tengda Han, Weidi Xie, and Andrew Zisserman. “Memory-augmented dense
predictive coding for video representation learning”. In: European conference
on computer vision. Springer. 2020, pp. 312–329.

[98] Michael W Spratling. “A review of predictive coding algorithms”. In: Brain
and cognition 112 (2017), pp. 92–97.

[99] L Andrew Coward. “The recommendation architecture: lessons from large-
scale electronic systems applied to cognition”. In: Cognitive Systems Research
2.2 (2001), pp. 111–156.

[100] L Andrew Coward. Pattern thinking. Greenwood Publishing Group, 1990.

92

[101] L Andrew Coward and Tamas D Gedeon. “Using the change manager model
for the hippocampal system to predict connectivity and neurophysiological
parameters in the perirhinal cortex”. In: Computational Intelligence and Neu-
roscience 2016 (2016).

[102] L Andrew Coward. “The pattern extraction architecture: A connectionist alter-
native to the von Neumann architecture”. In: International Work-Conference
on Artificial Neural Networks. Springer. 1997, pp. 634–643.

[103] Ian J Goodfellow et al. “An empirical investigation of catastrophic forgetting in
gradient-based neural networks”. In: arXiv preprint arXiv:1312.6211 (2013).

[104] Ronald Kemker et al. “Measuring catastrophic forgetting in neural networks”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.
2018.

[105] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-
works”. In: Proceedings of the national academy of sciences 114.13 (2017),
pp. 3521–3526.

[106] Tyler L Hayes et al. “Remind your neural network to prevent catastrophic
forgetting”. In: European Conference on Computer Vision. Springer. 2020,
pp. 466–483.

[107] Joan Serra et al. “Overcoming catastrophic forgetting with hard attention to
the task”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 4548–4557.

[108] Xilai Li et al. “Learn to grow: A continual structure learning framework for
overcoming catastrophic forgetting”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 3925–3934.

[109] Junfeng Wen, Yanshuai Cao, and Ruitong Huang. “Few-shot self reminder
to overcome catastrophic forgetting”. In: arXiv preprint arXiv:1812.00543
(2018).

[110] Craig Atkinson et al. “Pseudo-rehearsal: Achieving deep reinforcement learn-
ing without catastrophic forgetting”. In: Neurocomputing 428 (2021), pp. 291–
307.

[111] Dongbo Liu et al. “An improved dual-channel network to eliminate catas-
trophic forgetting”. In: IEEE Transactions on Systems, Man, and Cybernetics:
Systems (2020).

[112] Joao Ribeiro, Francisco S Melo, and Joao Dias. “Multi-task learning and
catastrophic forgetting in continual reinforcement learning”. In: arXiv preprint
arXiv:1909.10008 (2019).

[113] Anthony Robins and SIMON McCALLUM. “Catastrophic forgetting and the
pseudorehearsal solution in Hopfield-type networks”. In: Connection Science
10.2 (1998), pp. 121–135.

93

[114] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958.

[115] Monika Schak and Alexander Gepperth. “A study on catastrophic forgetting
in deep LSTM networks”. In: International Conference on Artificial Neural
Networks. Springer. 2019, pp. 714–728.

[116] Claudio Greco et al. “Measuring Catastrophic Forgetting in Visual Question
Answering”. In: Increasing Naturalness and Flexibility in Spoken Dialogue In-
teraction. Springer, 2021, pp. 381–387.

[117] Nicolas Y Masse, Gregory D Grant, and David J Freedman. “Alleviating catas-
trophic forgetting using context-dependent gating and synaptic stabilization”.
In: Proceedings of the National Academy of Sciences 115.44 (2018), E10467–
E10475.

[118] Dylan R Ashley, Sina Ghiassian, and Richard S Sutton. “Does the Adam Opti-
mizer Exacerbate Catastrophic Forgetting?” In: arXiv preprint arXiv:2102.07686
(2021).

[119] Thang Doan et al. “A theoretical analysis of catastrophic forgetting through
the ntk overlap matrix”. In: International Conference on Artificial Intelligence
and Statistics. PMLR. 2021, pp. 1072–1080.

[120] Vinay V Ramasesh, Ethan Dyer, and Maithra Raghu. “Anatomy of catas-
trophic forgetting: Hidden representations and task semantics”. In: arXiv preprint
arXiv:2007.07400 (2020).

[121] Jiahao Huo and Terence L van Zyl. “Comparative Analysis of Catastrophic
Forgetting in Metric Learning”. In: 2020 7th International Conference on Soft
Computing & Machine Intelligence (ISCMI). IEEE. 2020, pp. 68–72.

[122] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A survey of transfer
learning”. In: Journal of Big data 3.1 (2016), pp. 1–40.

[123] Shunsuke Imai, Shin Kawai, and Hajime Nobuhara. “Stepwise pathnet: a layer-
by-layer knowledge-selection-based transfer learning algorithm”. In: Scientific
Reports 10.1 (2020), pp. 1–14.

[124] Steven Williams and Larry Yaeger. “Evolution of neural dynamics in an eco-
logical model”. In: Geosciences 7.3 (2017), p. 49.

[125] Deok-Sun Lee. “Evolution of regulatory networks towards adaptability and sta-
bility in a changing environment”. In: Physical Review E 90.5 (2014), p. 052822.

[126] Joaquin Vanschoren. “Meta-learning: A survey”. In: arXiv preprint arXiv:1810.03548
(2018).

[127] Alireza Goudarzi et al. “Emergent criticality through adaptive information
processing in Boolean networks”. In: Physical review letters 108.12 (2012),
p. 128702.

94

[128] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural architecture
search: A survey”. In: The Journal of Machine Learning Research 20.1 (2019),
pp. 1997–2017.

[129] Mantas Lukoševičius, Herbert Jaeger, and Benjamin Schrauwen. “Reservoir
computing trends”. In: KI-Künstliche Intelligenz 26.4 (2012), pp. 365–371.

[130] Fabrice Normandin et al. “Sequoia: A Software Framework to Unify Continual
Learning Research”. In: arXiv preprint arXiv:2108.01005 (2021).

[131] Quanziang Wang et al. “Revisiting Experience Replay: Continual Learning by
Adaptively Tuning Task-wise Relationship”. In: arXiv preprint arXiv:2112.15402
(2021).

[132] Andy Cahill. “Catastrophic forgetting in reinforcement-learning environments”.
PhD thesis. University of Otago, 2011.

[133] Sean Mondesire and R Paul Wiegand. “Forgetting Beneficial Knowledge in
Decomposition-Based Reinforcement Learning Using Evolutionary Computa-
tion”. In: Proceedings of the International Conference on Genetic and Evolu-
tionary Methods (GEM). The Steering Committee of The World Congress in
Computer Science, Computer . . . 2014, p. 1.

[134] Claes Stranneg̊ard et al. “The animat path to artificial general intelligence”.
In: Proceedings of IJCAI-17 Workshop on Architectures for Generality & Au-
tonomy. 2017.

[135] Ricardo Vilalta and Youssef Drissi. “A perspective view and survey of meta-
learning”. In: Artificial intelligence review 18.2 (2002), pp. 77–95.

[136] A Juliani et al. “Unity: A general platform for intelligent agents. arXiv 2018”.
In: arXiv preprint arXiv:1809.02627 ().

[137] .

[138] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[139] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In:
arXiv preprint arXiv:1812.05905 (2018).

[140] Abien Fred Agarap. “Deep learning using rectified linear units (relu)”. In:
arXiv preprint arXiv:1803.08375 (2018).

[141] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international confer-
ence on computer vision. 2015, pp. 1440–1448.

[142] Alex Graves. “Generating sequences with recurrent neural networks”. In: arXiv
preprint arXiv:1308.0850 (2013).

[143] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.
cc/paper/9015- pytorch- an- imperative- style- high- performance-

deep-learning-library.pdf.

95

[144] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89.
2020. url: https://developer.nvidia.com/cuda-toolkit.

[145] Adam Paszke. Reinforcement Learning (DQN) Tutorial.

[146] Stefan Droste, Thomas Jansen, and Ingo Wegener. “On the analysis of the (1+
1) evolutionary algorithm”. In: Theoretical Computer Science 276.1-2 (2002),
pp. 51–81.

[147] Lukas Biewald. Experiment Tracking with Weights and Biases. Software avail-
able from wandb.com. 2020. url: https://www.wandb.com/.

[148] Yi-Hong Liang, Sin-Jin Kang, and Sung Hyun Cho. “A Study about the Use-
fulness of Reinforcement Learning in Business Simulation Games using PPO
Algorithm”. In: Journal of Korea Game Society 19.6 (2019), pp. 61–70.

[149] Pontus Andersson. Future-proofing Video Game Agents with Reinforced Learn-
ing and Unity ML-Agents. 2021.

[150] Abu Jafar Md Muzahid, Syafiq Fauzi Kamarulzaman, and Md Arafatur Rah-
man. “Comparison of ppo and sac algorithms towards decision making strate-
gies for collision avoidance among multiple autonomous vehicles”. In: 2021
International Conference on Software Engineering & Computer Systems and
4th International Conference on Computational Science and Information Man-
agement (ICSECS-ICOCSIM). IEEE. 2021, pp. 200–205.

[151] Jun Lai, Xi-liang Chen, and Xue-zhen Zhang. “Training an Agent for Third-
person Shooter Game Using Unity ML-Agents”. In: International Conference
on Artificial Intelligence and Computing Science. Hangzhou. 2019, pp. 317–
332.

[152] Abhishek Nandy and Manisha Biswas. “Unity ml-agents”. In: Neural Networks
in Unity. Springer, 2018, pp. 27–67.

[153] LA Rybak et al. “Development of an algorithm for managing a multi-robot
system for cargo transportation based on reinforcement learning in a virtual
environment”. In: IOP Conference Series: Materials Science and Engineering.
Vol. 945. 1. IOP Publishing. 2020, p. 012083.

[154] Xiao wenwen. “Application Research of end to end behavior decision based
on deep reinforcement learning”. In: Proceedings of the 2021 5th International
Conference on Electronic Information Technology and Computer Engineering.
2021, pp. 889–894.

[155] Kevin Tan and Andy L Khuu. “Deep Reinforcement Learning Dodgeball”. In:
().

[156] CPA Awoga and Oluwaseyi Tony PRM. “Using Deep Q-Networks to Train an
Agent to Navigate the Unity ML-Agents Banana Environment”. In: Available
at SSRN 3881878 (2021).

96

[157] Kyushik Min, Hayoung Kim, and Kunsoo Huh. “Deep distributional reinforce-
ment learning based high-level driving policy determination”. In: IEEE Trans-
actions on Intelligent Vehicles 4.3 (2019), pp. 416–424.

[158] Qi Zhang, Tao Du, and Changzheng Tian. “Self-driving scale car trained by
deep reinforcement learning”. In: arXiv preprint arXiv:1909.03467 (2019).

[159] Arina Afanasyeva and Maxim Buzdalov. “Optimization with auxiliary criteria
using evolutionary algorithms and reinforcement learning”. In: Proceedings of
18th International Conference on Soft Computing MENDEL 2012. Vol. 2012.
2012, pp. 58–63.

[160] Dimitris E Koulouriotis and A Xanthopoulos. “Reinforcement learning and
evolutionary algorithms for non-stationary multi-armed bandit problems”. In:
Applied Mathematics and Computation 196.2 (2008), pp. 913–922.

[161] Yoshitaka Sakurai et al. “A method to control parameters of evolutionary
algorithms by using reinforcement learning”. In: 2010 sixth international con-
ference on signal-image technology and internet based systems. IEEE. 2010,
pp. 74–79.

[162] P.A. Borisovsky and A.V. Eremeev. “Comparing evolutionary algorithms to
the (1+1) -EA”. In: Theoretical Computer Science 403.1 (2008), pp. 33–41.
issn: 0304-3975. doi: https : / / doi . org / 10 . 1016 / j . tcs . 2008 . 03 .

008. url: https : / / www . sciencedirect . com / science / article / pii /

S0304397508002028.

[163] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[164] Douglas M Hawkins. “The problem of overfitting”. In: Journal of chemical
information and computer sciences 44.1 (2004), pp. 1–12.

[165] Micheal L Mavrovouniotis and S Chang. “Hierarchical neural networks”. In:
Computers & chemical engineering 16.4 (1992), pp. 347–369.

97

