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One basic goal of artificial learning systems is the ability to continually learn
throughout that system’s lifetime. Transitioning between tasks and re-deploying
prior knowledge is thus a desired feature of artificial learning. However, in the
deep-learning approaches, the problem of catastrophic forgetting of prior knowledge
persists. As a field, we want to solve the catastrophic forgetting problem without
requiring exponential computations or time, while demonstrating real-world
relevance. This work proposes a novel model which uses an evolutionary algorithm
similar to a meta-learning objective, that is fitted with a resource constraint
metrics. Four reinforcement learning environments are considered with the shared
concept of depth although the collection of environments is multi-modal. This
system shows preservation of some knowledge in sequential task learning and

protection of catastrophic forgetting in deep neural networks.
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Chapter 1

INTRODUCTION

One basic goal of artificial learning systems is the ability to continually learn
throughout that system’s lifetime. The ability for continual learning, or life-long
learning implies that the artificial learning system, or agent, can learn without for-
getting prior learning. The potential utility of learning without forgetting, or "knowl-
edge preservation’, is twofold: first, the system can return to previously learned tasks
after learning something new. Secondly, bootstrapping previous knowledge may al-
low for faster learning of a novel task. Both of these potential benefits of preserving
learned information may serve to conserve resources. Allowing the same computa-
tional hardware to be ‘multiplexed’ for another task, rather than requiring allocation
of distinct resources, reduces the required energy resources involved in the learning
process. Multiplexed information is stored in such a way that the system can switch
between previously learned tasks while retaining performance. Information can then
be accessed for learning new tasks in a contextually relevant manner. Multiplexed
information is thus stored and retrieved in a way that facilitates the conservation
and use of prior learning, broadening the ability of a learning system to multiple task
domains by encoding high-level ‘multi-use’ concepts.

Although many metrics exist for characterizing desirable properties of artificial
general intelligence (AGI), the term is commonly used to describe a software pro-
gram that is highly adaptable to a variety of environments while displaying a range
of functionality similar to, or beyond, human cognition. The term is distinct from
traditional artificial intelligence research, which aims to make domain-specific pre-

diction programs. AGI, or rather superintelligent AGI, which has the potential to















Significance

The importance of investigating what types of architectures are well suited for
preserving knowledge lies in constructing artificial learning systems that can not only
provide utility in our daily lives, but also give insight into our understanding of human
learning and intelligence.

Currently, topologies of artificial learning systems are somewhat haphazardly de-
signed. Informing our architecture designs with systematic research, will lead to
better insight into how models of artificial cognition can be better constructed. The
key idea is modeled from the human brain where it is likely that network topology is
at least, if not more, important than later learning algorithms in achieving knowledge
preservation. This allows us to avoid ending up with a system that is doing the bulk
of the learning process after it has been configured. In a system that prioritizes ini-
tial connectivity, this manifests as understanding what is the appropriate topology to
facilitate continual learning, over the model’s lifetime. Our current artificial learning
algorithms drastically reduce their biological counterparts to imitative mathematics
that do not yet withstand the demands of real-world problem solving within resource
conservative systems.

The major problem of catastrophic forgetting prevents artificial neural networks
from learning in a similar fashion to the human brain. An abundance of evidence
suggests that biological brains are capable of learning without forgetting and that
they do so within resource constraints. Brains do not create a new neuron for every
piece of information they need to learn. Instead, they multiplex existing learning in
novel contexts. If we better understand how connectivity between neurons facilitates
knowledge preservation, we can not only create more generally intelligent artificial
agents, but also learn more about how the human brain is facilitating learning.

In a broader sense, knowledge preservation lends itself to general learning which


















their biological properties of neurochemical interactions and dynamical systems into
artificial systems which embody the system interactions by mechanisms outside of
physiology and anatomy. Here, we rely on the RA’s description of evolutionary pres-
sure and constraints of biological brains to provide support for artificial cognition
being constrained within resource conservative systems. This approach is very useful
in understanding the problem of knowledge preservation. Thus, we can define the
concept of knowledge preservation as the ability to learn information for later multi-
plexing under resource constraints. The constraint of limited resources enforces the
multiplexing of information units. That is, in order to keep the number of neurons
needed from growing exponentially, neurons need to be used in various ways without
degrading prior learning. Once information is stored appropriately, it can then be
bootstrapped to inform novel contexts. With this consideration, learning can then be
measured, in part, in terms of using prior information in novel context and returning
to previous context without information degradation, all within minimal requirements

of the amount of computational resources available.

Relevant Literature

Recent literature suggests that the intersection of continual deep reinforcement
learning with genetic algorithms may be useful for preserving knowledge. State of
the art learning algorithms in reinforcement learning rely on deep-learning based Deep
Q Networks (DQNs) and Markov decision based processes, namely Proximal Policy
Optimization (PPO) and Soft Actor-Critic (SAC) models. In both of these cases, an
agent uses one of these decision making models to perform tasks in an environment.
Some decisions in the tasks provide the agent’s model with a reward value. The
reward value is used to calculate the appropriateness of the decision making policy
within the model. Over time, the single-task or multiple-task objective is completed,

often in a continual learning process. In genetic algorithms, a continual learning
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sequences. Combining the previous relevant literature with this framework suggests
that employing a GA to simulate the evolutionary resource constraint pressure may

give rise to a new mechanism to protect against catastrophic forgetting.

Dilemma

Biological brains are highly skilled in learning and adapting to novel contexts.
Yet, computational models seeking to employ a similar level of intelligence in the
human brain are limited in their learning capabilities and even more so in their adap-
tive abilities. Specifically, computational models to date lack the ability to preserve
knowledge for later use, which ultimately keeps resource requirements low. Any com-
putational or biological system is bound to limited resources. This key constraint
is largely unconsidered in current Al and AGI architectures. This work seeks to
understand how architecture plays a role in preserving knowledge. Although many
studies have been conducted on topology of intelligent algorithms, life-long learning,
and learning without forgetting, an investigation on how these variables play a role
in preserving knowledge is not available. Furthermore, when designing an Al or AGI
system, there is little scientific methodology on how to construct the topology for
the types of inductive biases and learning tasks at play. Encoding higher concepts,
or concepts built on-top of other concepts, is not well studied in current literature.
Here, an evolutionary approach is employed which subjects emerging architectures
to pressures of resource constraints, similar to those under which the human brain
evolved. More specifically, this work investigates how information is multiplexed be-
tween computational neurons in neural networks to encode high-level concepts that

can be used between multimodal learning environments.
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Research Questions and Hypotheses
Research Question One

How does changing architecture preserve knowledge?

Hypothesis 1 Architectures that self-modify neuron weights in a way that man-
ages the trade-off between existing information and new information in relation to
sequential specific goals preserve knowledge.

Hypothesis 2 Architectures that self-modify by rewriting existing neuron weights

are able to adapt to changing modalities by optimizing for consecutive tasks.

Research Question Two

How do evolutionary pressures of knowledge preservation affect architectures for
learning and using high-level concepts?

Hypothesis 1 Architectures with neurons which are shared across different com-
putational abilities display more multiplexing of learned information.

Hypothesis 2 Emergent architectures from evolutionary pressures of knowledge

preservation aid general learning and use of a high-level concept.
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without gravity. Action behaviors are to move up one, down one, left one, right one,
forward one, or back one unit. The target position state is a number, one through
six, denoting each of the possible actions, but repeated in the state input vector for
40,000 dimensions. If the target is to move up, the input value is zero and the state
vector is a vector of 40,000 zeros. To get a reward of one, the agent must choose
action output 0. The environment can be seen below in Figure 2 where the square is
the agent which has received a target signal and the objective is to select an output
which corresponds to the target signal. In each episode, the target signal is chosen

at random. This environment was chosen as a control to the depth tasks in previous

documents since it does not share core concepts.

ARE ACTION
POSITIONS

Figure 3.2: A custom mlagents environment where the cube agent is given a target
vector. The agent selects the action output corresponding to the target vector value.

A table of all environments is given below.
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adaptability. Another key consideration for the bottom-up process is where muta-
tions occur. The global state should contain components that retain information
from prior states. If mutations occur throughout the global state simultaneously, the
ability for the system to re-introduce a particular configuration of a local component,
for the sake of returning to a prior task, is degraded. Likewise, if the success metric
is too recurrently focused that it penalizes most novelty, the system won’t be able
to adapt to novelty introduced by the other evolving components. Thus, there is a
critical balance between the bottom-up and top-down mechanisms. Here, bottom-up
processes are controlled by minimizing the loss metric of the model and crossover and
mutation hyperparameters in the evolutionary algorithm.

Learning without catastrophic forgetting is typically measured by performance on
a sequence of tasks. Here, we propose that a recurrent sequence of sub-environments
can be used to assess knowledge preservation. Where task A is performed, then task
B then task A again. However, in order to test whether higher-order concepts can be
encoded in the pursuit of multiplexing information, as occurs in the human brain, the
tasks chosen share the common concept of depth perception. Depth can be ascertained
through various sense modalities. In this work, depth can be perceived by the artificial
agent visually, through distance via position, through auditory clues, or through a
distance measure via raycast. One main goal of the study is to determine if the
concept of depth can be encoded and used across lower-level sensory representations.

The metric used in this study for measuring knowledge preservation how well
the model preforms on the current task. Thus, this measure can be related to the
accuracy of a single task or across a sequence tasks. Here, accuracy is a measure by
the reward received by the agent in each tasks. For single tasks and sequences of tasks,
as well as the type of model used, accuracy can be measured differently. For PPO,
SAC, SAC+LSTM, and DQN models on single tasks, a single-task accuracy meassure

is used. This measure is collected after the total number of iterations for each the
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final episode rewards. An average is then taken across all iterations. This results
in the rewards at the end of each episode, during which the model is updated. The
advantage here, is that the speed at which the model learns is somewhat inherently
captured, since the reward is gathered across the entire training. For the DQN+GA,
DQN+GA-RC, and DQN-GA, A total episode reward is calculated by adding the
rewards incurred during and episode. An average across all episodes is taken to result
in the sequence-task accuracy measure. This measure is similar to the single-task
accuracy with the exception that it is measured across the sequence of tasks. A
special accuracy measure is given in addition to the previous sequence task accuracy
during testing. A total episode reward is calculated by adding the rewards incurred
during and episode. An average is taken of the last five total episode rewards. From
this reward list, the last value is taken as the prime reward. This resulting prime
reward is essentially the final training model reward for a particular individual model.
An average is taken across model iterations, resulting in the prime accuracy measure.
The advantage of this measure, is that the final reward is captured which is indicative
of how well the training procedure performed. Higher reward values indicate better
performance on the task.

Below is a table of the accuracy measures used in this work.

Name Single-task Accuracy Sequence-task Accuracy Prime-task Accuracy
Models PPO, SAC, SAC+LSTM, DQN DQN+GA, DQN+GA-RC, DQN-GA | DQN+GA, DQN+GA-RC, DQN-GA
Train/Test | Training and Testing on Single Tasks | Training on Sequence of Tasks Testing on Sequence of Tasks

Table 3.3: Rewards in each environment and model pair can be calculated according to
single-task or the sequence-task objective and type of training/testing metric desired.

Research Design

In each of the 4 sub-environments for the fox base environment an agent is fitted
with the respective input capturing device (i.e. sensory organ) and navigates the

environment to collect input data for the corresponding model to use as information
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to produce an actionable output. In each environment, there are two sources, A and
B, or rather cylinder and cube. The goal of the agent is to move to the closest source,
moving to the incorrect source results in a negative outcome, moving to the correct
target results in a positive outcome. The agent is always placed in the scene at the
same fixed geographical location while the location of A and B are randomized. Once
the agent gets within a predetermined range of a source, a reward of 1 unit is given
for the target or -1 unit for the non-target and the environment is terminated and
the prediction of which agent is closer is captured. In each environment, a time-step
consists of one navigation decision, rendering a new scene depending on how the agent
moves around. This process is iterated a number of times in order for the agent to
learn the environment effectively, using the total reward as information to update the
neural architecture.

Since the space of all possible modular architectures is too large to investigate by
design, the authors propose an evolutionary strategy to explore emergent architec-
tures. Resulting topologies are selected by a fitness function that rewards models on
the basis of performance in three metrics: computational execution time, accuracy
on the task, and resource requirements. Topologies which are faster at learning the
tasks, produce more accurate predictions, or require less resources are more likely to
be rewarded with the ability to pass on their genes to the next generation. Genes
describe the network topologies in terms of the number of nodes, how those nodes are
connected in the form of the weight matrix of each layer in the network. The weight,
or connection value, is learned through traditional back propagation techniques, spec-
ified by the aforementioned connections. However, the ability to drop weights, or add
weights, is determined by the resource constraint hyperparameter. Hyperparameter
tuning is used to configure the optimal number of add and drop neurons within the
fixed resource constraint metric. Figure Two describes the overall flow in the novel

model proposed.

44



Genetic Algorithm
If resources fotal
*  lescesscesananns | sequence
Collect total consraint --» P rowards afier
rewards I TeMOVE NeUTONS  »essssns, GA loop
If resources <
constraint --> add
A neurons

LI R R R R
@
&

{i- SEgEEEEEEREEEEEEES
i

\ J

Environment with
random sensory
organ layer ayer
ayerl | 2 3 | | Action
1 wm
Input state vector [~ DaN
DQON loop for task A, B, and A’

Figure 3.4: A loop iterates through different sub-environments with different sensory
organs for DQN training until task A, B and repeat task A (i.e. A’) have been
completed. The total average reward is collected and used as the fitness function
for a genetic algorithm to remove or add weights in the DQN layers at random,
percentages calculated by hyperparameter tuning. Final results are then collected
after one recombination, mutation, and implementation loop of the genetic algorithm.
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rate, layer two mutation rate, and layer three mutation rate. For hyperparameter
tuning of the DQN+GA, the previous hyperparameters were frozen so that they were
left out from the new hyperparameter tuning. The total resource constraint metric
was set to 80%, such that if the number of total zeros in the DQN model is over 80%,
the GA is instructed to remove weights. If the total of zero weights is below 80%, the
GA is instructed to add random weights. Which layer to add/remove in crossover is
chosen at random. Which weights to add/remove in mutation is chosen at random.
Yet, once a layer is chosen to add or remove weights to in crossover and mutation,
the percentage of weights in that layer is chosen according to a hyperparameter. This
hyperparameter is optimized according to the aforementioned Weights and Biases
hyperparameter tuning random search process.

Here, there are 16 hyperparemeters for the DQN+GA model. Six of these hy-
perparameters are additional for the GA model, of which, four are tuned using hy-
perparameter optimization described above. Each tunable hyperparameter has three
values each, resulting in 81 possible combinations. Testing all possible combinations
was outside of the scope of this work, thus only 14 runs were considered for hyperpa-
rameter tuning during this phase. Results for hyperparameter tunning were concluded
using run that received the best final reward accuracy. These hyperparameters were
used for further training and testing of the DQN+GA, DQN+GA-RC, and DQN-GA
models.

In order to evaluate a model’s ability to preserve knowledge during a sequence of
tasks, two sub-environments out of the four fox environments (visual-fox, audio-fox,
position-fox, and raycast-fox) were randomly chosen, reffered to as depth-sequence
tasks. The agent is evaluated first on task A, then task B, then task A again. Between
tasks, the model weights are saved and re-loaded for the next tasks. Results are
collected using the Weights and Biases application. In order to asses if having a

shared concept is useful in storing information for later learning, another sequence
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task was constructed in which task B is always the match environment while tasks
A is chosen at random from the four fox sensory environments, reffered to as mixed-
sequence task.

The DQN+GA, DQN+GA-RC, and DQN-GA models were then depth sequence
task three times. Further results were collected for the DQN+GA and DQN-GA
by training both models on the mixed sequence for three separate iterations. The
last trained weights for each DQN+GA and DQN-GA model were then chosen to
preform a test. In this test, the weights are loaded and evaluated on a each sensory
environment (excluding the none environment). This test is repeated for each of the
10 individuals in each of the model’s population for the mixed and depth sequence task
separately. The population count was chosen as a hyperparameter in the DQN+GA
model based on compute resource availability.

In order to determine how model weights change during training. The DQN+GA
and DQN-GA are trained for three evolution iterations. At this point, models are
saved between task A, task B, and the recurrent task A. Another evolution iteration
is performed for which the resultant model weights are saved between each task sim-
ilarly. Model weights are then loaded into arrays, normalized, and the absolute value
difference between each model weights between the third and fourth evolutionary
iterations is recorded.

Finally, a hyperparameter tuning according to previous DQN+GA hyperparam-
eter tuning protocol is repeated for the DQN+GA model in which all other hyper-
parameters are frozen for various RC weights for which a sequence-task accuracy is

recorded.
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Data Analysis
Research Question One

How does changing architecture preserve knowledge?

Hypothesis 1 Architectures that self-modify neuron weights in a way that man-
ages the trade-off between existing information and new information in relation to
sequential specific goals preserve knowledge.

This hypothesis can be tested by comparing the accuracy between the DQN+GA
model, the DQN+GA-RC, and the DQN -GA models on the sequential depth ob-
jective. Furthermore, an analysis of the accuracy between DQN+GA models with
various levels of crossover and mutation rates can test how resources might be man-
aged between layers. The rationale here is that the stability-plasticity trade-off is
directly managed by the resource constraint measure and the percentage of neurons
added or removed in each layer. Since information propagates from layer to layer, the
trade-off between which layer can afford more node modification, either mutation or
crossover, is also a viable statistical analysis. The limitation of this measure is that
the hyperparameters are not tuned for each set-up individually. The hyperparameters
were tuned for the DQN, since it is the base model. Extra hyperparameters for the
GA were tuned separately according to the procedures above.

Hypothesis 2 Architectures that self-modify by rewriting existing neuron weights
are able to adapt to changing modalities by optimizing for consecutive tasks.

Hypothesis two can be analyzed by comparing the training and test accuracies
between DQN+GA models and DQN-GA models for sequential tasks that share ob-
jectives (i.e. depth perception) and sequential tasks that don’t share an objective.
Analysis between sequences of tasks with shared concepts for models that use standard
backpropagation and the DQN+GA with resource constraint feature are compared to

test whether standard backpropagation methods or the DQN+GA method is better
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suited for adapting to changing tasks. Here, limitations of the analysis are in the type
of tasks chosen. Since reinforcement learning is used, there is still a shared procedure
between the depth sequence objective and the non-depth sequence, in that the agent
has to learn state-action-reward loops. To account for this, the task of non-depth was
chosen to be a visual matching objective. Furthermore, the action outputs are shared,
which allows switching between depth tasks and visual matching tasks possible within

the same model weights.

Research Question Two

How do evolutionary pressures of resource constraints affect architectures for learn-
ing and using high-level concepts?

Hypothesis 1 Architectures with neurons which are shared across different com-
putational abilities display more multiplexing of learned information.

Degrees of change in weights at between model checkpoints for the DQN+GA
model and DQN-GA model between different tasks in the sequential depth objective
during training can be compared to asses which nodes are static, being used across
tasks, and which nodes are being re-learned to encode new information. In order
to test if neurons are being multiplexed, we would need to see if neurons remain
somewhat constant across tasks in a sequential task objective. The limitation here
is that since backpropagation forces automatic weight update, all neurons will be
changed by some small degree. To account for this, we take the degree of change
in terms of percentage normalization where a complete change, or reversal of value,
would result in a degree of one. Smaller changes in weight values result in a fraction of
one. Direction of change is not accounted for, as a positive or negative weight change
can be treated equally in terms of degree change and ultimately has no difference in
determining which nodes are multiplexed, or more static.

Hypothesis 2 Emergent architectures from evolutionary pressures of resource con-

o1



straints aid general learning and use of a high-level concept.

The overall accuracy in sequences of depth tasks for testing between the baseline
models, DQN, and DQN+GA can be compared. As a standard measure of how
evolutionary pressures of resource constraints play a role in preserving knowledge,
the total reward is calculated over multiple test runs, using hyperparameters selected
by the aforementioned procedures. The limitation here is that the test models are
trained on a variety of environments, which may obscure the model’s accuracy on a
specific environment sequence. To account for this, multiple test models are performed

an a variety of depth sequences.
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Figure 4.4: Each hyperparameter in the DQN+GA is ranked in terms of importance
and corresponding correlation in relation to the hyperparameter optimization of av-
erage reward of the last 5 total episode reward averages.

Figure 4.5: Runs across the hyperaprameter search are recorded in terms of prime
accuracy.
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