You are here

PRESERVING KNOWLEDGE IN SIMULATED BEHAVIORAL ACTION LOOPS

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
One basic goal of artificial learning systems is the ability to continually learn throughout that system’s lifetime. Transitioning between tasks and re-deploying prior knowledge is thus a desired feature of artificial learning. However, in the deep-learning approaches, the problem of catastrophic forgetting of prior knowledge persists. As a field, we want to solve the catastrophic forgetting problem without requiring exponential computations or time, while demonstrating real-world relevance. This work proposes a novel model which uses an evolutionary algorithm similar to a meta-learning objective, that is fitted with a resource constraint metrics. Four reinforcement learning environments are considered with the shared concept of depth although the collection of environments is multi-modal. This system shows preservation of some knowledge in sequential task learning and protection of catastrophic forgetting in deep neural networks.
Title: PRESERVING KNOWLEDGE IN SIMULATED BEHAVIORAL ACTION LOOPS.
14 views
7 downloads
Name(s): St.Clair, Rachel , author
Barenholtz, Elan, Thesis advisor
Hahn, William, Thesis advisor
Florida Atlantic University, Degree grantor
Center for Complex Systems and Brain Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 108 p.
Language(s): English
Abstract/Description: One basic goal of artificial learning systems is the ability to continually learn throughout that system’s lifetime. Transitioning between tasks and re-deploying prior knowledge is thus a desired feature of artificial learning. However, in the deep-learning approaches, the problem of catastrophic forgetting of prior knowledge persists. As a field, we want to solve the catastrophic forgetting problem without requiring exponential computations or time, while demonstrating real-world relevance. This work proposes a novel model which uses an evolutionary algorithm similar to a meta-learning objective, that is fitted with a resource constraint metrics. Four reinforcement learning environments are considered with the shared concept of depth although the collection of environments is multi-modal. This system shows preservation of some knowledge in sequential task learning and protection of catastrophic forgetting in deep neural networks.
Identifier: FA00013896 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Artificial intelligence
Deep learning (Machine learning)
Reinforcement learning
Neural networks (Computer science)
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013896
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.